
Faculty of Economic Sciences, Communication and IT
Department of Computer Science

Rikard Boström Lars-Olof Moilanen

Capacity pro�ling modeling for baseband
applications

Degree Project of 30 credit points
Master of Science in Information Technology

Date/Term: 2009-01-15
Supervisor: Thijs Holleboom
Examiner: Donald Ross
Serial Number: E2009:03

Karlstads Universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

Capacity pro�ling modeling for baseband
applications

Rikard Boström Lars-Olof Moilanen

c© 2009 The author and Karlstad University

This thesis is submitted in partial ful�llment of the requirements
for the Masters degree in Computer Science. All material in this
thesis which is not my own work has been identi�ed and no mate-
rial is included for which a degree has previously been conferred.

Rikard Boström

Lars-Olof Moilanen

Approved, 2009-01-15

Advisor: Thijs Holleboom

Examiner: Donald Ross

iii

Abstract

Real-time systems are systems which must produce a result within a given time frame. A
result given outside of this time frame is as useless as not delivering any result at all. It
is therefore essential to verify that real-time systems ful�ll their timing requirements. A
model of the system can facilitate the veri�cation process. This thesis investigates two
possible methods for modeling a real-time system with respect to CPU-utilization and
latency of the di�erent components in the system. The two methods are evaluated and
one method is chosen for implementation.

The studied system is the decoder of a Wideband Code Division Multiple Access
(WCDMA) system which utilizes a real-time operating called system Operating System
Embedded compact kernel (OSEck). The methodology of analyzing the system and dif-
ferent ways of obtaining measurements to base the model upon will be described. The
model was implemented using the simulation library VirtualTime, which contains a model
of the previously mentioned operating system. Much work was spent acquiring input for
the model, since the quality of the model depends largely on the quality of the analysis
work. The model created contains two of the studied systems main components.

This thesis identi�es thorough system knowledge and e�cient pro�ling methods as the
key success factors when creating models of real-time systems.

v

Acknowledgements

We would like to thank our supervisors Mikael Carlsson, Per Olsson and Tor Suneson at
Tieto for their guidance during this thesis. We also want to thank everyone else at Tieto
who has assisted with environments, testing and the version handling system. Finally, a
big thank you goes to our supervisor Thijs Jan Holleboom at Karlstad University.

vii

Contents

1 Introduction 1
1.1 The need for a model . 1

1.2 The studied system . 2

1.3 Goal of thesis . 3

2 Background 5
2.1 Introduction . 5

2.2 Real-time systems . 5

2.2.1 Hard real-time system . 6

2.2.2 Soft real-time system . 6

2.3 Veri�cation and analysis of real-time systems 6

2.3.1 Measuring on the actual system . 7

2.3.2 Creating a model of the system . 9

2.4 The studied real-time system . 9

2.4.1 Overview of system components . 11

2.4.2 The user data processing chain . 14

2.5 Summary . 16

3 Feasibility study 17
3.1 Introduction . 17

ix

3.2 The two models . 17
3.2.1 Model based on target code . 18
3.2.2 Abstract model . 19

3.3 Requirements on the model . 22
3.3.1 Information output . 23
3.3.2 Accuracy . 24
3.3.3 Veri�cation . 25
3.3.4 Input . 25
3.3.5 Output format . 26
3.3.6 Limited cost of modeling current software 27
3.3.7 Limited cost of modeling current hardware 28
3.3.8 Limited cost of modeling changes in software 29
3.3.9 Limited cost of modeling changes in hardware 30

3.4 Use cases . 31
3.4.1 Modeling new application features in early project phase 31
3.4.2 Identifying worst case . 32
3.4.3 Identify bottlenecks in the system 33

3.5 Prioritized requirements . 34
3.5.1 Accuracy . 34
3.5.2 Identifying worst case . 35
3.5.3 Model changes in the software . 35

3.6 Model choice . 35
3.7 Summary . 36

4 Model creation methodology 37
4.1 Introduction . 37
4.2 Methodology overview . 37
4.3 Input sources for the model creation process 38

x

4.3.1 The instruction set simulator used for pro�ling the code 39

4.3.2 The target event logs . 40

4.4 VirtualTime . 40

4.4.1 VirtualTime entities . 41

4.5 Use of VirtualTime in the model . 45

4.5.1 Modeling of processes . 45

4.5.2 Modeling of hardware . 45

4.5.3 Modeling of software functions . 45

4.6 Model limitations . 46

4.6.1 Only user data of type EDCH . 46

4.6.2 Only user data with 2 ms TTI . 47

4.6.3 Omitted control plane . 47

4.6.4 Modeling limited to two components 47

4.6.5 Omitted retransmissions . 47

4.6.6 Little conditional execution . 48

4.6.7 Only one user . 48

4.6.8 Summary of limitations . 48

4.7 Modeling the di�erent parts . 48

4.7.1 Application scheduler . 49

4.7.2 Turbo Decoder Peripheral . 58

4.8 Chapter summary . 60

5 Veri�cation 61
5.1 Introduction . 61

5.2 Comparison between target and the instruction set simulator 61

5.2.1 The instruction set simulator code compiled with debug and no com-
pile time optimizations . 62

xi

5.2.2 The instruction set simulator code compiled with debug and compile
time optimizations . 63

5.2.3 The instruction set simulator code compiled without debug, with
compile time optimizations . 64

5.2.4 Discussion about the comparisons between target and the instruction
set simulator . 65

5.2.5 Addressing the found issues . 67

5.2.6 Final comparison . 68

5.3 Comparison between Model and target . 69

5.3.1 Further discussion about remaining deviations 70

6 VirtualTime implementation 73
6.1 Introduction . 73

6.2 Limitations . 73

6.3 Overview . 74

6.4 Implementation of each component . 74

6.4.1 User Data . 75

6.4.2 Frame bu�er . 76

6.4.3 Frame bu�er interrupt service routine 76

6.4.4 DMA . 77

6.4.5 DMA interrupt process . 77

6.4.6 TDP . 78

6.4.7 Application Scheduler . 79

7 Discussion 81
7.1 Introduction . 81

7.2 The model choice . 81

7.3 Simulation library . 82

xii

7.4 Important aspects when modeling . 82
7.4.1 System knowledge . 82
7.4.2 Pro�ling . 83

7.5 Model future work . 83

8 Conclusion 85

References 87

Acronyms 89

xiii

List of Figures

1.1 A �gure illustrating the studied systems real-time requirements 2

2.1 A �gure depicting the decoders placement in the signal processing chain. . . 10

2.2 Flow chart illustrating the signal processing steps involved in processing of
2ms EDCH user data in the uplink direction according to 3GPP TS 25.212
version 6.4.0 Release 6. 12

2.3 Sequence diagram illustrating a simpli�ed view of the processing of 2ms
EDCH user data from an implementation perspective. 15

3.1 A simple VirtualTime code example, ping-pong. 21

4.1 A code snippet illustrating how to receive a signal of some speci�c type(s) in
VirtualTime. 44

4.2 A code snippet returning the amount of cycles consumed by a bubble sort
implementation. 46

4.3 A graph illustrating the correlation between y = the cycles consumed by the
second deinterleaving step and x = the length of the data being processed. . 52

4.4 A graph illustrating the correlation between x = [numberOfCodeBlocks] ∗
([codeBlockSize] + 4) and y =the amount of cycles consumed by the rate
dematching step. 53

xv

4.5 A graph illustrating the correlation between the cycles consumed by the limit
and segment step (y) and a mathematical function composed of the number
of code blocks and the code block size (x) 54

4.6 A graph illustrating the correlation between the cycles consumed by the func-
tion calcTdpParams (z) and a mathematical function composed of the num-
ber of code blocks (x) and the code block size (y) 56

4.7 A graph illustrating the correlation between y = the amount of clock cycles
consumed by pre-TDP, non-pro�led functions and x = the number of symbols
being processed. 57

4.8 A graph illustrating the connection between y = the delay (amount of clock
cycles) from calling TDP to receiving completion signal and x = [codeBlockSize]∗
[numberOfCodeBlocks]. 59

6.1 General component design in VirtualTime 75
6.2 A �gure illustrating the memory/cache hierarchy of the studied system. . . 78

xvi

List of Tables

4.1 The amount of cycles used per symbol for di�erent values of the SymbolType
parameter . 51

4.2 Formulas for calculating cycle consumption for di�erent functions and com-
ponents . 60

5.1 Comparison between the instruction set simulator and target for test case
1, instruction set simulator code compiled with debug and no compile time
optimizations . 62

5.2 Comparison between the instruction set simulator and target for test case
2, instruction set simulator code compiled with debug and no compile time
optimizations . 62

5.3 Comparison between the instruction set simulator and target for test case 1,
instruction set simulator code compiled with debug and compile time opti-
mizations (O=3) . 63

5.4 Comparison between the instruction set simulator and target for test case 2,
instruction set simulator code compiled with debug and compile time opti-
mizations (O=3) . 64

5.5 Comparison between the instruction set simulator and target for test case
1, instruction set simulator code compiled without debug, with compile time
optimizations (O=3) . 64

xvii

5.6 Comparison between the instruction set simulator and target for test case
2, instruction set simulator code compiled without debug, with compile time
optimizations (O=3) . 65

5.7 Final comparison between the instruction set simulator and after addressing
the found issues for test case 1. 68

5.8 Final comparison between the instruction set simulator and target after ad-
dressing the found issues for test case 2. 68

5.9 Comparison between target and model for test case 1. 69
5.10 Final comparison between target and model for test case 2. 70

xviii

Chapter 1

Introduction

1.1 The need for a model

In a real-time system there are constraints on the latency of processing input data and
producing output, i.e. a result. If the system is under heavy load, and hence has very
high resource utilization, care must be taken when adding new features. An increased
computation time introduced somewhere in the code could a�ect the whole system in
terms of scheduling and interrupt handling. Assume time has been spent implementing
a new feature which during testing pushes the system over the limit, i.e. the system no
longer meets its deadlines. When doing such a �nding late in the development process, it
might be a costly procedure to spend even more time to redesign the new feature or other
parts of the system [17, 10].

If the problem instead could be detected earlier, this risk can be mitigated. This could
be done by classifying the feature request as infeasible or give it a larger work estimate, and
hence avoiding spending more time and money than reasonable. Creating an abstraction
of the real-time system, a model, that allows prototyping of new features would make this
possible.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: A �gure illustrating the studied systems real-time requirements

1.2 The studied system

The system studied in this thesis is a real-time system that is a smaller part of a larger
telecommunications system. The system is a baseband application, which means it per-
forms signal processing on a baseband signal, i.e. a signal that has been downmixed from
the carrier frequency to the original frequency. The function of baseband is to output data
identical to the data going into the transmitter on the sender side by applying signal pro-
cessing algorithms on the baseband signal. Some of the algorithms correct errors induced
by the transmission.

The system has constraints on the maximum delay it may introduce in the chain of
processing steps taken place in the telecommunication system, i.e. a limit for the maximum
time it may take from the arrival of the user data and the delivering of the post-processed
ditto (see �gure 1.1).

The system has requirements on handling many concurrent users. When this happens,
interrupts and context switches occur constantly and the real-time aspects of the system
is really being put to test.

Previously, the studied system was validated only by doing measurements on it, which,
according to the engineers working with the system, might not really identify the Worst
Case Execution Times (WCETs) of tasks. This is also supported by Andreas Ermedahl's
Ph.D. thesis [8]:

1.3. GOAL OF THESIS 3

�The traditional way to determine the timing of a program is by measure-
ments, also known as dynamic timing analysis. A wide variety of measure-
ment tools are employed in industry, including emulators, logic analyzers, os-
cilloscopes, and software pro�ling tools [Ive98, Ste02]. The methodology is
basically the same for all approaches: run the program many times and try
di�erent potentially �really bad� input values to provoke the WCET. This is
time-consuming and di�cult work, which does not always give results which
can be guaranteed.�

As he points out there is no guarantee that the worst case execution times can be found
by measuring, and incorrect worst case execution time estimates could be used as input
to the timing analysis method, resulting in an incorrect result. Since an accurate timing
analysis can be highly valuable, the uncertainty of the measurement method is one of the
main reasons for looking at a supplementary validation method.

1.3 Goal of thesis

This thesis investigates the creation of a model that helps address the issues described
in section 1.1, namely identifying the worst case and also enabling early estimation of
resource utilization of new features without actually implementing them. Two di�erent
approaches for creating such a model are studied and discussed. A choice of one of these
approaches is made, and the di�erent aspects and problems found by using that approach
when attempting to create such a model will be discussed.

Chapter 2

Background

2.1 Introduction

In this chapter relevant background information needed to understand this thesis will be
given. It is assumed that the reader of this thesis is familiar with the fundamentals of
computer science. The term real-time system and the two main types of real-time systems,
hard and soft, will be de�ned. An explanation why veri�cation and analysis of real-
time systems are necessary will be given, and existing methods for achieving this will be
described. The studied system will also be presented.

2.2 Real-time systems

A real-time system is a computer system in which the correctness of the system behavior
depends not only on the logical results of the computations, but also on the time instance
at which these results are produced [9].

5

6 CHAPTER 2. BACKGROUND

2.2.1 Hard real-time system

Hard real-time systems are systems that must meet their temporal speci�cation in all
anticipated load and fault scenarios [9], otherwise catastrophic consequences could occur,
e.g. damage to equipment, personal injury or even death. An example of a hard real-time
system is the engine control system of a car, if the system should fail to meet its deadline
it may cause the engine to fail or get damaged.

2.2.2 Soft real-time system

A soft real-time system is less restrictive than a hard one, �simply providing that a critical
real-time task will receive priority over other tasks and that it will retain that priority until
it completes� [14].

In a soft real-time system a missed deadline does not lead to catastrophic scenarios, it
is more likely that the performance of the system is reduced which can indeed be irritating
for a user, but not dangerous. An example of a soft real-time system could be a decoder
processing streaming video. A missed deadline may result in a skipped frame or stuttering
of the video stream. Irritating but hopefully not dangerous. The system in this thesis is
a soft real-time system, but the real-time performance of the system can be considered a
part of the functionality. It is hence very important that the system ful�lls its deadlines
even if failing to do so does not lead to any physical damage.

