Computer Science

Georges Darakji and Jan Johansson

An Implementation of Distributed SIP for

Wireless Mesh Networks

An Implementation of Distributed SIP for

Wireless Mesh Networks

Georges Darakji and Jan Johansson

© 2008, An Implementation of Distributed SIP forrdless Mesh Networks

Georges Darakji and Jan Johansson, Karlstad Ulitivers

This report is submitted in partial fulfilment dfe requirements for the
Master’'s degree in Computer Science. All matemathis report which is
not my own work has been identified and no matesiahcluded for which

a degree has previously been conferred.

Georges Darakji

Jan Johansson

Approved, 2008-06-04

Advisor: Andreas Kassler

Examiner: Donald Ross

Abstract

A mesh network is a self-healing, dynamic and ugwaireless network with high bandwidth
utilization, where nodes can freely move aroundhinitthe topology, and where nodes
completely independent of any centralized service.

Session Initiation Protocol (SIP) supplies a statidad way of establishing connections
for many purposes, primarily Voice over Internedt®col (VolP) telephone calls. However,
SIP relies a great deal on the existence of semeetscate other users. Servers are less
appropriate to use on mesh networks. Neither dtlesi8es leverage any of its advantages;

hence, it is not suitable providing a SIP servita mesh network.

Our objective is to find and implement a concepticlvhextends the functionality of the

routers in a mesh network, thus minimizing the gesrequired on the end hosts.

Scalable Source Routing (SSR) is a routing appredusbh adds a Chord-like P2P overlay to
any physical network such as a mesh network. Urdtker overlays (such as the ones created
by P2PSIP), the routing mechanisms also considagsigal distance which results in
increased performance.

Linyphi is an implementation of SSR, which is desid to run on Linux based routers,
such as the Linksys WRT54GL. SSR is used to roatekgts between the routers in a
network, while IPv6 is used between the routersthednd hosts, thus enabling the end hosts
to take advantage of SSR without any modifications.

In our solution, we will implement a SIP proxy whi¢s to run together with Linyphi on
the routers. To store the SIP addresses and losatibthe SIP users, we will implement a

DHT, which takes advantage of the SSR overlay.

Some other approaches were considered. The P2BgtBagh is a concept of replacing the
SIP servers with a Distributed Hash Table (DHT)ISTBHT is contained within the SIP

clients, thus no standard SIP clients can be uBed. approach also adds a P2P overlay on

top of any other network, which causes performasfalis approach to be dependent on the
underlying layers. Using a P2P underlay would agghenore overhead.

Skype uses flooding to find nearby users, whickeiy resource requiring, and it also uses
a proprietary and closed protocol which preventin being investigated.

Linyphone uses an approach which is very similahtoone we chose; however, it differs
from our solution in that it is designed to be wompletely on the end hosts and requires

them to run special software.

We were able to produce a functional applicatidbeia with several problems. The most
severe was the unsatisfying performance: Whenntgsiur solution, we learned that the
current version of Linyphi does not perform well dre Linksys devices. A new, faster
version of Linyphi is under construction, and wéidxe it may again be extended using the

same basic concept of an added SIP proxy and DHT.

vi

Contents

2.3 Voice over Internet Protocol (VolP) and Sessiotiation Protocol (SIP) 17
2.3.1 Voice over Internet ProtoCol (VOIP) ... errrereeiiiiiiiiiee st sirree e e 17

2.3.2 Session Initiation ProtoCol (SIP)uuiieieiiiiiiiieniee e 17
A @] o =T o3 1)Y= PP 20
2.5 EXISTING SOIULIONS. ...cccueiiiiii et ee et e e e e 21
2.5.1 P2PSIP, SIPDHT and SOSIMPLEuuttiiiiiiiiiiiiie e 21
PR YA 1 1 o L= PP TPPPRPPRN 23
PR TRC T 101/ o1 o] o 1= TS PO PPPPTPPTPPPRT 24
Our solution: Extending LINYPHi..........cooutmmeeeeiiii e eeeeeees 25
3 Design and implementation...........coeuuuuiieeeeieeiii e 27
1 200 I 11 0T [T3 1 0] o IS 27
I €1 0] o T= U= T (o] o] (=T s (0] =SSP 27
3.3 Storing and retrieVing USEr OCALIONScuuumm e eeieeriiiiieai et e e e 29
TR I I /[T o] £=To I3 (o] = Vo = PP 29
R I 4 = = L] O PP 29
3.3.3 Our approach: INterNal DHTciii i s et a e e 31
3.4 Required modifications of existing Linyphi aB8Rcccooeeiiiiiiiiiiineeeennn, 2.3
3.4.1 Packet routing enabled using only approxirB8R IDScccceeviiiviiiiieiiiiiiiees mmmmmm e 32
3.4.2 Variation Of SSR IDS.......cuuuiiiieit sttt ettt sn e et 35
3.5 Implementation of new functionality...........c..cccooeiiiiiiiii e 39
35,1 IMOTIVALION ..t emme et ettt e e ettt e e e e e e n e e 39
B 5.2 DIBLAIIS. ..t e ettt ettt e ettt h e e e e nr e e 40
3.5.3 HASH FUNCHION ...t 41
IR =1 = T o P 41
3.6.1 A SIP user registers its presence iN the W,coevveeieeeiiiiiieeee e 41
3.6.2 A SIP user invites another SIP user in tH@/OmK..................ueeeeiiiiiiiirieire e 42
3.6.3 A New router jOINS the NEIWOIKceiiiiiiiiiiiiiiiiiie e e e e e e e e e e 44