2.3 Veri�cation and analysis of real-time systems

Because of the timing constraints placed on real-time systems, there is obviously a need
for analyzing and verifying that real-time systems ful�ll them, as Andersson et. al. state
in [5]:

�If the software system has real-time requirements, it is of vital importance

2.3. VERIFICATION AND ANALYSIS OF REAL-TIME SYSTEMS 7

that the system is analyzable with respect to timing related properties, e.g.
deadlines.�

When verifying a real-time system the goal is to simply provoke the system with the worst-
case of input data, and see if it still manages to ful�ll its timing requirements. The worst-
case of input data is the data that the system can be exposed to which gives the system
most problems ful�lling its deadlines. The di�culty of identifying input data representing
the worst case is an important problem and is further discussed in section 3.4.2. Also, an
analysis of the systems timing properties can help indicate where there are bottlenecks and
needs for optimizations.

The two methods for verifying real-time systems will be brie�y described. The �rst
method consists of performing measurements on the actual system, the second is to create
a model that is an abstraction of the system and that captures the timing aspects of the
system. While performing measurements on the actual system seems straight forward it
has some limitations, which a model of the system has not. This is why exploring how to
create a model of a real-time system is the main motivation for this thesis.

2.3.1 Measuring on the actual system

One method of verifying that a system ful�lls its real-time requirements is to make mea-
surements on the actual system. For the system studied in this thesis this is realized by
using a logic analyzer in conjunction with the insertion of code segments at selected places
in the code that outputs data during execution of system.

For the purposes of this thesis a logic analyzer is an electronic instrument which record
the signals being sent in digital circuits, logging the observed values to a �le for later
analysis. See [18] for a brief summary on logic analyzers.

By having the logic analyzer listening on the external memory bus, data written to the
external memory can be caught and saved to a �le without interfering with the system.
As the logic analyzer does not interfere with the system, it avoids the so-called probe ef-

8 CHAPTER 2. BACKGROUND

fect. The probe e�ect [19] means that the measurement itself a�ects the result, because
additional resources are needed for the output of logging information. However, it is not
physically possible to use the logic analyzer for the internal memory of the Central Process-
ing Unit (CPU) or other internal components because the pins are unavailable. Therefore,
the information hidden inside these internal components must somehow explicitly be writ-
ten to the external memory, where it can be recorded by the logic analyzer. When inserting
code segments to cope with the physical limitations of using the logic analyzer, one has to
be aware of the probe e�ect. The probe e�ect occur since the new code to exploit the data
otherwise trapped in the internal unavailable components uses resources and introduces
delay[13]. It might therefore be preferable to always have the probes in the code, even if
the output is not used [4]. In the studied system the resource utilization of the system is
already high, and insertion of code segments into the production code is not considered to
be an option.

As previously mentioned, it is of interest to �nd test data which represents the worst
case, that is the one that results in the longest execution time that the system may be
subjected to, and running that test data through the system. The log �les from the
measurements are then analyzed.

The advantage of this method, i.e. measuring on the actual system, is that the system
itself serves as a model, which makes it very accurate. One of the major disadvantages of
this method is that it is hard to �nd test data that represents a worst case. One can also
not be certain that the actual worst case has been identi�ed [8]. It might be the worst case
observed so far, but there could still be other test data that provokes the system further.
It is thus hard, if not impossible, to verify that the worst case is actually tested. Another
problem with this method is that the complexity of the system makes it hard to analyze
the results of the measurements.

While measuring on the actual system yields accurate results, the work involved in
creating input data is substantial. Furthermore the test cases need to be run for a sub-

2.4. THE STUDIED REAL-TIME SYSTEM 9

stantial amount of time. This, together with the requirement of 100% correct code, i.e. a
completely working system from a functional point of view, makes it unsuitable for rapid
testing of new designs, new features and new hardware characteristics.

2.3.2 Creating a model of the system

Instead of measuring on the actual system, it is possible to create a model of it where the
timing aspects of the di�erent parts of the system are preserved. Investigating the creation
of such a model is the goal of this thesis. The model is an abstraction that captures the
important aspects of the actual system, which in this case have been previously identi�ed
as CPU-utilization and delay of the di�erent components. A model has the bene�t of only
showing what is of interest, i.e. latency contributions, and hence reducing the complexity,
which makes the analysis process easier. Other bene�ts, such as the possibility to simulate
new hardware characteristics and the ease of modeling changes in the code at an early
stage, have also been identi�ed. One key issue when creating a model of a real-time system
is if the level of accuracy required can be reached. Another key issue is to keep the model
updated as the system evolves.

This thesis aims to investigate the creation of a model of the system to help prototyping
new features and simulate new hardware and designs. It should also facilitate �nding the
worst possible combination of input data the system may be subjected to, and help verifying
the ful�llment of the timing constraints and ease the identi�cation of bottlenecks in the
system.

2.4 The studied real-time system

The studied system is a decoder, as de�ned by the 3rd Generation Partnership Project
(3GPP)[1], in a WCDMA system. WCDMA is the technology used to implement and
realize Universal Mobile Telecommunications System (UMTS) [15]. The decoder is the last

10 CHAPTER 2. BACKGROUND

)))

Demodulat ion
step

NetworkDecoding

Figure 2.1: A �gure depicting the decoders placement in the signal processing chain.

unit of the user plane layer 1 processing chain (see �gure 2.1) and is responsible for doing
signal processing and packaging of user data. The Radio Network Controller (RNC) then
operates on the processed �ows. The user data received by the decoder contains the actual
user data sent by the User Equipment (UE), e.g. a cell phone, but also extra information
used for detecting and correcting errors in the received data. The extra information is used
by the decoder to make sure that the data leaving the system is correct.

The system runs on a CPU, which makes use of a coprocessor and communicates with
a number of other hardware devices. Most of the studied application is written in C, with
some minor parts in assembler. A real-time operating system, OSEck[11], is used. There
are constraints on the maximum time it may take from receiving an interrupt signaling
that new user data is available, to the time the processed user data leaves the system.
Even though failing to meet its timing requirements does not result in any immediate
catastrophal event, the system constraints are somewhat harder than for the general soft
real-time system described in section 2.2.2.

The signal processing steps which are to be applied to the user data before they are

2.4. THE STUDIED REAL-TIME SYSTEM 11

sent from the user equipment are described in release 6 of the 3GPP standard[2], the steps
which are applied in the uplink direction are illustrated in �gure 2.2.

2.4.1 Overview of system components

This thesis was limited to study the processing of one speci�c type of user data (see
section 4.6 about the model's limitations), namely Enhanced Dedicated Channel (EDCH)
tra�c with a 2 ms Transmission Time Interval (TTI). Seven components were identi�ed
to be involved in the processing of this type of user data. These components will now be
presented.

Frame bu�er

The user data from the demodulation step is stored in the Frame Bu�er (FB) before the
decoder fetches it. When new user data arrives to the FB from the demodulation the
FB generates an interrupt acknowledging the decoder that new user data is available for
processing. This interrupt causes the FB Interupt Service Routine (ISR) to launch.

Frame bu�er Interrupt Service Routine

The FB ISR runs whenever the FB contains new data which is to be decoded. The user
data is copied from FB to the internal memory by using the Direct Memory Access (DMA)
controller. A DMA job is started and the ISR exits.

DMA controller

The DMA controller is a hardware resource responsible for transferring data between the
di�erent hardware components and the internal and external memory. There are two main
types of DMA usage, implicit and explicit. Implicit usage is when fetching data from
the external memory, which must go through the DMA. The explicit usage is that code
segments are used for explicitly moving data from one location to another, e.g. between

12 CHAPTER 2. BACKGROUND

Figure 2.2: Flow chart illustrating the signal processing steps involved in processing of 2ms
EDCH user data in the uplink direction according to 3GPP TS 25.212 version 6.4.0 Release
6.

2.4. THE STUDIED REAL-TIME SYSTEM 13

two di�erent hardware components. When an explicit DMA job has �nished, an interrupt
can be generated which is caught by the DMA interrupt process.

DMA Interrupt Process

The DMA Interrupt Process runs with high priority and is swapped in when a DMA job is
�nished because of the interrupt generated by the DMA controller. The process then sends
a signal to the application scheduler process with information on where the new data can
be accessed.

Application Scheduler Process

The application scheduler is a process that roughly does two things: Signal processing
(according to �gure 2.2) and packaging of the user data. The channel decoding step is
performed by the Turbo Decoder Peripheral (TDP). The application scheduler processes
the user data to the point where it is ready to start the TDP. At this point the data which
is to be decoded are input to the TDP by using the DMA controller. When the TDP is
�nished, the user data is packaged and sent out of the decoder. The application scheduler
process consists mainly of a big loop which for every iteration gets a signal from its signal
queue and takes proper action depending on the signal, e.g. do signal processing or user
data packaging (called frame protocol building).

Turbo Decoder Peripheral

TDP is short for Turbo Decoder Peripheral and is a hardware which decodes turbo encoded
data. It is invoked by a DMA job, and when �nished the DMA controller generates an
interrupt which triggers the DMA interrupt process.

14 CHAPTER 2. BACKGROUND

Frame Protocol Driver

The Frame Protocol (FP) driver is an external process (not owned by the decoder) to
which the �nished packaged user data is written. It is not studied in this thesis.

2.4.2 The user data processing chain

A description on how the di�erent components interact will now be given. The �ow time
window is set from when the FB sends an interrupt acknowledging that new user data
is available to when the �nished and packaged user data leaves the decoder. The �ow is
depicted in �gure 2.3.

When user data has arrived to the FB, the FB generates an interrupt to acknowledge
the decoder that there is user data available. The interrupt launches the FB ISR which
starts a DMA job for transferring the user data from FB to the internal memory. The DMA
controller copies the user data and sends an interrupt that is caught by the DMA interrupt
process. The DMA interrupt process sends an acknowledgement to the FB, saying that it
is now allowed to send another interrupt. It also sends a signal to the application scheduler
process with information that user data now resides in the internal memory and is now
ready for processing. The application scheduler process does a large part of the signal
processing and sets up a TDP job by calculating some parameters and invoking a number
of DMA jobs. The DMA starts the TDP and makes sure it gets the user data and the
parameters needed for correct processing. The TDP processes the user data, and when
�nished, it makes the DMA aware of this. The DMA controller generates an interrupt
which is caught by the DMA interrupt process. The DMA interrupt sends a signal to the
application scheduler with information that the user data is now processed and ready for
packaging. The application scheduler then packages the user data and sends it out of the
system.

2.4. THE STUDIED REAL-TIME SYSTEM 15

Figure 2.3: Sequence diagram illustrating a simpli�ed view of the processing of 2ms EDCH
user data from an implementation perspective.

16 CHAPTER 2. BACKGROUND

2.5 Summary

Real-time systems are systems which have constraints on the processing time of input data.
There are hard and soft real-time systems which di�er in the importance of ful�lling these
constraints. The system studied in this thesis is classi�ed as a soft real-time system.

It is important to verify the ful�llment of the constraints placed upon real-time systems.
Two alternative methods of doing this are discussed, measuring on the actual system or
creating a model of it. This thesis investigates the latter approach which has bene�ts
compared to the �rst approach. A model could help �nding the worst case and predict the
impact of new features.

Chapter 3

Feasibility study

3.1 Introduction

Two di�erent approaches for creating a model of the system had been identi�ed prior to
this thesis. The �rst one runs the production code in an instruction set simulator, while
the other runs an abstraction of the system in a simulation environment. The feasibility
study was the process of evaluating these two approaches and selecting which of them to
use. The models were considered based on a set of requirements and everyday usages. In
this chapter, the requirements will be described and motivated. The two approaches will
be described along with discussions on if and how they can ful�ll the requirements. Typical
everyday usages of the model, and their potential of ful�llment in each model, will also be
presented. The usages can be seen as a concretization of one or more requirements and
how the model is applied in commonly occurring scenarios.

3.2 The two models

In this section the two di�erent approaches, or models, will be brie�y described together
with the initial thoughts concerning bene�ts, drawbacks and suitability. The models will

17

18 CHAPTER 3. FEASIBILITY STUDY

then be further explained in conjunction with the requirements in section 3.3, where a
deeper analysis of bene�ts and drawbacks of each model is carried out. This analysis is
the basis for the decision of which model will be used.

3.2.1 Model based on target code

This model is based on the target code running in an instruction set simulator. For the
purposes of this thesis, target code is de�ned as the actual production code that runs on
the real hardware. The application itself, the operating system and modeled peripheral
hardware are compiled into a binary �le which is loaded in the simulator. Measurements
can then be made by using the built-in pro�ling tools of the simulator.

Since the code itself serves as the model, the accuracy of the model is only dependent
on how well the peripheral hardware is modeled. The hardware needs to correctly modeled
both in terms of timing behavior and functionality, i.e. it must produce output data which
is correct. When updating the application code, the model automatically gets updated. A
lot of work can initially be saved by using this model, because the application itself does
not need to be modeled, only the peripheral hardware.

While it is possible to run the actual code in an instruction set simulator it is important
to note that the code is heavily optimized before it is deployed on the target hardware, and
that it also is compiled without debug information. If the results from the instruction set
simulator are to be comparable to the ones from the target system the same optimization
and debug settings must be used when compiling the code. These factors disable the use
of the instruction set simulators ability to halt execution at any point, check the state of
any variable etc.

The most signi�cant drawback of the model based on running the target code is the
di�culty involved in �nding relevant test data, i.e. worst-case test data, to feed the model.
The test data also needs to be authentic, i.e. of the same format as data fed to the actual
system. Finding the worst-case is based on running several tests with di�erent test data

3.2. THE TWO MODELS 19

and then analyzing the pro�ling output from the simulator. However, the test data that
provokes the system the most is not necessarily the actual worst case, only the worst case
seen so far.

The instruction set simulator must emulate all the hardware present in the actual
system in software, which makes it run slow compared to the real system. The slow
execution speed can be mitigated by using a special add-on card for hardware acceleration.
Also, the process of creating test data for the target system is non-trivial. Hence, the
process of creating new test data (suspected to provoke the system more than previous
test data) and then running the simulation can be quite tedious.

When prototyping new features, the level of depth in the model can be a problem. A
change in one part of the code can a�ect other parts which might need adaption for the
initial change made to the code. If the input data format is changed, i.e. to model a new
feature, there is a great risk that the amount of work needed to change the model is up
to par with doing the actual implementation. Thus, one is no longer prototyping the new
feature, one is actually implementing it.

3.2.2 Abstract model

The abstract model is an abstraction of the actual system, running in a simulation envi-
ronment. A complete abstract model needs to include abstractions of the application, the
operating system and the hardware. There are simulation environments available which
already model (real-time) operating systems. There is actually a simulation and analysis
tool, VirtualTime [16], which contains a model of the real-time operating system used in
the particular system analyzed in this thesis. Thus, by using this simulation environment
the model engine itself would be ready, meaning that only the modeling of the application
and the hardware needs to be performed.