Vi

3.6.4 A roUter 1eaVves the NEIWOIK............emmmeeieieeeeiiiitiiie ettt ie e s e e e e e ee et eeeeeeeeeseraes 44

Aot 0] o 1P
B A I =T g (o] 0= T o =R
3.7.2UDP and TCP...........cccevvuu.
3.7.3 Internet connectivity
B A /T o1 1SS
3.7.5 SIP specification COMPHANCEov oot e e e e e e e e e e e e 46
3.7.6 AULhOrIZation AN SECUIMLYciiiiiiceeee ettt e e snbeeeees 46
I O A =Y (o] g F=T oo |11 T APPSR PPR 46
4 ReSUIt AaNd VAIUALIONu.iiiiiiie e ceee e e e e e e e e et e ra e et e st e e et 47
vt I | o o o [1 Tox 1T o IS URPPPPPPRPT a7
4.2 Versions Of LINYPRNI ...cooiiiiiiiio et e e eeenes 47
4.3 Encountered ProblEMS ...t 48
4.3.1 Lack of IPv6 capable SIP SOftWare.....ccccce e 48
4.3.2 Linyphi and the LINUX KEINEloo e 48
T B Lo I g =T [T W = T] = PP 49
4.3.4 Linyphi robustness and compatibility...........ooooreioiiiiiii e 49
4.3.5 No change in SSR ID @SSIgNMENTSccciuuuiiiieee ittt re e e eee e e e e 50
4.4 Evaluation of fUNCHONAIILYcoeet e e e e e e e e eea e eeeeenns 50
4.5 Performance evaluation Methodcocevveiiiiiiiiiiiic e 51
4.5.1 Original (abandoned) teSt Planccooeririiii e 51
4.5.2 REVISEA tESE PIAN....cciieiieeeee e et ea s 54
4.6 PerformancCe reSUILS............iiii e e e e 59
4.7 Performance CONCIUSIONSuuuuuiieeeieie e ee ettt eeaaa e 61
S Tox 1= o 11 PP PPRP P 61
A.7.2 PrOCESSING POWEN ...tteiieeieietiieeeeaeeaaaeesaastteeetessssstbeetaeessaassseeesssaassaeeeessassbbneeeesssannsseeeeens 61
o R N @ 1N g g To o) o= 11 1< TP PURPTTPPPP 62
5 Conclusion and fULUIE WOTK.........couiiiiii e e 63
S I @ Tox (1] o S UUPPPPPPPR 63
5.2 LESSONS IEAINEM. e 63
5.3 FULUIE WOTK ..ttt ettt e e e e et e e e e e tnn e e e e e e 63
Y (=1 (=] o7 == PP 65
A SOUICE COUR ..ouiiiiiiii et e+t e et e e et e e et e e e et e e e et e e et e e ema e et eeraaeeannnaes 68
o =T o £ 1 - PP TTRPPPRPPN 68
C USEIUIINKS.. e e e e e et e e e e e et ees 68

viii

List of Figures

Figure 1: Client/server communication (Not PEEREBY)coovvviiiiiiiiiiiiiiiiii e 1
Figure 2: Peer-to-Peer COmMmUNICALIONcouuuuuiiieeiieiiiii e 3
Figure 3: Mobile Ad-hoc Network (MANET)u i cceeiiie e 1
Figure 4: Client and server in a mesh Network..............c.ooooiiiiiiiiiiiee e 1
Figure 5: SSR’s Chord-like virtual fiNgcccceiuviiieiiiii e 1
Figure 6: SSR routing sample (from [21])ccceee oo eee e 9
Figure 7: Linyphi physical topology...........meeiiiiieiiii e e e 1
Figure 8: Linyphi packet rOULINGuiiiieuiii e e e e 1
Figure 9: LINKSYS WRTSAGLo iiiiiiiiiiiiee ettt e e e e 16
Figure 10: Sample SIP presence registrationcoooveeiiiiieiiiie e 18
Figure 11: Sample SIP iNVItAtiON...........uuoo e 18
Figure 12: P2PSIP/SIPDHT/SOSIMPLE OVerlayccccocioiiiiiiiiiiieeeiiiiiiiiie e 22.
Figure 13: P2PSIP/SIPDHT/SOSIMPLE overlay over SSR...........ccoouviiiiiineiiiiiiiiinnnn. 22
Figure 14: Linyphone components (from [19]) .. ccceeeueuiiieiiiiiiiiiiie e e 24
Figure 15: Linyphi over mesh Network.........couee oo 1