With VirtualTime, one can create a model of the a real time system by using a C-
library with functions for creating processes, inter-process communication, interrupts, etc.

20 CHAPTER 3. FEASIBILITY STUDY

A model of a system in VirtualTime can be seen as a set of processes that only contain the
information needed for simulating CPU usage, delay characteristics and interaction with
other processes. The resource utilization for system calls, context switches etc. can be
customized. An example of VirtualTime code is shown in �gure 3.1.

Since the model is detached from the real system it is relatively easy to analyze the
impact of new functionality. The functionality only needs to be modeled in terms of CPU-
utilization and delay has to be put in the right place(s).

Also, since the model only contains the parts important for the analysis, it makes it
easier to understand the behavior of the system in di�erent scenarios. Another bene�t of
this model is that, due to its relatively simplistic structure, it will have low execution times
compared to the model running the actual target code in an instruction set simulator.

The abstraction of the system does not need realistic test data, in the sense that its input
does not consist of a large byte array. It only needs the parameters necessary to accurately
model the resource consumption when processing data. Thus, when prototyping changes in
the input data, there is no need for tedious generation of accurate input data and rewriting
other parts of the system to allow the new data format to pass through them.

The most signi�cant drawback of creating an abstraction of the actual system is the
uncertainty of how much initial work is needed to create such an abstraction, meaning
that it is uncertain whether it is possible to create an accurate enough abstraction in the
amount of time set aside for the implementation (around ten weeks). The abstract model
also needs to be updated as the studied system evolves. When the system is updated, the
new areas need to be pro�led and the results must be integrated into the model.

Creating a model of the real-time system partly consists of analyzing portions of the
code base to identify which parts to model. It is assumed that the bulk of the analysis
has to be done manually, since the studied system is fairly complex. This assumption is
supported by Axling in his master thesis [6] and also by Kraft et al in [10]. However,
conducting a manual analysis should be feasible since it is not necessary to model all of the

3.2. THE TWO MODELS 21

#include <vt_ose . h>
#include <s td i o . h>
vt_process_t ∗process_ping ;
vt_process_t ∗process_pong ;

void ping_code (vt_process_t ∗me) {
vt_signal_t sig_snd , s ig_rcv ;
for (; ;) {

f p r i n t f (s tde r r , "ping... ") ; f f l u s h (s t d e r r) ;
vt_use_cycles (33) ;
vt_send(&sig_snd , process_pong) ;
vt_rece ive (&sig_rcv) ;

}
}
void pong_code (vt_process_t ∗me) {

vt_signal_t sig_snd , s ig_rcv ;
for (; ;) {

vt_rece ive (&sig_rcv) ;
vt_use_cycles (17) ;
f p r i n t f (s tde r r , "pong!\n") ;
vt_send(&sig_snd , process_ping) ;

}
}
int main (void) {

vt_in i t_s imulat ion () ;
vt_cpu_t ∗cpu = vt_create_cpu ("CPU") ;
process_ping = vt_create_process (VT_PRI_PROC, "process_ping" ,

&ping_code , 5 , cpu) ;
process_pong = vt_create_process (VT_PRI_PROC, "process_pong" ,

&pong_code , 5 , cpu) ;
vt_run_simulation (150) ;
vt_exit_simulat ion () ;
return 0 ;

}

Figure 3.1: A simple VirtualTime code example, ping-pong.

22 CHAPTER 3. FEASIBILITY STUDY

system, only the parts that are the major consumers of CPU-cycles and shared resources or
that introduces signi�cant delays. To identify these parts, pro�ling data can be used. Such
pro�ling data have already been produced for the studied system, using a logic analyzer
and probes in the code.

After the system analysis, the signi�cant parts of the system are modeled, the model
of each part would only capture the components' CPU-utilization and the delay they
introduce in di�erent scenarios.

When the modeling of the signi�cant parts are �nished a few scenarios can be run in the
model, comparing the results with the results from the target system when using the same
setup. Analyzing the deviation from the real system enables tuning of the abstraction to
more accurately model the real system.

All these steps were feasible to complete in the given time period. However, whether
the model would be able to ful�l the accuracy demands placed upon it was considered
uncertain.

If the creation of an accurate enough abstraction of the system should succeed, it would
feature some highly desirable properties. For example, prototyping new functionality is
made relatively easily when compared to the model which runs the actual target code.

3.3 Requirements on the model

In this section the requirements on the model and their potential of ful�llment will be
described. The phrase �Limited cost� is used throughout this section and might be consid-
ered to be a bit vague. It means that it should be feasible during the amount of time set
aside for this project to at least gain the knowledge necessary to determine whether it is
feasible.

3.3. REQUIREMENTS ON THE MODEL 23

3.3.1 Information output

The model should provide information about latency and CPU usage between de�ned
points in the application. Results should be reported as minimum, mean and maximum
for each connected UE. If possible, the model should also help identifying the worst possible
combination of input data for the system.

Two measurement intervals have been identi�ed, i.e. two sets consisting of a start
and a stop point for which the CPU- utilization and latency for each user data frame is
studied. The latency is calculated from the point where the system obtains the user data
to the point where the processed user data leaves the system. Depending on the user data,
there are di�erent requirements on the maximum time allowed to complete the processing
of a certain type of user data block. There are no actual requirements on the level of
CPU-utilization, but it is still of signi�cant importance as it is important to track the
CPU-utilization for each target code change.

Model based on target code

The instruction set simulator which supports the CPU used in the studied system supports
execution of code in a scope external to actual simulation, such code does not consume
clock cycles on the simulated CPU and can be triggered when writing to a certain area in
memory. It may therefore be used to log data non-intrusively, essentially the same way as
a logic analyzer is used when measuring on the actual system. This data may be saved to
a �le, which can be formatted as desired.

Information about the worst possible combination of input data is hard to derive be-
cause the model is nearly as complex as the system itself. Also, real input data, the creation
of which is non-trivial, must be used. Input data will be discussed in section 3.3.4.

24 CHAPTER 3. FEASIBILITY STUDY

Abstract model

The simulator of choice supports the insertion of measurements points which can output
information on both CPU-utilization and delays to a text �le. This text �le can then be
converted to a desired format.

Information about worst possible combination of input data is relatively easy to �nd,
as the model itself solely is built and based on how certain input data a�ects the system.
Also, the input data is abstracted and the creation of new input data is trivial (see section
3.3.4).

3.3.2 Accuracy

To provide valuable results the model needs to be accurate. In this particular study the
goal is to achieve a level of accuracy within ±1% for minimum/maximum Millions of Cycles
Per Second (MCPS) (CPU usage) and ±3% for minimum/maximum latency.

The model based on target code has the best chances of becoming su�ciently accurate.
However, in a case study done by Wall et. al [17] an abstract model of a system consisting
of 60 tasks and over 2.5 million lines of code was created. Their �nal model consisted of
six tasks and 200 lines of code and still provided valuable results. The system studied in
this thesis is fairly small compared to theirs, both in terms of number of tasks and lines of
code. It is therefore reasonable to argue that it is possible to create a complete abstraction
of the system, both for hardware and software. While the amount of time that went into
their work is unknown, it shows that it is possible to have a large level of abstraction and
still getting valuable results.

Reaching the stated accuracy level with the abstract model will without doubt be a
di�cult task. In a worst case scenario, in order to reach su�cient accuracy for every
possible input data combination, one ends up with a model as complex as the real system
but the model does not actually do anything except calculate CPU-utilization and delay.

3.3. REQUIREMENTS ON THE MODEL 25

3.3.3 Veri�cation

At every change in the actual system, the model must be updated and veri�ed to make
sure that it is reliable. When making minor changes in the product and implementing
the corresponding changes in the model the robustness of the model may also be veri�ed.
Robustness implies that making a change in the actual system and the model should yield
the same results regarding the modeled properties.

Model based on target code

To verify that the model is correct, one runs a test case through both the model and the
actual system, if the results are coherent the model is correct. Should the results di�er,
the deviation adhere from the models hardware part or from the con�guration, since the
source code is common between the model and the actual system.

Abstract model

As in the model based on running the actual target code, a test case would be run in both
the model and the actual system. However, deviations in the results could originate from
any part of the abstract model. Thus, pinpointing of the actual error source might be
harder compared to the model running the target code. The process of searching for the
source of error is likely to result in �ndings of additional factors important for the timing
properties and thus resulting in further re�nements of the model.

3.3.4 Input

The model input largely di�ers between the two models. In the model based on target code,
actual input data must be used. In the abstract model the input data can be abstracted
to only contain the properties necessary for the simulation, i.e. abstracted to a set of
parameters that a�ects the processing speed of the input data in the system. The abstract

26 CHAPTER 3. FEASIBILITY STUDY

model makes it possible to omit data which is of no interest when performing detailed
studies.

Model based on target code

This model utilizes the same code base as the actual system, thus the format of the input
data is the same. Although it takes a lot of work to generate this input data, it has already
been done for some test cases when running pro�ling tests on the actual system. As of now,
there exists around 10 - 15 test cases containing di�erent types of user data representing
di�erent scenarios.

Besides user data, control data also has to be simulated in this model. The system must
be set up correctly before it can begin processing user data, and since the software model
corresponds to the actual software, this type of input data must also be 100% authentic.

Abstract model

The abstract model allows the input data to be largely abstracted, since no actual process-
ing of the input data is done. A block of real input data would be modeled as a structure
containing di�erent parameters, where the parameters decides how the block a�ects the
system, the type of the data and which user the data is bound to. Constructing test data is
a lot easier when using this model, as it is not necessary to construct it on bit level detail.
Also, the control data can be completely omitted in this model.

3.3.5 Output format

Making the output from the model correspond to the output format used when debugging
the actual system has some bene�ts. Existing tools for analyzing the log �les from the
measurement on the actual system can be used on the output from the model. This makes
comparison of the model and the actual system easier.

3.3. REQUIREMENTS ON THE MODEL 27

Model based on target code

The probes in the actual system can be re-used in this model. The output format is hence
the same, and there is virtually no work involved in matching the model output to the
systems output.

Abstract model

To match the output from the actual system, the abstract model would need to be �ne
grained enough to include all measurement points from the actual system. This could be
done by using the existing measurements points as corner stones when creating the model.
Making the output format correspond to the actual system would be a trivial task, since
it is a matter of simple formatting.

3.3.6 Limited cost of modeling current software

If there is too much work involved in creating the model of the current application software,
its value will not exceed the costs for creating it.

Model based on target code

The cost of modeling the current application software is zero. The code itself serves as the
model, and therefore virtually no work is needed.

Abstract model

All processes and interrupt routines must be created to match the actual system. The
interaction between processes must be investigated by looking at the target code. In each
process, the level of abstraction must be decided. Pro�ling data must be obtained in order
to simulate CPU-utilization and delay of the di�erent parts of each process. By manual
investigation of the code in conjunction with analyzing pro�ling data of di�erent inputs,

28 CHAPTER 3. FEASIBILITY STUDY

it should be possible to derive parameters from the input test data that in�uences how
di�erent blocks or functions in the code scales in terms of CPU utilization and delay. The
work needed to complete this process is largely dependent on the level of abstraction needed
in each process.

The real-time operating system must also be modeled. For the purposes of this thesis
this is taken care of by VirtualTime. The size and complexity of the studied system put
a limit on the degree of simpli�cation that can be achieved without loosing too much
accuracy.

3.3.7 Limited cost of modeling current hardware

Besides the application software there are peripheral hardware components which need to
be modeled. As with the application software, the amount of work needed for the process
of modeling the hardware has to be reasonable.

Model based on target code

Experiments with modeling some of the peripheral hardware had previously been performed
at the company developing the studied system. The modeled hardware may be integrated
with the application code and compiled into a binary �le, which can then be run in the
instruction set simulator. This can probably be re-used in the project to some extent.
However, a general problem of modeling hardware for use with the model based on running
the actual target code is the detail level needed, since the software expects the hardware
to use a certain input and output. Fortunately, the simulated hardware does not need
to process the actual user data. Only correct length of the output data is required as
the user data more or less leaves the system after passing through the hardware, i.e. no
further processing of the user data takes place. In the EDCH case the data will be further
processed after TDP processing. This increases the complexity of the input data generation,
described in section 3.3.4.

3.3. REQUIREMENTS ON THE MODEL 29

Abstract model

In the abstract model, only the delay introduced by the hardware needs to be modeled.
The delay is probably dependent on the di�erent parameters of the input data. Some
hardware, e.g. the DMA controller, might be more complex to model than other. The
hardware which is to be modeled must be pro�led in the same manner as the target code.

3.3.8 Limited cost of modeling changes in software

One of the potential usages of the model is the ability to prototype new features in the
software and see how they a�ect the system.

Model based on target code

In the model based on running the actual target code, the approach for modeling changes
depends on the state of the change to be modeled, i.e. if the change is already implemented
or is to be prototyped.

• Before implementation

As long as only addition of code is necessary, i.e. no code removal, only CPU-
utilization and actual delay need to be modeled. If however code removal is necessary,
this could be problematic since the removal of code can have impact on other parts
of the code, and also on the input data being processed, which can result in invalid
in-data for di�erent processing blocks in the code. Another problem in this model
is the input data. If the feature to be modeled requires a new format of the input
data this can be problematic. The creation of real input data is a non-trivial task,
and the creation of real input data which has a new format is even harder. Also, the
whole model needs to be adapted to the new format.

• After implementation

30 CHAPTER 3. FEASIBILITY STUDY

If the change is already implemented, the model is automatically updated since the
application code itself serves as the software part of the model.

Abstract model

In the abstract model, only CPU utilization and actual delay need to be modeled. The
process is similar regardless of whether the model is updated before or after the actual
implementation of the new feature. It might be necessary to re�ne some parts of the
model to accurately be able to insert the new resource utilization. If so, this can be
done by doing re�ne measurements in the actual system of the involved parts and update
according to the gained results.

3.3.9 Limited cost of modeling changes in hardware

Ful�lling the requirement �limited cost of modeling changes in hardware� gives the bene�t
of being able to test di�erent peripheral hardware con�gurations to see how they a�ect the
system.

Model based on target code

Some hardware, such as the CPU itself, the DMA controller and the TDP, are included
in an existent instruction set simulator for the CPU studied in this thesis. This hardware
can not be changed, so changes in that hardware must be modeled in the software, i.e.
by wrapping the hardware. This is hard and makes the boundary between hardware and
software less clear. Changes in the modeled hardware should be of equal complexity as the
initial modeling of it and involves the same di�culties, i.e. the need for detail since the
software expects the hardware to behave in a speci�c way.

3.4. USE CASES 31

Abstract model

In the abstract model, the process of modeling changes should be equally complex for all
types of hardware since all hardware are an abstraction. Modeling changes in the hardware
is quite simple as the dependencies and interaction between the software and the hardware
can be decided.

3.4 Use cases

In the following section three concrete usages of the model will be looked at, i.e. typical
applications of the model which motivates its creation. Each usage can be seen as one or
more of the requirements somewhat concretized. For each usage, a method of realization
in each model will be described.

3.4.1 Modeling new application features in early project phase

The possibility of detecting the impact of a new feature in an early project phase represents
one of the main usages of the model. As stated in chapter 1, this is the main motivation
for this thesis.

Model based on target code

When prototyping new features in an early project phase for the model based on running
the actual target code, the resource utilization in terms of delay and CPU time of the new
feature must be estimated. This requires the engineers implementing the new feature to
make a reasonable guess. Second, the placement of the resource utilization in the target
code must be found. A bene�t of this model is the accuracy of placement because of the
absence of abstraction in the software model. The new feature may only be triggered when
processing a speci�c type of user data, i.e. a conditional execution. This type of user data
might not even exist yet, as the feature itself is only at the prototyping stage. And even

32 CHAPTER 3. FEASIBILITY STUDY

if it were to exist, it could have undesirable impact on the other processing steps as the
format has changed. The conditional execution must hence be implemented by utilizing
breakpoints in the Instruction Set Simulator (ISS) to trigger execution of code looking at
data outside the application, simulating new user data. When testing the new feature, the
new test case would be based on an older test case and looking outside the application for
parameters deciding the conditional execution.

Abstract model

For the abstract model, the �rst steps of prototyping new features in an early project phase
are equal to the target code based model, estimate resource utilization and placement in
the code. However, re�nement of the model might be necessary if the abstraction level of
it is too high. Conditional execution is more straight forward in the abstract model, since
new parameters can be added to the input data with ease without a�ecting other blocks.
The new parameters are simply ignored, except in the block modeling the new feature.
When testing the new feature, the new test case would be based on an older test case but
with the addition of a new parameter simulating the new format of the user data.

3.4.2 Identifying worst case

The possibility of identifying the worst case has obvious bene�ts. Without a probable
worst case, the measurements performed on either the real system or the model are of
limited use, since they only would predict how the system would act during usage less
intense compared to the actual worst case. This means that the system could fail to meet
its deadlines when being exposed to the actual worst case.

Model based on target code

Constructing test data to represent the worst case scenario for the model based on running
the actual target code is hard, not only because of the work involved in constructing

3.4. USE CASES 33

input data, but also because it is hard to actually identify the worst case. The process of
identifying the worst case would consist of running several test cases with di�erent input
data and see which test case made the worst case. However, this does not mean that this
was the actual worst case, only the observed worst case. To later analyze what made the
speci�c test case being the observed worst case is a non-trivial task, since the software
model is highly complex because of the absence of any abstraction.

Abstract model

Identifying the worst case in the abstract model is predicted to be easier because of two
major reasons. The �rst reason is that the creation of test data is much simpler since it
is an abstraction. More test data allows more testing and better chances of �nding the
worst case. The second reason is that the abstraction of the system, which yields in much
lower complexity, allows easier understanding on how di�erent types and amount of user
data a�ects the system. Hence, the model can be examined and give indications of what
a worst case test case should look like.

3.4.3 Identify bottlenecks in the system

Identifying bottlenecks in the system means trying to �nd areas in the application to
improve, i.e. sections which have signi�cant impact on the performance of the system.
For example, one might be interested in identifying resources that greatly in�uences the
execution speed of some test case. Resources which are at the limit of their capacity are
also interesting, since minor changes of the input data may result in substantial e�ects on
the execution speed.

Model based on target code

The instruction set simulator for the CPU the studied system runs on has pro�ling tools
available, so measurement points at the start and end of the block of interest may be

34 CHAPTER 3. FEASIBILITY STUDY

placed in the code. The placement can, as stated previously, be very accurate as there is
no abstraction when the code itself serves as the model. The simulation is then started,
and when �nished the results from the pro�ling can be analyzed.

Abstract model

The approach in the abstract model is similar to the target code based model. Measurement
points are placed into the code. However, if the abstraction level at the wanted location
of the measurement is too high, re�nement of the model is needed. For example, if a
measurement is to be performed inside a block in the model, the block needs to be split
into smaller parts. Hence, a higher level of detail and lower level of abstraction is needed.
The block is split up, and detailed pro�ling is performed, using either the ISS or the target
system. This produces pro�ling results which are imported to the abstract model.

3.5 Prioritized requirements

After having conducted the feasibility study, the work required to create any of the two
models where found to be substantial. Both models clearly have both bene�ts and draw-
backs, and in order to make a choice the most important requirements and their predicted
possibility of ful�llment in each model where identi�ed. The most important requirements
where identi�ed as being accuracy, �nding the worst case and to model changes in the
software (either new features or new designs). The hardware is not expected to change as
often as the software, so this is of less importance.

3.5.1 Accuracy

It was believed that the model based on target code would reach the required level of ac-
curacy. In contrast, it was considered uncertain if the abstract model could reach su�cient
accuracy in the amount of time set aside for the project. However, it was considered pos-

3.6. MODEL CHOICE 35

sible, and that it would also be of interest to see what level of accuracy could be reached.
It would also be of interest to see which parts needed the highest detail when modeling.
Also the model creation process itself could give many valuable lessons.

3.5.2 Identifying worst case

The di�culty of identifying the worst case in the model based on target code is of the same
magnitude as identifying it by measuring on the actual system. In the abstract model, it is
easy to create new test cases, and it also helps identifying the worst case by o�ering lower
complexity which gives easier understanding on how input data a�ects the system.

3.5.3 Model changes in the software

Smaller changes, i.e. increased processing time of a certain block should be of equal dif-
�culty in both models. However, since the software model in the model based on target
code is the actual software, the modeling of larger changes, e.g. involving new input data,
changes in the design or architecture, becomes more di�cult. It is possible that the mod-
eling starts to become the actual implementation in order to get the model to work. The
abstract model, because of its important property of actually being a model of the software,
better lends itself for this type of changes.

3.6 Model choice

It was decided to go with the abstract model, since it has a number of bene�ts compared
to measuring on the actual system and the model based on target code. The uncertainty
of the accuracy level of the abstract model is a risk, but it was decided that the bene�ts
made it a risk worth taking. Also, should the model prove to be too inaccurate, it might
be interesting to see which parts that need re�nement in order to make it accurate enough.
Even if the model fails to be accurate enough when this thesis is �nished, it has probably

36 CHAPTER 3. FEASIBILITY STUDY

given important information about the di�culties when creating such a model and also
information about the system itself. By trying to create an abstraction of the system,
knowledge of the system is needed and it must be closely examined. This process can lead
to insight of the system.

The model creation process was expected to provide insight into some key questions,
in the event that creation of the model were to fail, for example:

• Which sections forms the complex parts of the studied system (are hard to model)?

• What makes a section too complex to be accurately modeled?

• Which level of accuracy can actually be reached?

• What would it take (more work, time, tools etc.) to be able to make an accurate
abstract model of the system?

3.7 Summary

In this chapter two di�erent approaches for creating a model, a model based on target code
and an abstract model, were presented. The feasibility study, which was the process of
identifying requirements on the model and how the two di�erent approaches could ful�ll
these requirements, was also described. Finally, the most important requirements were
identi�ed and the choice of the most appropriate approach, which turned out to be the
abstract model, was made.

Chapter 4

Model creation methodology

4.1 Introduction

This chapter will describe the process and methodology of creating an abstract model of the
studied real-time system. Two di�erent sources of measurement input for the model will
be presented, namely an instruction set simulator and event logs from the target system.
Finally, an introduction to VirtualTime and the methodology used for creating models
utilizing it will be given.

4.2 Methodology overview

The �rst goal of the modeling process was to identify the di�erent parts of the system. This
was done by looking at various technical documents, obtaining information from engineers
working on the system and also by examining event log �les from the system created during
testing, i.e. during execution of the system on real hardware using real input data. When
the di�erent parts had been identi�ed (presented in section 2.4.1), the goal was to �nd out
how these parts interacted with each other. This was accomplished in a similar manner.
The next step, which also turned out to involve most of the practical work, was to �nd how

37

38 CHAPTER 4. MODEL CREATION METHODOLOGY

the di�erent parts of the system consumed the two studied resources, namely CPU-cycles
and time. It was previously known that di�erent parts of the system consumed di�erent
amount of cycles and resulted in a di�erent amount of delay depending on the input data
currently �owing through a speci�c part of the system. The goal was hence to derive how
di�erent types of data in�uences the resource utilization in the di�erent parts.

4.3 Input sources for the model creation process

When creating the model of the system two main types of input were used, manual code
analysis and pro�ling results.

First, the actual C code that the system is composed of was manually analyzed looking
for parts which were believed to use a variable amount of clock cycles to execute depending
on the input data. In the second step the code was run in an instruction set simulator, thus
providing cycle accurate information on the actual execution times for the tasks identi�ed
in the manual code analysis. When running the application, certainty that no important
parts were missed in the manual code inspection step could be reached. By doing this type
of inspection combined with measurements, it was considered possible to derive formulas
for calculating the cost of di�erent functions and see how the cycle consumption depended
on di�erent parameters in the user data.

There were only four di�erent types of input data available for the system when running
in the ISS. Using input data from the actual system was not possible, since the code running
in the instruction set simulator works slightly di�erent. This was partly because of the
lack of some hardware components and because running the system this way is currently
a work in progress. There was also a need for veri�cation of the measurements and the
formulas derived from running test cases in the ISS. Therefore, event logs from the target
system were also used. The event logs contain information that were output from the
system during execution on real hardware. Hence, if the event log says it takes a ceratin

4.3. INPUT SOURCES FOR THE MODEL CREATION PROCESS 39

amount of time between point A and B in the program, this is really the time it takes.

The reason for not solely relying on the event logs from the target system as input
for the model is that the possibility of doing measurements in the target is limited to log
time stamps with some small additional info, e.g. a location in the code paired with the
value of a parameter. There is also a probe e�ect which can be signi�cantly interfering
when measuring very small pieces in the code, e.g. an iteration in a loop. Also, the
procedure of running a target test on real hardware involves high e�ort compared to just
loading the system into the ISS. When moving measurement points, the code has to be
recompiled, delivered to the test department, test nodes must be booked, etc. As long as
the measurements made in the ISS can be veri�ed, the ISS is a great help both when trying
to identify good points for measurement and also for doing the actual measurement.

The method of obtaining pro�ling results from the instruction set simulator and veri-
fying these results against the target system will now be described.

4.3.1 The instruction set simulator used for pro�ling the code

An instruction set simulator was used to ease the analysis of the system. The instruction
set simulator utilized contains a cycle accurate model of the CPU, the TDP, memory and
the DMA controller which the actual system runs on.

The ISS used supports pro�ling of functions, loops and ranges of code to see how many
clock cycles are consumed by a particular section and how many accesses that are made
to them. It is also possible to insert breakpoints in the code, halting the execution when
control reaches that point. Breakpoints may be used in conjunction with single stepping
through the code to get an accurate view of the application's �ow.

A new, limited, environment for running pro�ling test cases in an instruction set simu-
lator was deployed, Test Bench (TB). Four di�erent test cases were provided for evaluation
of the decoder. Since the test bench part is integrated in the regular system code, it is not
possible to use the TB for doing performance and capacity tests, as the test bench part

40 CHAPTER 4. MODEL CREATION METHODOLOGY

executes on the same CPU and hence, at least in theory, interferes with the system. The
possible interference caused by the TB when doing measurements will be discussed further
in chapter 5.2.4. The goal of the TB is to test functionality on small amounts of user data.
When referring to doing measurements etc. in the ISS, it is the TB loaded into the ISS
that is referred to.

As mentioned earlier, there are four di�erent test cases available for the TB. The data
which forms each test case has a unique Enhanced Transport Format Control Indicator
(ETFCI). The user data in the abstract model consists of a set of parameters that charac-
terize the user data, in terms of CPU cycles consumed and latency. The most important of
these parameters was found to be the ETFCI. The ETFCI decides the value of a number
of di�erent parameters, i.e. the properties of the user data.

4.3.2 The target event logs

For veri�cation of the measurements in the ISS, event log �les which were output from the
actual system during stress tests were used as a source of input for the analysis. The logs
are created by inserting code snippets in the target code that writes information about
the current event or location in the code, the current executing process, a time stamp and
additional info depending on the type of event. This information is written to a certain
address range in the external memory which is monitored by a logic analyzer. As soon as
there is a write to the address range, the logic analyzer triggers and dumps the information
into a log �le.

4.4 VirtualTime

An existent tool was chosen for creating the abstract model, namely VirtualTime. This
tool was chosen since it contains a model of the real-time operating system used in the
studied system. VirtualTime is available for Linux, Windows and Solaris. The Linux

4.4. VIRTUALTIME 41

version was chosen because it was available for the latest version of VirtualTime.

According to the marketing material at the vendors site [16]:

�VirtualTime is a tool-set for building accurate simulations of complex multi-
processor real-time systems.�

VirtualTime is created by Rapita Systems [12] in collaboration with ENEA[7], which is
the vendor of the real-time operating system OSEck[11]. VirtualTime contains an abstract
model of the operating system OSEck, and thus it is a suitable tool to model systems
running on top of that operating system.

When modeling in VirtualTime, it is fairly easy to capture the real-time systems �ow of
control, since the library contains calls which correspond to the calls in OSEck. For exam-
ple, to send a signal to some process in VirtualTime, vt_send(vt_signal_t*, vt_process_t*)
is used and the corresponding method in OSEck is send(union SIGNAL **sig, PROCESS
to). The similarity of the VirtualTime library and the OSEck system calls makes it fairly
straight forward to map the implementation to the model, and makes the model easy to
understand for programmers who are familiar with OSEck.