Figure 16: Routers forwarding SIP packets diffdgedépending on target domain name..1

Figure 17: A put request t0 OPENDHT ..ot e 1
Figure 18: How “default routing” in SSR handles lpets to none-existing nodes.............. 1
Figure 19: How “closest routing” in SSR handleskmds to none-existing nodes............... 1
Figure 20: lllustration of the problem with unewedistributed SSR IDSccccvvvneeeee. 1
Figure 21: lllustration of the problem with unewedistributed SSR IDs being solved...... 1
Figure 22: Linyphi extended with the SIP module...............cccooooiiiiiiiii e, 1
Figure 23: Sequence diagram of SIP registrationgugsur solutionc..cccceeeens 42
Figure 24: Sequence diagram of SIP registrationiawithtion using our solution........... 43
Figure 25: Physical test setup (abandoned). Numbster routers indicate SSR IDs......... 1
Figure 26: The virtual SSR ring in the abandonastldetup...........cooovviiiiiiiiiiiiiiiiiees 1
Figure 27: Reference test; unmodified Linyphi rungnon one Linksys router................... 1

Figure 28: Scalability test; unmodified Linyphi ning on two Linksys routers 1
Figure 29: Processing power test; Linksys routesw& homemade x86 router..................

Figure 30: Testing our modifications; Original Lptyi versus modified Linyphi............... 1

List of tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:

SSR PACKETL tYPES... i 11
Structure of SSR “CONNECE” PACKET .. oo s e e ee et 12
Linyphi IPVE addreSsS........uuiiiiiceeeee et e e e 13
MAC-48 of three LiNkSyS WRTS54GL rOULEISuueeeeieiieiiiiiae e 5.3
Ten random 48-bit hash values (ordered).............cooviiiiiiiiiiiiiiiiie e, 36
Distribution of hash value to SSR ID apim@ationc.ccceevveveeeiiiineeeennnnn. 6.3
Byte wise reversed MAC-48 of three LinkKBYyRT54GL routers 38
Distribution of hash value to reversed $BRpproximation 38
Performance MeasUremMENTS..........ocemieii e eeeeeees 60

List of abbreviations

AODV
AODV-UU
DHT
IEEE
IETF

IP

IPv4
IPv6
ITU
ITU-T
MAC, MAC-48
MANET
NIC
P2P
QoS
RFC
SDP
SIP
SSR
TCP
UAC
UAS
UDP
URI
VolP

Ad-hoc On-demand Distance Vector (a routimgtpcol)
AODV implementation by Uppsala University
Distributed Hash Table

Institute of Electrical and Electronics Erggning
Internet Engineering Task Force

Internet Protocol

Internet Protocol Version 4

Internet Protocol Version 6

International Telecommunication Union

ITU Telecommunication Standardization Sector
Media Access Control, 48 bits (an addrédentifying a NIC)
Mobile Ad-hoc Network

Network Interface Card

Peer-to-Peer

Quality of Service

Request for Comments

Session Description Protocol

Session Initiation Protocol

Scalable Source Routing

Transmission Control Protocol

User Agent Client

User Agent Server

User Datagram Protocol

Uniform Resource Identifier

Voice over Internet Protocol

1 Introduction

A mesh network is a network in which data is routeugh a number of nodes in a way so
that any node can communicate with any other nodkea network — across several nodes, if
necessary (called “multi-hop routing”). A mesh netkis usually wireless and designed to
handle that nodes are added, disabled or remov&dnoit. As a mesh network does not

necessarily require any routers, servers or otbetral structure to function, it can be seen as
a peer-to-peer structure. Mesh networks are irtiagedecause they are dynamic, reliable
(due to not having a single-point-of-failure), amtilize the network capacity in an optimal

way.

Voice over IP (VolP) telephony has a low cost agged with it compared to traditional
telephony, as it uses the Internet infrastructun@g @mputers and removing the need for the
parallel system of analogue telephone lines, statand switches. As the cost of network
capacity has been decreasing, VolP has increaspdpularity. It is entirely possible to use
most VolIP applications on top of most mesh netwokH®wever, the structured architecture
of most VolP implementations (including SIP, theefrand open standard by the IETF) does

not leverage the advantages of the unstructurett metsvorks.