4.4.1 VirtualTime entities

VirtualTime provides a number of data types and methods which are used when creating a
model, some of which are seen in the ping-pong example code (�gure 3.1). The data types
and methods used in the ping-pong example are described below along with additional
important entities.

vt_cpu_t

The type vt_cpu_t is used to identify the virtual CPU s in VirtualTime models. Variables
of this type are assigned a value returned from the method vt_create_cpu(). The variable is

42 CHAPTER 4. MODEL CREATION METHODOLOGY

then used when registering processes with vt_create_process() or vt_create_external_process(),
in order to bind them to a speci�c CPU.

vt_process_t

vt_process_t is the data type used to identify processes in VirtualTime. The intended
use of variables of this type is to assign them a value returned by vt_create_process() or
vt_create_external_process(). These processes may be written much like the processes in
the modeled system, except that the only factors that needs to be modeled are resource
usage and timing in the case of non-external processes. When modeling external processes
only the timing behavior needs to be modeled. One may also opt to merge several processes
into one in the model if one wishes to view these as a big block of resource usage.

vt_create_process() and vt_create_external_process()

The calls vt_create_process() and vt_create_external_process() are used to register pro-
cesses and external processes respectively. As might be expected ordinary processes are
bound to a CPU, to be able to get the correct timing and consume clock cycles. External
processes are also bound to a CPU, in order to get correct synchronization information.

vt_signal_t

vt_signal_t is used when sending signals between processes. This type is de�ned as a C-
struct with, among others, the following members vt_uint32_t sig_no, void *mem. These
�elds represent the signal number and a pointer to a memory block associated with the
signal.

vt_use_cycles() and vt_delay_until_cycles()

The method vt_use_cycles() is used to consume cycles (and hence also time) on a vir-
tual CPU. The cycles are automatically tied to the calling process and thereby the CPU-

4.4. VIRTUALTIME 43

utilization of di�erent parts may later be analyzed.

The method vt_delay_until_cycles() is used to cause a process to delay its execution
until the virtual clock of the CPU it is bound to reaches the value speci�ed in the function
argument. Unlike vt_use_cycles() this call consumes no clock cycles.

vt_send(), vt_receive() and vt_sel_receive()

vt_send(), vt_receive() and vt_sel_receive() are the methods used by processes to send
and receive signals. If a process is only to receive a signal of some speci�c type(s), the type
vt_sig_select_t is used in conjunction with the method vt_sel_receive(). An example of
how to use vt_sel_receive() is given in �gure 4.1. vt_receive() and vt_sel_receive() are
blocking calls, meaning the calling process will not continue to execute until it receives a
signal.

vt_init_simulation()

vt_init_simulation() is the call used to initialize the simulation library and get a license
key for VirtualTime. This call must be made prior to calling any other VirtualTime
Application Programming Interface (API) calls, except the calls to set the error handler
and log �le.

vt_run_simulation()

vt_run_simulation() is used to start the actual simulation, it takes one argument, sim_length,
of type vt_time_t which is the length of the simulation in vt_time_t units. The function
returns when a CPU's virtual clock reaches the time sim_length.

44 CHAPTER 4. MODEL CREATION METHODOLOGY

/∗ Code sn ippet i l l u s t r a t i n g how to only accept a s i g n a l o f some
s p e c i f i c type and act d i f f e r e n t l y depending on the type o f
s i g n a l r e c e i v ed . ∗/

vt_signal_t s ;

/∗ 2 : the number o f s i g n a l types to accept ,
IO_DATA_AVAILABLE, IO_DATA_PROCESSED: the s i g n a l s to accept ∗/

vt_sig_select_t s i g_ l i s t [3] =
{2 , IO_DATA_AVAILABLE, IO_DATA_PROCESSING_READY} ;

for (; ;) {
vt_se l_rece ive (&s , s i g_ l i s t) ;

switch (s . sig_no) {
case IO_DATA_AVAILABLE:

handleIODataAvail () ; break ;
case IO_DATA_PROCESSING_READY:

writeData () ; break ;
}

}

Figure 4.1: A code snippet illustrating how to receive a signal of some speci�c type(s) in
VirtualTime.

4.5. USE OF VIRTUALTIME IN THE MODEL 45

4.5 Use of VirtualTime in the model

The VirtualTime entities detailed in section 4.4.1 were utilized when creating the model
of the system. The information provided in this section is an overview, for detailed in-
formation about the implementation in VirtualTime, please refer to the bundled source
code.

4.5.1 Modeling of processes

When modeling the processes in the system, regular C-functions was created containing the
functionality needed to model cost and �ow of execution. When starting the simulation,
these processes were registered with the simulator by using the call vt_create_process().
See the ping-pong example in �gure 3.1 for an example of this.

4.5.2 Modeling of hardware

A hardware resource can be viewed as a process which provides some service with some
arbitrary delay, but without consuming clock cycles on the CPU. Although external pro-
cesses do not consume any clock cycles they are bound to a CPU, for timing purposes.
When modeling hardware resources the code was bound to an external process by utilizing
the call vt_create_external_process().

4.5.3 Modeling of software functions

When modeling functions, it was often opted to simplify them into functions returning the
clock cycles which would be consumed by the functions in the actual system. An example
of a simple cost calculation function is given in �gure 4.2.

46 CHAPTER 4. MODEL CREATION METHODOLOGY

/∗ A simple example o f a func t i on r e tu rn ing the amount
o f c l o ck c y c l e s consumed by bubble s o r t .
n : Number o f e lements .
k : C o e f f i c i e n t .
m: Point o f i n t e r s e c t i o n . ∗/

vt_cycles_t bubble_sort (unsigned int n ,
unsigned int k ,
unsigned int m){

return (vt_cycles_t) k∗n∗n + m;
}

Figure 4.2: A code snippet returning the amount of cycles consumed by a bubble sort
implementation.

4.6 Model limitations

4.6.1 Only user data of type EDCH

The decoder can handle di�erent types of user data which can be divided in two main
groups: Dedicated Channel (DCH) and EDCH. DCH is mainly used for speech and lower
data rates while EDCH is used for high speed data transfers. The process of handling
the user data is di�erent between the two and involves the use of di�erent components,
both software and hardware. In this thesis the study is limited to the EDCH part of the
system. Because of the limited time available, it was decided to focus on one part only and
getting it as accurate as possible. The results and knowledge gained can then be used when
modeling the DCH part of the system, or maybe help coming to the conclusion that it is
not possible or feasible to create an abstract model of the decoder. Everything explained
in this section, unless explicitly stated otherwise, hence concerns EDCH and might not
apply for DCH.

4.6. MODEL LIMITATIONS 47

4.6.2 Only user data with 2 ms TTI

For EDCH, there are mainly two di�erent types of user data, 2 ms TTI and >=10 ms TTI.
Only 2 ms TTI have been considered in this model.

4.6.3 Omitted control plane

The control plane, i.e. the sending and receiving of signals used to con�guring the decoder
has been completely omitted. The control plane is believed to have very small impact on
the overall performance as it is used mainly for startup, adding and removal of users and
reporting results from various measurements.

4.6.4 Modeling limited to two components

Because of the limited amount of time available, there was only time to thoroughly analyze
and base the model on two of the components in the system: The application scheduler
and the TDP. Because of this limitation, much hardware interaction and hence real-time
e�ects are also omitted.

4.6.5 Omitted retransmissions

If the decoding of a sub frame fails, the decoder can save the sub frame and order a
retransmission of that particular frame. Upon receival of the new sub frame, the decoder
can make use of both sub frames when doing the decoding. This increases the chances of
a successful decoding as the two versions of the sub frame can compensate for each others
bad parts. This behavior is omitted in the model and all sub frames are presumed for
successful decoding.

48 CHAPTER 4. MODEL CREATION METHODOLOGY

4.6.6 Little conditional execution

All user data takes an almost identical path through the model, e.g. no retransmissions as
explained in section 4.6.5. There are places in the target code where di�erent paths might
be chosen because of di�erent attributes of the current user data. This needs to be modeled
further by either re�nement of the abstracted user data to contain these parameters and
having conditional execution in the model or by using some sort of random selection of
cost.

4.6.7 Only one user

As not all components are modeled, the model is limited to only one user. This is because
the interaction of having many concurrent users in the system requires all components to
be accurately modeled, in order to show the real-time e�ects of having many users a�ecting
each other.

4.6.8 Summary of limitations

The limitations are, in short: the model supports only tra�c of type EDCH with 2 ms
TTI, it does not support retransmission of data, it does not support more than one user,
the control plane has been omitted, many special error handling parts have been omitted
and it only models two components of the studied system.

Although the limitations are substantial, many types of normal EDCH tra�c types are
still covered.

4.7 Modeling the di�erent parts

In this section the modeling process of all parts will be described. The exact accuracy and
results from the modeling will not be discussed in this chapter, they are instead placed

4.7. MODELING THE DIFFERENT PARTS 49

in chapter 5. Due to time constraints, only the application scheduler and the TDP have
been closely examined and modeled. The other components are modeled only so that the
�ow of events is correct, i.e. the correct sequential interaction between the components for
handling a piece of user data. These components will be discussed in terms of thoughts
about what the process of complete modeling of them would look like.

4.7.1 Application scheduler

The application scheduler is responsible for most of the user data processing, and also the
frame protocol building, i.e. the packaging of the user data before it leaves the system.
This is where most of the cycle consumption takes place. It can roughly be said to contain
a loop where a signal is fetched from a signal queue each iteration. Depending on the
signal, di�erent actions are taken. This rough picture of the application scheduler is the
abstraction level chosen for the model. In reality there are many types of signals being
sent to the application scheduler, but since the control plane is completely omitted, solely
the two signals involved in the processing of 2ms TTI EDCH user data were studied in
this thesis:

• DATA_FB_READY

This is the signal sent to the application scheduler from the DMA interrupt pro-
cess when the user data has been copied to the internal memory and is ready for
processing.

• DATA_TDP_READY

This is the signal sent to the application scheduler from the DMA interrupt process
when the user data has been processed by the TDP and is ready for frame protocol
building.

For each signal, there is a function that handles the corresponding signal. The goal was
to �nd how the amount of cycles used for each function was in�uenced by di�erent types

50 CHAPTER 4. MODEL CREATION METHODOLOGY

of user data. The method for obtaining this information was to run the system in the ISS
and stepping through the functions. While stepping, loops were examined while keeping
an eye on the simulator clock, which shows the amount of cycles used, to see where most
of the cycle consumption originated from. As expected, most of the cycle consumption
came from loops iterating numerous times. By calculating the cost for one iteration (which
often was constant) and looking at the variable(s) deciding the number of iterations, it was
possible to derive formulas for calculating the cycles consumed by such loops. The di�culty
of creating such formulas di�ered between di�erent loops. Sometimes it was necessary to
copy some parts of the original code because of non-trivial dependencies between variables,
loop cost and the number of iterations. By identifying a parameter in the user data that
in�uenced the amount of cycles consumed, it was possible, by doing measurements with
di�erent user data, to derive a formula. The parameters bound to the user data that was
found to a�ect the cycle consumption would be the contents of our abstracted user data.
Where applicable, linear mathematical formulas were derived from the measurements by
utilizing the least-squares algorithm.

For the application scheduler, six functions whose cycle consumption varied signi�cantly
for the di�erent types of user data were identi�ed. The remaining costs were mostly static
but with a slight increase for more dense user data. The modeling of each six functions
and the remaining costs will now be described.

doScaleAndQuantization()

The cycle consumption of this function depends on the parameter SymbolType (shown in
table 4.1) and the number of symbols. Each SymbolType has a di�erent cost per symbol.
For the available test cases, the user data only had two di�erent values of the SymbolType,
for which the cost per symbol was examined. There was also some additional costs found to
be linear to the number of symbols on each physical channel regardless of the SymbolType.

4.7. MODELING THE DIFFERENT PARTS 51

SymbolType Cycle cost per symbol
1 1.5948
2 2.8583

Table 4.1: The amount of cycles used per symbol for di�erent values of the SymbolType
parameter

do2ndDeInterleaving()

The clock cycles consumed by the second deinterleaving function, do2ndDeInterleaving()
was found to scale linearly with the number of symbols of the data being processed. The
relationship between cycles consumed and number of symbols is illustrated in �gure 4.3.

doRateDeMatch()

When a data channel with a certain bandwidth is requested by a user the characteristics
of the actual data channel acquired is selected from one of two tables describing transfer
modes. Even though there are two tables, one logarithmic and one linear with 128 and
126 entries respectively [3], the probability of getting a channel which maps exactly to the
requested bandwidth is low. This creates a need for the user equipment to perform rate
matching, which means modifying the bitstream by removing or adding bits so that it �ts
exactly into the supplied transport channel.

Once the bitstream reaches the decoder it needs to be rate dematched. When per-
forming rate dematching the decoder needs to traverse the bitstream, changing the value
of punctured/repeated bits as it goes along. See �gure 4.4 for a graph showing the cor-
relation between x = [numberOfCodeBlocks] ∗ ([codeBlockSize] + 4) and the amount of
cycles, y, consumed by the function doRateDeMatch().

52 CHAPTER 4. MODEL CREATION METHODOLOGY

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2000 4000 6000 8000 10000 12000

C
yc

le
s/

ac
ce

ss

[numberOfSymbols]

do2ndDeInterleaving

do2ndDeInterleaving, measured values
1.1176*x+189.64

Figure 4.3: A graph illustrating the correlation between y = the cycles consumed by the
second deinterleaving step and x = the length of the data being processed.

4.7. MODELING THE DIFFERENT PARTS 53

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 2000 4000 6000 8000 10000 12000

C
yc

le
s/

ac
ce

ss

[numberOfCodeBlocks]*([codeBlockSize]+4)

doRateDeMatch

doRateDeMatch, measured values
6.1292*x + 926.18

Figure 4.4: A graph illustrating the correlation between x = [numberOfCodeBlocks] ∗
([codeBlockSize] + 4) and y =the amount of cycles consumed by the rate dematching step.

54 CHAPTER 4. MODEL CREATION METHODOLOGY

 0

 5000

 10000

 15000

 20000

 25000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

C
yc

le
s/

ac
ce

ss

[numberOfCodeBlocks]*3*([codeBlockSize]+4)/8

doLimitAndSegmentation

doLimitAndSegmentation, measured values
4.798*x+20

Figure 4.5: A graph illustrating the correlation between the cycles consumed by the limit
and segment step (y) and a mathematical function composed of the number of code blocks
and the code block size (x)

doLimitAndSegmentation()

The function doLimitAndSegmentation() depends on the number of code blocks and the
code block size.

Most of the costs came from a loop with a static iteration cost. The number of
iterations could be seen when inspecting the code and is calculated with the formula
3
8
∗ [numberOfCodeBlocks] ∗ ([codeBlockSize] + 4). By using the measured cycles as the

Y-value, and the results from the formula stated above as the X-value, a linear equation
of the form y = kx + m could be derived, see �gure 4.5.

4.7. MODELING THE DIFFERENT PARTS 55

calcTdpParams()

The function calcTdpParams() depends on the code block size and the number of code
blocks.

While the cycle consumption of some sub portions of the function were easily calculated,
there was one particular sub function, fetchInterleaveTable(), which cycle consumption was
not easily calculated at �rst. After closer inspection the cause of this was suspected to be
an ongoing DMA job coupled with a loop where the CPU read from the external memory in
each iteration, while the DMA job was still being processed. This would increase latency
of fetching the data from the external memory, as these accesses also uses the DMA.
This theory was veri�ed by placing a code block consisting of a loop prior to the previously
mentioned one, in order to let the DMA job complete. When letting the DMA job complete
prior to entering the loop where the CPU read from external memory, the loop consumed
a constant amount of cycles per iteration. The ISS showed that the reduction of cycles
originating from waiting for the DMA controller to fetch data into cache constituted the
entire decrease of consumed cycles, additional proof that the root cause of the phenomenon
had been identi�ed.

The �nding about con�icting DMA jobs is an important observation, since it illustrates
that the execution speed of code blocks utilizing external memory may vary by considerate
amounts depending on the state of the DMA controller. This �nding will be further
discussed in sections 5.2.4 and 6.4.4.

Because each test case is run during identical conditions in the ISS, it was possible
to derive a formula since the latency introduced by the external memory accesses were
predictable. This is due to the low DMA load when only running one user. This formula
will most likely not hold when the system load increases, because the DMA will then
behave more unpredictably.

The observed behavior of the function calcTdpParams() is depicted in �gure 4.6.

56 CHAPTER 4. MODEL CREATION METHODOLOGY

 1
 1.5

 2
 2.5

 3 0
 500

 1000
 1500

 2000
 2500

 3000
 3500

 4000

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

calcTdpParams

C
yc

le
s/

ac
ce

ss

calcTdpParams, measured values
7535*x + 12.054*y + 3279

[numberOfCodeBlocks]

[codeBlockSize]

Figure 4.6: A graph illustrating the correlation between the cycles consumed by the function
calcTdpParams (z) and a mathematical function composed of the number of code blocks (x)
and the code block size (y)

4.7. MODELING THE DIFFERENT PARTS 57

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 0 2000 4000 6000 8000 10000 12000

C
yc

le
s/

ac
ce

ss

[numberOfSymbols]

preTDP, non-profiled functions

preTDP_other, measured values
2.6042*x+41268

Figure 4.7: A graph illustrating the correlation between y = the amount of clock cycles con-
sumed by pre-TDP, non-pro�led functions and x = the number of symbols being processed.

Remaining costs

When collecting the empirical results, focus was directed to analyzing the costs which were
of signi�cant magnitude and varied depending on the type of input data being processed.
The non-variable and relatively small costs can be combined into one large bulk of clock
cycles, �preTDP_other� for our modeling purposes. Figure 4.7 contains a graph illustrat-
ing the clock cycles consumed by this block depending on the length of the data being
processed. The conducted studies show that although the costs outside our six pro�led
functions were of the same magnitude, there was a small increase when trying more dense
user data. This increase turned out to be linear, and it was therefore easy to derive a linear
equation y = kx + m (x = number of symbols being processed) to model the costs.

58 CHAPTER 4. MODEL CREATION METHODOLOGY

doPostTdpProc()

The function doPostTdpProc() depends on the following variables:

• Number of Symbols

The doPostTdpProc() function is responsible for the frame protocol building, i.e. packaging
of user data before it leaves the system, and no signal processing is made here. Therefore,
it was believed that the cycles consumed by this function would only depend on the amount
of actual user data, i.e. the number of symbols. After plotting a graph by using cycles as
y-values and symbols as x values and utilizing the least-squares method, a linear function
was derived. The linear function of the form y = kx + m gave very accurate results.

4.7.2 Turbo Decoder Peripheral

When calculating the processing delay of the TDP, the amount of cycles consumed between
calling the function startTDP() and reaching an if-clause in the process IO_DMA_intr
was measured. The results of these measurements are shown in �gure 4.8. By utilizing a
software queue, the TDP always works with one sub frame at the time. Each sub frame
is divided into code blocks, and one code block at the time is processed. The code blocks
are of a �xed size, and the size and the number of code blocks for a sub frame is decided
by the ETFCI. The DMA transfers one code block at the time which the TDP processes.
When a sub frame is processed, the DMA generates an interrupt that is caught by the
DMA interrupt process. The processing time for the TDP was found to be linear to the
code block size multiplied with the number of code blocks, and hence a linear equation of
the form y = kx + m could be derived.

4.7. MODELING THE DIFFERENT PARTS 59

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 2000 4000 6000 8000 10000 12000

C
yc

le
s/

ac
ce

ss

[codeBlockSize] * [numberOfCodeBlocks]

TDP

TDP, measured values
44.144*x+13388

Figure 4.8: A graph illustrating the connection between y = the delay (amount of clock
cycles) from calling TDP to receiving completion signal and x = [codeBlockSize] ∗
[numberOfCodeBlocks].

60 CHAPTER 4. MODEL CREATION METHODOLOGY

Function/Component Formula Parameter(s)
doScaleAndQuantization() SymbolType = 1 : x = [numberOfSymbols]

z = 1.5948x + 4197.4y − 745 y = [numberOfChannels]
SymbolType = 2 :

z = 2.8583x + 4197.4y − 745
doSecondDeInterleaving() y = 1.1176x + 189.64 x = [numberOfSymbols]
doRateDeMatch() y = 6.1292x + 926.18 x = [numberOfCodeBlocks]∗

([codeBlockSize] + 4)
doLimitAndSegmentation() y = 4.798x + 20 x = [numberOfCodeBlocks]∗

([codeBlockSize] + 4)
calcTdpParams() z = 7535x + 12.054y + 3279 x = [numberOfCodeBlocks]

y = [codeBlockSize]
RemainingCosts() y = 2.6042x + 41268 x = [numberOfSymbols]
TDP y = 44.144x + 13388 x = [numberOfCodeBlocks]∗

[codeBlockSize]

Table 4.2: Formulas for calculating cycle consumption for di�erent functions and compo-
nents

4.8 Chapter summary

In this chapter, the methodology for creating the model has been explained. The use of the
ISS and veri�cation against the target event logs as input source for the model has been
described. The simulation library VirtualTime has also been presented, and an overview of
the system and the di�erent parts have been given. Also, the model's limitations and scope
have been presented. For the functions identi�ed to signi�cantly in�uence the execution
time and the TDP, formulas for calculating cycle consumption has been presented. These
formulas are summarized in table 4.2.

Chapter 5

Veri�cation

5.1 Introduction

In this chapter, the measurements and derived formulas from the ISS will be veri�ed against
the event log �les, which were output from execution of the target system. The initial ISS
measurements did not correspond to the event log �les, and trying to �nd the cause of the
inconsistencies between executing on target and in the ISS led to signi�cant investigation
work. Numerous factors a�ecting the measurements in the ISS were identi�ed, these will
be presented in this chapter. Also, output from execution of the model will be presented
and compared with the corresponding �ow in the target system.

5.2 Comparison between target and the instruction set
simulator

Since the ISS is claimed to be an instruction accurate simulator it was believed that
measurements performed in the ISS would give identical results compared to the target
system. The ISS used is very �exible and a powerful pro�ling tool. It is possible to pro�le
entire functions, loops, custom ranges etc. Because of this the original plan was to utilize

61

62 CHAPTER 5. VERIFICATION

Function Cycles ISS Cycles target
doScaleAndQuantization() 335 129 10 272
doSecondDeInterleaving() 88 077 4 608
doRateDeMatch() 373 390 18 944
doLimitAndSegmentation() 117 388 6 016

Table 5.1: Comparison between the instruction set simulator and target for test case 1,
instruction set simulator code compiled with debug and no compile time optimizations

Function Cycles ISS Cycles target
doScaleAndQuantization() 660 031 16 504
doSecondDeInterleaving() 173 667 9 008
doRateDeMatch() 771 432 30 088
doLimitAndSegmentation() 242 004 9 664

Table 5.2: Comparison between the instruction set simulator and target for test case 2,
instruction set simulator code compiled with debug and no compile time optimizations

it as much as possible when performing the measurements, since it gives the possibility
to measure on a very low level for formula derivation, and then verify the measurements
against the target event logs. During the comparison it was discovered that many factors
a�ected the results from the ISS. This led to many comparisons and changes before numbers
from the ISS matched the numbers from the target system.

5.2.1 The instruction set simulator code compiled with debug and
no compile time optimizations

Initially, of the four test cases used in the ISS, only two of them had been run on the target
system utilizing event logs. Also, of the measurement points used in the ISS, only a few
could be found at the same place in the target code. The consequences of this was that
during this �rst comparison, it was only possible to compare the resource consumption for
some of the functions, and only for two test cases.

5.2. COMPARISON BETWEEN TARGET AND THE INSTRUCTION SET
SIMULATOR 63

Function Cycles ISS Cycles target
doScaleAndQuantization() 13 494 10 272
doSecondDeInterleaving() 4 486 4 608
doRateDeMatch() 18 037 18 944
doLimitAndSegmentation() 4 965 6 016

Table 5.3: Comparison between the instruction set simulator and target for test case 1,
instruction set simulator code compiled with debug and compile time optimizations (O=3)

As can be seen in tables 5.1 and 5.2, the measurements are completely o�, sometimes
by a factor of 10 − 20. Because the values from target are the actual values seen when
running the system on real hardware, the values from the ISS were declared as being faulty.
The values from the ISS were also unrealistic. When multiplying the total amount of cycles
used to process one sub frame of user data with the total amount of sub frames the system
should be able to handle per second, the resulting cycles were much larger than the CPU's
frequency.

5.2.2 The instruction set simulator code compiled with debug and
compile time optimizations

When checking the Make�le, it turned out that the binary, TB, used in the ISS was not
compiled with any optimization �ags. The target system and TB has di�erent targets in
the Make�le and the TB target lacked optimization �ags. When these �ags were added,
completely di�erent results were obtained. These results are presented in tables 5.3 and
5.4.

The results from the ISS were now of the same magnitude as the target results. It
may seem a bit strange to the unversed that the optimization �ags could do so much
di�erence (5− 10% of the initial cost), but this is to be expected and is well known. Using
optimization signi�cantly lessened the possibility for doing measurements. When stepping
in the code during execution, the �ow does not always correspond to the �ow seen in the

64 CHAPTER 5. VERIFICATION

Function Cycles ISS Cycles target
doScaleAndQuantization() 20 054 16 504
doSecondDeInterleaving() 8 972 9 008
doRateDeMatch() 37 175 30 088
doLimitAndSegmentation() 10 509 9 664

Table 5.4: Comparison between the instruction set simulator and target for test case 2,
instruction set simulator code compiled with debug and compile time optimizations (O=3)

Function Cycles ISS Cycles target
doScaleAndQuantization() 13 781 10 272
doSecondDeInterleaving() 4 525 4 608
doRateDeMatch() 18 023 18 944
doLimitAndSegmentation() 4 930 6 016

Table 5.5: Comparison between the instruction set simulator and target for test case 1,
instruction set simulator code compiled without debug, with compile time optimizations
(O=3)

source code. The placement of breakpoints is also a�ected, and sometimes it is not even
possible to pro�le smaller functions. Loops are often rolled out, and does not iterate as
expected when looking at the source code. Despite this, the functions which were looked
at when comparing results from the ISS and target were still possible to pro�le. However,
the measurements were still inaccurate and the investigation continued.

5.2.3 The instruction set simulator code compiled without debug,
with compile time optimizations

When running the TB in the ISS, compiling TB with debug �ag gives the possibility to
place breakpoints in the code at arbitrary places. This is important for measuring iteration
costs for loops etc. The target system is however compiled without debug, and for making
a fair comparison it was realized that the compiling options a�ecting performance must be
equal. Also, it was suspected when using both optimization and debug, the two settings

5.2. COMPARISON BETWEEN TARGET AND THE INSTRUCTION SET
SIMULATOR 65

Function Cycles ISS Cycles target
doScaleAndQuantization() 19 486 16 504
doSecondDeInterleaving() 8 798 9 008
doRateDeMatch() 37 189 30 088
doLimitAndSegmentation() 10 466 9 664

Table 5.6: Comparison between the instruction set simulator and target for test case 2,
instruction set simulator code compiled without debug, with compile time optimizations
(O=3)

tend to work against each other. TB was recompiled without debug which led to new
results (tables 5.5 and 5.6). Using optimizations coupled with no debug gives very limited
possibilities for measuring in the ISS. One is usually limited to pro�le larger functions only.
The results were now of the same magnitude as the results from the actual system, but
there was still a di�erence.

5.2.4 Discussion about the comparisons between target and the
instruction set simulator

Even though the results from the ISS were now close to the target results, they still di�ered.
Di�erent theories why this occurred were discussed and investigated.

Di�erent code base

Without going into too much detail, TB used a code base which is somewhat di�erent to
the code base used when running on target and outputting event logs. It was believed that
some optimizations had been done to the data processing chain in the code base used for
TB which could a�ect results slightly and resulting in a lower amount of clock cycles when
measuring on TB in the ISS because of these optimizations. However, this could not be
the complete truth as the results in target sometimes showed fewer cycles than the results
from the ISS.

66 CHAPTER 5. VERIFICATION

Di�erences in test cases

Even though the input data of the two pairs of compared test cases are of the same type,
there is a di�erence that might in�uence the results. The test cases for TB are always single
user while the test cases in target consisted of multiple users. At �rst, it was believed that
this did not matter because the sub frames for each user is processed in series and not in
parallel, one at a time in the application scheduler. When analyzing the log �les, it was
believed that as long as no context switches occurred during the processing of a sub frame,
the other users should not a�ect the sub frame currently being processed. However, even
if no context switch occurs during the processing of a sub frame, it was during discussion
brought up that perhaps the access time to the external memory might be a�ected because
of concurrent DMA jobs of other users. If the DMA currently is moving data belonging to
another user, this should increase the latency when accessing the external memory during
the data processing of the current sub frame. This theory was veri�ed during pro�ling of
function calcTdpParams(), see sections 4.7.1 and 6.4.4.

Settings in the instruction set simulator

When using the ISS, given an object to pro�le, i.e. a function, it is possible to measure
the e�ective amount of cycles consumed by the CPU (cycles CPU) or the total amount
of cycles (cycles total) consumed. For example, if a function takes 1000 cycles to execute,
and only 500 of these cycles involves the CPU actually executing instructions to complete
calculations. The remaining 500 cycles adhere from the latency caused from fetching data
from external memory pipeline stalls. These two di�erent ways of measuring cycles greatly
in�uences the results. When looking at the target event logs, the time stamps corresponds
to cycles total since the time elapsed between two events includes memory and other
latencies. Thus, when doing comparisons between the ISS and target, it is important to
look at cycles total in the ISS. Cycles CPU can however still give important information
when identifying parameters that in�uence the actual computation time in a pro�ling

5.2. COMPARISON BETWEEN TARGET AND THE INSTRUCTION SET
SIMULATOR 67

object.

Interference from the test bench code

Since the test bench code is compiled into the same binary as the regular system code, it
runs on the same CPU and hence competes for resources with the regular system code.
This should in theory a�ect the performance of the system because when the processes
used by the test bench is swapped in, the regular system is halted. However, this was
investigated and it can be said with a fair certainness that the test bench is swapped out
after injecting user data to the system, and not swapped in before all the user data has
been output. Hence, during the user data processing, the test bench is swapped out and
does not interfere with the system. Since the measurements are performed during the user
data processing, the test bench should have zero interference in our measurements.

5.2.5 Addressing the found issues

Getting the output from the ISS to match the target is of vital importance. Measuring in
the ISS has as mentioned earlier many bene�ts. But in order to make a fair comparison,
the possible causes for deviations must be eliminated and it was hence necessary to address
them. By changing the code base and reducing user data for the test cases run in target
to one single user, a more accurate comparison could be made. Changing the code base
and test cases both involved a signi�cant amount of work by the engineers working on the
system. Because of the limited amount of time set aside for the project, veri�cation was
only made on two of the test cases. Additional log points were added to the code in order
to enable pro�ling of the the TDP and all the functions that were pro�led in the ISS. A
debug �ag was also added to the make�le since it is bene�cial to have the debug �ag when
pro�ling in the ISS. Since the production target version runs without debug, pro�ling in
reality must be done without debug in the ISS. However, at this stage only correspondence
of target and the ISS is of interest.

68 CHAPTER 5. VERIFICATION

Function Cycles ISS Cycles target Deviation
doScaleAndQuantization() 13 494 9 816 37.5%
doSecondDeInterleaving() 4 486 4 656 -3.65%
doRateDeMatch() 18 037 19 056 -5.35%
doLimitAndSegmentation() 4 965 5 960 -16.7%
calcTdpParams() 44 447 46 080 -3.54%
doPostTdpProc() 33 059 31 168 6.07%
TDP processing 133 096 198 096 -32.8%

Table 5.7: Final comparison between the instruction set simulator and after addressing the
found issues for test case 1.

Function Cycles ISS Cycles target Deviation
doScaleAndQuantization() 20 054 15 872 26.3%
doSecondDeInterleaving() 8 764 9 088 -3.57%
doRateDeMatch() 37 175 38 296 -2.93%
doLimitAndSegmentation() 10 509 11 504 -8.65%
calcTdpParams() 51 983 55 464 -6.28%
doPostTdpProc() 44 639 43 736 2.06%
TDP processing 269 500 397 832 -32.3%

Table 5.8: Final comparison between the instruction set simulator and target after address-
ing the found issues for test case 2.

It was unfortunately not possible to make comparison of the remaining costs of the
signaling processing done before the TDP (see section 4.7.1), because the main function
for handling this processing is a bit di�erent between TB and the target version. The
signal processing is the same, but the method of preparing the user data for processing
di�ers. A fair comparison was therefore not possible.

5.2.6 Final comparison

As seen in tables 5.7 and 5.8, when comparing ISS and target, the functions doScale-
AndQuantization() and LimitAndSegment() di�ers signi�cantly in terms of percentage
while the other functions are closer. The formula used to calculate the deviations is

5.3. COMPARISON BETWEEN MODEL AND TARGET 69

Function Cycles model Cycles target Deviation
doScaleAndQuantization() 13 615 9 816 38.7%
doSecondDeInterleaving() 4 481 4 656 -3.76%
doRateDeMatch() 18 247 19 056 -4.25%
doLimitAndSegmentation() 5 101 5 960 -14.4%
calcTdpParams() 44 830 46 080 -2.71%
doPostTdpProc() 32 955 31 168 5.73%
TDP processing 137 962 198 096 -30.4%

Table 5.9: Comparison between target and model for test case 1.

deviation = (cyclesISS − cyclestarget)/cyclestarget for tables 5.7 and 5.8. For tables 5.9
and 5.10 the formula used for calculating the deviations is deviation = (cyclesmodel −
cyclestarget)/cyclestarget.

For doScaleAndQuantization(), a theory explaining the deviation is that the signaling
messages di�ers between the test cases for the ISS and for target. This causes a di�erent
execution �ow to be taken in the function which has a di�erent cost. Because of the limited
time available, this theory was not investigated and is therefore uncon�rmed.

The deviation sources for the function doLimitAndSegmentation() are unknown. The
only suspicious �nding is the use of a semaphore. The time for locking and releasing the
semaphore might be di�erent for currently unknown reasons. This theory needs further
investigation.

The results of the TDP processing are signi�cantly o�, but with the same percentage
for both test cases. This �nding is discussed in section 5.3.1. The smaller deviations also
needs further investigation. Theories will be presented in section 5.3.1.

5.3 Comparison between Model and target

As the model is based on the pro�ling results from the ISS, the comparison between the
model and target shows similar results as the comparison between the ISS and target. As

70 CHAPTER 5. VERIFICATION

Function Cycles model Cycles target Deviation
doScaleAndQuantization() 19 581 15 872 23.4%
doSecondDeInterleaving() 8 772 9 088 -3.48%
doRateDeMatch() 36 500 38 296 -4.69%
doLimitAndSegmentation() 10 460 11 504 -9.08%
calcTdpParams() 53 281 55 464 -3.94%
doPostTdpProc() 44 683 43 736 2.17%
TDP processing 269 247 397 832 -32.3%

Table 5.10: Final comparison between target and model for test case 2.

seen in tables 5.9 and 5.10, the current model fails to ful�ll the ±1% deviation requirement
described in section 3.3.2. Reaching an accuracy of ±1% will be hard. Even with just
four test cases, it is di�cult to create a model (i.e. a formula) for calculating the costs
that is accurate enough without being too complex. More test cases are needed in order
to establish the fact whether it is possible to reach this accuracy level.

5.3.1 Further discussion about remaining deviations

Di�erences in test cases

Even though single user test cases for the target system were constructed, there could be
other parameters of the user data besides the ETFCI that in�uences the signal processing
and that are di�erent from the test cases for the TB. Another explanation causing dif-
ferences in the user data could be that in the TB, user data is injected directly into the
decoder. In the target system, the user data is injected earlier in the telecommunication
system and passes through other systems before it reaches the decoder. These system could
perhaps change the attributes of the user data causing the decoder to behave di�erently
than expected.

5.3. COMPARISON BETWEEN MODEL AND TARGET 71

Hardware model in the ISS

The results of pro�ling the TDP were signi�cantly inaccurate. Perhaps the simulation of
the hardware is functionally correct, but not cycle accurate. If this is the case for the TDP,
perhaps the DMA controller is also only functionally modeled.

Hardware frequencies

Some of the di�erent hardware components in the system run on frequencies that are
relative to the CPU frequency. In the ISS, it was only possible to individually select
frequency of the CPU and the external memory bus. They were selected so that the
ratio between the frequencies were identical to the target system. However, the individual
frequencies were not identical to the target system. If the other hardware depends on these
frequencies, they run at a di�erent speed in the ISS compared to the target system.

Conclusion

The ISS is a practical tool for doing pro�ling, but it has still not been completely veri�ed
to be accurate. The deviations found during the �nal comparison in section 5.2.6 and the
theories in section 5.3.1 need further investigations before the ISS can be claimed to be
accurate enough for use as a pro�ling tool when creating input to the model. When making
comparisons like done in this chapter, it is important to have control over the compilation
�ags. Di�erent �ags a�ects both the pro�ling results and the ability to perform accurate
measurements when using an ISS.

Chapter 6

VirtualTime implementation

6.1 Introduction

In this chapter the implementation of the model in VirtualTime will be described. Each
component will be examined and discussed. As the time for the thesis was limited, the
model is not complete. The limitations of the model will be presented as well as future
work.

6.2 Limitations

The model has a fair amount of limitations, both functional and accuracy related. The
functional limitations have already been discussed in section 4.6. These are the functional
limitations brie�y summarized:

• Only EDCH tra�c.

• Only 2ms TTI.

• Only user plane, control plane omitted (bene�cial).

• Only the TDP and application scheduler have been studied.

73

74 CHAPTER 6. VIRTUALTIME IMPLEMENTATION

• Retransmission of user data is not supported.

There are also limitations concerning the accuracy of the model:

• Only based on four test cases.

• Results from the ISS only veri�ed against two test cases.

• Hardware model partly integrated in software model.

• The accuracy has not reached the ±1% deviation requirement.

The hardware model is very limited, and is partly integrated into the software model
because of the use of cycles total when measuring. It is more proper to pro�le all the objects
in the software with cycles CPU instead of cycles total, and then use a proper model for
the DMA and external memory accesses in order to model the extra costs involved with
external memory latency.

6.3 Overview

As VirtualTime is a C-library, the main program consists of a main function. In this
function a CPU, log points and processes are created. Also, this is where settings like CPU-
speed and simulation time are setup. The processes represents the di�erent components
and can be of di�erent types depending on the nature of the component, e.g. a prioritized
process, external hardware, etc. Each process is implemented as a regular C-function,
where regular C-code can be used in conjunction with speci�c VirtualTime functions and
types (pre�xed with vt_) for using the virtual CPU, sending and receiving signals, etc.

6.4 Implementation of each component

In this section, the implementation of each component identi�ed in section 2.4.1 is de-
scribed. As mentioned in section 6.2, not all components are su�ciently modeled. All

6.4. IMPLEMENTATION OF EACH COMPONENT 75

void proce s s (vt_process_t ∗me) {
vt_signal_t s ;
vt_sig_select_t s i g_ l i s t [3] = {2 , A_SIGNAL, ANOTHER_SIGNAL} ;
TTI ∗ t t i_ptr ;

for (; ;) {
vt_se l_rece ive (&s , s i g_ l i s t) ;

switch (s . sig_no) {
case A_SIGNAL:

handleASignal () ; break ;
case ANOTHER_SIGNAL:

handleAnotherSignal () ; break ;
}

}
}

Figure 6.1: General component design in VirtualTime

components consist of an in�nitive loop which prevents the functions implementing the
processes to end their execution. The general design of all implemented components is de-
picted in �gure 6.1. For speci�c implementation details, please refer to the bundled source
code.

6.4.1 User Data

The user data consists of a regular C-struct containing the di�erent parameters found to
in�uence the resource utilization in the system. A pointer to the struct is passed along
with all the signals being sent between the di�erent components, and the parameters of the
struct are used to calculate costs in various parts of the system. This abstraction of user
data is very powerful as it is easy to generate new user data, and to add new parameters
found to in�uence the system when the model is re�ned. Future work of the user data
probably involves the addition of new parameters. Information about timing could perhaps
be derived from the user data.

76 CHAPTER 6. VIRTUALTIME IMPLEMENTATION

6.4.2 Frame bu�er

The important characteristics of the FB are that it is an external hardware and generates
interrupts to signal that new user data is available. Since it is an external hardware, it
is modeled as an external process which does not consume CPU cycles. Also, it is in the
FB that the used data is created. The timing of the interrupts can easily be changed by
using the call vt_delay_until_time() in conjunction with loops. The interrupt is modeled
with a signal which is sent to the FB ISR. The signal contains a pointer to the C-struct
representing the user data. Improvements and future work of the FB component involves
reading the user data from a �le, it is now created in code. A standardized timing control
should be decided, in conjunction with the user data as mentioned in section 6.4.1.

6.4.3 Frame bu�er interrupt service routine

An interrupt service routine di�ers from a prioritized process in the fact that it is not
necessary to do a full context switch when doing a swap. This distinction is important
because the cost for swapping in a ISR is less then swapping in a regular process. Therefore,
the FB ISR is modeled as an interrupt process in VirtualTime. The functionality consists
of starting a DMA job to transfer the user data from the FB to the internal memory.
At the top of the in�nitive loop which all VirtualTime processes have, there is a call to
vt_receive() which makes the process wait for a signal. As soon as the FB sends a signal,
the process is swapped in. The signal contains a pointer to the user data, and new signal
is then sent to the DMA, also containing this pointer.

The FB ISR has not been pro�led, so the amount of clock cycles consumed is unknown.
But as no data processing is made and the copying of user data to internal memory is
performed by the DMA, the amount of cycles are believed to be fairly constant. Deviations
may occur when starting the DMA job because of other ongoing DMA jobs, but that must
be modeled in the DMA. Future work hence involves pro�ling to �nd this, probably mostly

6.4. IMPLEMENTATION OF EACH COMPONENT 77

static, cycle cost.

6.4.4 DMA

The DMA controller is believed to be the most advanced component in the whole system.
The implementation of this component is limited, and is only made to the point where the
�ow and interaction of the di�erent components of the system is correct. It is modeled
as an external process in VirtualTime, as it is an external hardware that does not use
the CPU. It is modeled with the obligatory in�nitive loop, which waits for the arrival of
a signal. The signal describes the job to be performed by the DMA, but the amount of
time used to complete these di�erent jobs has not been pro�led. When a job is �nished,
the DMA generates an interrupt which is caught by the DMA interrupt process. This is
modeled as sending a signal to the VirtualTime process implementing that process.

The future work in modeling the DMA involves identi�cation of the di�erent types
of jobs, and pro�ling these job types to derive how the parameters, e.g. size of the job,
in�uences the time for completion. Also, the queue management of the jobs must be
identi�ed, i.e. how jobs are split into smaller pieces and which jobs have priority over
other jobs.

It is believed that the modeling of the DMA must be accurate, because it introduces
signi�cant delay when the CPU stalls while trying to access the external memory during
an ongoing DMA job. Also, all parts in the code where external memory access takes place
must be identi�ed and placed in the model since these are places in the code where the
CPU may stall for di�erent amount of time depending on the current DMA load. The
memory/cache hierarchy is depicted in �gure 6.2.

6.4.5 DMA interrupt process

In VirtualTime, a prioritized process is used for modeling this process. It runs with a higher
priority than the application scheduler, so in case an interrupt occurs during work being

78 CHAPTER 6. VIRTUALTIME IMPLEMENTATION

Figure 6.2: A �gure illustrating the memory/cache hierarchy of the studied system.

performed by the application scheduler, the DMA interrupt process gets swapped in. It car-
ries the standard design of an in�nitive for loop, waiting for a signal. It currently receives
two signals FRAME_BUFFER_JOB_COMPLETED and TDP_JOB_COMPLETED.
After the receiving of these signals, a signal is sent to the application scheduler.

This process is only implemented to get the correct application �ow. It has not been
pro�led, so future work involves populating the implementing function with correct cycle
usage. The number of signals/interrupts received is also limited and additions are needed.

6.4.6 TDP

The TDP is an external hardware which is implemented in VirtualTime as an external
process not utilizing the CPU, it only consumes time. Since the queue management for
the TDP is placed in the application scheduler, the TDP itself does not manage any queue
and only does one job at a time. The delay of the processing is decided by the amount of
code blocks and the code block size of the user data. After completion, a signal is sent to
the DMA controller indicating that the job is completed.

When the TDP was pro�led, the delay between the function startTdp() and the receiv-
ing of an interrupt in the DMA interrupt process was measured. This delay does not solely

6.4. IMPLEMENTATION OF EACH COMPONENT 79

depend on the TDP, but also the DMA controller which sets up the TDP by chaining
some DMA jobs. The delay needs to be split up between the TDP and DMA, with correct
portions being placed on respective component.

6.4.7 Application Scheduler

The application scheduler process is where most of the analyzing work was done, since
it does the majority of the user data processing. It is implemented as a regular priori-
tized process in VirtualTime. It listens for signals and launches a sub function depending
on the type of signal received. Since the model is limited to 2 ms TTI EDCH tra�c
and the control plane is omitted, it only handles two signals; DATA_FB_READY and
DATA_TDP_READY which takes care of the user data processing before the TDP and
the packaging of user data after the TDP job has completed, respectively. The function for
handling the DATA_FB_READY signal calculates the amount of cycles consumed in six
di�erent portions, the �ve functions and remaining costs identi�ed in section 4.7.1. The
user data struct is used to derive the parameters necessary to calculate the cost for each
of the six steps.

The future work of modeling the application scheduler involves veri�cation and re�ne-
ment of the formulas used to calculate the costs by obtaining measurement results from
more test cases. Correct queue handling is also necessary in order to get accurate results.
The queue handling in the model is simpli�ed into using a simple OSEck signal queue. In
reality, the OSEck signal queue is constantly drained of signals which are placed into a
di�erent custom queue implementation depending on the type of signal. This method is
used to shorten the time it takes to �nd a signal of a certain type. Finally, and perhaps
most importantly, all DMA jobs and external memory accesses need to be placed at correct
places in the functions. This is predicted to be a both challenging and critical task.

Chapter 7

Discussion

7.1 Introduction

A discussion about the thesis work will be presented in this chapter. The model choice will
be evaluated together with the simulation library VirtualTime. Two aspects found to be
of signi�cant importance when creating a model will be presented as well as a summary of
future work on the modelling.

7.2 The model choice

During the feasibility study in chapter 3, the abstract model was chosen although several
risks had been identi�ed. The risks had been identi�ed as failing to reach su�cient accuracy
and also that the amount of time might be insu�cient considering the amount analyzing
work needed. The choice was made because an accurate model of this type would be more
valuable as compared to the target code model, and also because the modeling process
itself would provide valuable information even if a �nal model could not be created within
the limited amount of time available for the thesis. These assumptions have been proven
to be correct. There are indeed several problems when creating a complete abstraction of

81

82 CHAPTER 7. DISCUSSION

a system, and there was and is a lot to be learned from this kind of process. The identi�ed
important aspects when modeling are found in section 7.4.

7.3 Simulation library

Not much time was spent on the actual modeling in VirtualTime, as compared to analyzing
the system and verifying measurements from the ISS. It is therefore hard to draw any
conclusions about how VirtualTime performs when the model complexity increases. But for
the level of complexity reached in the model of this thesis, VirtualTime has performed well
and did not give any problems of signi�cance. If VirtualTime works as the speci�cations
say it should, it is a very powerful and suitable tool for creating abstract models of complex
real-time systems. The types and functions de�ned by VirtualTime are few and straight
forward, but the combination with regular C-code makes it an easy and at the same time
powerful tool when creating complex models.

7.4 Important aspects when modeling

When creating an abstract model, there are mainly two things to consider: System knowl-
edge and e�cient pro�ling. These two corner stones of the modeling process will now be
summarized.

7.4.1 System knowledge

In order to achieve e�cient modeling, great knowledge about the system must be gained.
This knowledge can help when deciding the abstraction level of the di�erent components,
and also when identifying the di�erent components. Some components, perhaps with a
�xed execution time, can be very easy to model. Other parts, like the processing steps
in the studied system, requires knowledge to help estimate what parameters in�uences

7.5. MODEL FUTURE WORK 83

the execution time. During this thesis, a signi�cant amount of time was spent just to
understand the system.

7.4.2 Pro�ling

An abstract model is always based on having measurements serve as references when pop-
ulating the model with delays and resource utilizations. It is important to have e�cient
pro�ling in terms usability, amount of test cases, accuracy and performance. Since obtain-
ing su�cient knowledge about the system is vital for an accurate model, many test cases
must be run many times, and the results of these must be examined. If the pro�ling process
is tedious and takes time, the modeling process su�ers. If the model is only derived from
a couple of test cases, its robustness and accuracy will su�er. Also, the results obtained
from the pro�ling must be trustworthy. It is of signi�cant importance to know what is
measured and if other hidden factors can in�uence the results.

Using a simulator can be preferable since being able to start, stop and debug during
execution is often bene�ciary. If using a simulator, it is important to verify that mea-
surements performed in the simulator corresponds to the same measurements performed
in the target system. The veri�cation of the simulator results was a signi�cant part of the
practical work of this thesis.

7.5 Model future work

Details about the limitations and future work of the modeling can be found in chapter 6,
this section serves as a summary.

The user data processing chain has been closely examined and pro�led. However, the
formulas derived which describes the cycle consumption need further veri�cation using
additional test cases. When using few test cases, there is a great risk that incorrect
attributes of the user data are chosen as parameters for the functions.

84 CHAPTER 7. DISCUSSION

The model also lacks a proper hardware model. Since the formulas are based on a
measuring cycles total (i.e. including external memory latency, see section 5.2.4), the
hardware's contribution to the latency is partly integrated into the software model. The
DMA controller needs to be accurately modeled, and all external memory accesses must
be put into the software model. The software model also needs more work in some smaller
components, like the FB ISR and the DMA interrupt process.

The work of identifying all DMA jobs and external memory accesses is a very important
task for reaching su�cient accuracy. This will probably be a very tedious task, even for
engineers having good knowledge of the system. This �nding also spawned the theory
that the actual system might need a re-design of the DMA and external memory usage. If
something is too hard to model, perhaps the design is too complex and needs reworking.

Since the DMA and external memory usage have a large impact on the latency coming
from CPU stalls, which is hard to predict, a redesign of how the DMA and the external
memory are used could lessen this almost unpredictable behavior and also make the mod-
eling process easier. Since the CPU stalls have shown to be a large problem in the system,
this is probably a good path to choose since it bene�ts both the model creating process
and the overall performance of the system. With a good hardware model, it should also
be possible to see how concurrent users a�ect each other.

Chapter 8

Conclusion

In order to provide bene�ts over just measuring on a real-time system some parts of the
system need to be abstracted, i.e. a model must be created. The creation of such a model
involves a lot of work and places high requirements on system knowledge among the people
involved in the model creation process. There is also a need for e�cient pro�ling of the
system in regards to usability, amount of available test cases, accuracy and performance.
Without proper knowledge it is hard to decide a proper abstraction level for di�erent
components, and also hard to �nd the attributes that in�uences the execution time and
latency of the components. E�cient pro�ling is needed for generating input to the modeling
process, but also for veri�cation which is of major importance if the model is to be trusted.

During the work of this thesis, problems were encountered regarding both system knowl-
edge and pro�ling. The limited knowledge and the pro�ling problems signi�cantly slowed
down the actual model implementation, but led to interesting �ndings about both the sys-
tem and the modeling process itself. If something is too hard to model, perhaps the design
itself needs to be reworked. The modeling process alone can therefore lead to important
insights about the studied system, even before the creation of a complete model has been
�nished. For the actual system studied in this thesis, it was learned that the usage pattern
of the DMA controller and external memory were complex and might need redesigning.

85

References

[1] 3GPP TS 25.201 version 6.0.0 Release 6; Physical layer - General description. 3GPPs
website, December 2003. http://www.3gpp.org.

[2] 3GPP TS 25.212 version 6.2.0 Release 6; Multiplexing and channel coding (FDD).
3GPPs website, June 2004. http://www.3gpp.org.

[3] 3GPP TS 25.321 version 6.2.0 Release 6; Medium Access Control (MAC) protocol
speci�cation - annex A (normative). 3GPPs website, June 2006. http://www.3gpp.
org.

[4] Johan Andersson, Anders Wall, and Christer Norström. Validating temporal behavior
models of complex real-time systems. In Proceedings of the Fourth Conference on
Software Engineering Research and Practice in Sweden (SERPS'04), September 2004.

[5] Johan Andersson, Anders Wall, and Christer Norström. Validating timing models of
industrial real-time systems. Technical Report, Mälardalen University, June 2004.

[6] Erik Axling. Automatic generation of simulation models from designs. Master's thesis,
Linköping University, Department of Computer and Information Science, 2007.

[7] ENEA. ENEAs website, December 2008. http://www.enea.com/.

[8] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, 2003.

[9] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed Embedded
Applications. Kluwer Academic Publishers, 2002.

[10] Johan Kraft, Joel Huselius, Anders Wall, and Christer Norström. Extracting simu-
lation models from complex embedded real-time systems. In Real-Time in Sweden
2007, August 2007.

[11] OSEck. ENEAs website, December 2008. http://www.enea.com/templates/
Extension____12766.aspx.

87

88 REFERENCES

[12] Rapita Systems. Rapita Systems website, December 2008. http://www.
rapitasystems.com/.

[13] Mohammed El Shobaki. On-chip monitoring for non-intrusive hardware/software ob-
servability. Licentiate thesis, September 2004.

[14] Abraham Silberchatz, Greg Gagne, and Peter Baer Galvin. Operating System
Concepts. Wiley, 2005.

[15] Universal Mobile Telecommunications System. 3GPPs website - UMTS, December
2008. http://www.3gpp.org/article/umts.

[16] VirtualTime. RapidaSystems website, December 2008. http://www.rapitasystems.
com/virtualtime.

[17] Anders Wall, Johan Andersson, Jonas Neander, Christer Norström, and Martin Lem-
bke. Introducing temporal analyzability late in the lifecycle of complex real-time
systems. In In proceedings of RTCSA 03, February 2003.

[18] Logic analyzer. Wikipedia, December 2008. http://en.wikipedia.org/wiki/
Logic_analyzer.

[19] Probe e�ect. Wikipedia, December 2008. http://en.wikipedia.org/wiki/Probe_
effect.

Glossary

3rd Generation Partnership Project A project uniting telecommunication standards
bodies.

Application Programming Interface For the purposes of this thesis, a set of functions,
procedures, methods and types provided by a library.

Central Processing Unit A machine that can execute computer programs.

Dedicated Channel User data type which is mainly used for encoding speech and lower
data rates.

Direct Memory Access A feature that allows certain hardware subsystems to access
system memory independently of the central processing unit.

Enhanced Dedicated Channel User data type which is mainly used for encoding high
data rates.

Enhanced Transport Format Control Indicator Describes the user data properties,
one of these is the user data length.

Frame Bu�er A hardware component used to bu�er data before it goes into the decoder.

Frame Protocol The protocol used for sending data from the decoder to the RNC.

89

90 Glossary

Instruction Set Simulator A simulation model which mimics the behavior of the stud-
ied system.

Interupt Service Routine A procedure which is run when receiving an interrupt.

Millions of Cycles Per Second A measure for processing power in computers.

Node B A base station in an UMTS radio access network.

Operating System Embedded compact kernel A real-time operating system designed
to be run on embedded systems.

Radio Network Controller The governing element in the UMTS radio access network
responsible for control of the Node Bs which are connected to the controller.

Test Bench For the purposes of this thesis, a limited environment for running pro�ling
test cases in an instruction set simulator.

Transmission Time Interval A parameter in UMTS, refers to the length of an inde-
pendently encodable transmission on the radio link.

Turbo Decoder Peripheral A co-processor used by the decoder to decode turbo en-
coded user data.

Universal Mobile Telecommunications System One of the third-generation cell phone
technologies.

User Equipment A cell phone or other type of client.

Wideband Code Division Multiple Access A technology used to implement and re-
alize UMTS.

Glossary 91

Worst Case Execution Time The maximum length of time a task could take to execute
on a speci�c system.

Acronyms

3GPP 3rd Generation Partnership Project. 9, 11

API Application Programming Interface. 43

CPU Central Processing Unit. 8�10, 20, 22�24, 27�31, 33, 39�43, 45, 55, 63, 66, 67, 71,
77, 78, 84

DCH Dedicated Channel. 46

DMA Direct Memory Access. 11, 13, 14, 29, 30, 39, 49, 55, 58, 66, 71, 74, 76�79, 84, 85

EDCH Enhanced Dedicated Channel. 11, 28, 46�49, 73, 79

ETFCI Enhanced Transport Format Control Indicator. 40, 58, 70

FB Frame Bu�er. 11, 14, 49, 76, 79, 84

FP Frame Protocol. 14

ISR Interupt Service Routine. 11, 14, 76, 84

ISS Instruction Set Simulator. 32, 34, 38�40, 50, 55, 60�69, 71, 74, 82

MCPS Millions of Cycles Per Second. 24

93

94 Acronyms

OSEck Operating System Embedded compact kernel. v, 10, 41, 79

RNC Radio Network Controller. 10

TB Test Bench. 39, 40, 63�66, 68, 70

TDP Turbo Decoder Peripheral. 13, 14, 28, 30, 39, 47, 49, 57, 58, 60, 67�71, 73, 78, 79

TTI Transmission Time Interval. 11, 47�49, 73, 79

UE User Equipment. 10, 23

UMTS Universal Mobile Telecommunications System. 9

WCDMA Wideband Code Division Multiple Access. v, 9

WCET Worst Case Execution Time. 2