Our objective is to enable VolP communication omash network in some way, which
leverages the advantages of both technologieshégxistence of servers in a mesh network
is a large part of what makes SIP unsuitable fmreah network, we need to find some way of
implementing SIP which does not require serverg Jdiution should be independent of any
remote services, independent of any centralizedlicger be scalable, and - unlike most

existing solutions - require minimal modificatiossd configurations on the SIP clients.

The rest of this paper is structured as followilmgsection 2, we further discuss P2P, mesh
networks, VolP, SIP and other relevant technolotpgsrovide the background for our work.

In section 3, we describe our solution, all rel@vdetails about it and discuss all design
decisions. In section 4, after having implementlee $olution we evaluate our solutions
functionality and performance. Section 5 providesoaclusion, lessons learned and ideas

regarding future work.

2 Background

In section 2.1, we will describe the concept of R2i its benefits. In section 2.2, we will
describe the OpenWRT operating system and the ymW$RT54GL router, which will play
important roles in our work. In section 2.3, welwliéscribe SIP (Session Initiation Protocol)
and its benefits, and discuss why it is not sugablrun SIP over P2P networks. In section 2.4
we will establish the objectives of this thesisd am section 2.5 we will look at some existing
solutions and see how they fail to reach thesectibgs. In section 2.6, we will describe our

solution.

2.1 Peer-to-Peer (P2P) and mesh technologies

2.1.1Peer-to-Peer (P2P)

- \ > :] Client
Client \ ﬁ """" ‘ e

Serve

Client Client

Figure 1: Client/server communication (not PeerReer)

In most computer communication, a “client-servetrusture is used, in which every node

acts as either “client” or “server”. For exampleslignt usually referred to as a web browser
connects to a web server to retrieve a web pagen ermail client is used to connect to an e-
mail server to send and retrieve e-mails. In ttemgkmany other services, the use of a client-

server structure makes perfect sense. In othes ¢asgever, such as instant messaging, VolP
(see section 2.3.1) and file sharing, the needfserver is less obvious — when exchanging
information between two computers, it is more éént to do it directly between the two

computers than to pass the information throughrd tomputer.

-

]

Figure 2: Peer-to-Peer communication

A

This is where Peer-to-Peer (P2P) networks becoriilug\s defined in [36], a P2P network
is a network where any node is both a resourceiggowas well as a resource requester.
Popular examples of P2P networks are the file sharetworks Gnutella and BitTorrent [1].
The advantage of P2P is that the servers play #esmale and handle less traffic, requiring
less bandwidth, and in some cases can be removedle®ly. Performance in general is a
major advantage of P2P; the success of Gnutella Bititbrrent in particular may be
attributed to their scalability and high bandwidtilization.

A network using a “pure” P2P architecture (one Wwidoes not require any servers) is usually
self-healing, self-organizing and very scalabl¢. [1

P2P architectures can be applied on several lagerhe network protocol stack. The
examples above apply to the application layer,abst nodes in the link layer can be P2P, as
described in the next section.

2.1.2Mesh network and Mobile Ad-hoc Network (MANET)

: ““ >
\Q é \s‘\

RN
RS
Node N(/ Node

-

Node

Node

Figure 3: Mobile Ad-hoc Network (MANET)

A mesh networlks a network in which data is routed through a benof nodes, in a way so
that any node can communicate with any other nodthé network. If there is no direct
connection between two nodes, packets are routedpaths spanning across multiple nodes
in the network (called “multi-hop routing”). A mestetwork use dynamic routing and is
“self-healing”, which means that routing paths argomatically updated when nodes are
disabled or are added or removed to/from the nétwsw that connectivity to all remaining
functional nodes are maintained. A mesh network maynay not be wireless, although
wireless mesh networks may be the most typicalcamaimon application. As a mesh network
does not necessarily require routers, servers hmratentral structure to function, it can be
compared to a peer-to-peer structure.

A mobile ad-hoc networdMANET) is a type ofwirelessmesh network which also has to
handle that the nodes that form the network arélyigiobile. The network must quickly
adapt as nodes move around, so that routing pegheept functional and optimal. [27]

There are currently no standard routing protocols MANETs. Standardization is in
progress by the IETF. [26]

-
T

Physical peer

App. serve

Physical peer

Physical peer

<«—— Physial layer connectic

¥.....p Application layer connectic

Figure 4: Client and server in a mesh network

Essentially, a mesh network is a P2P structureiegyph the bottom layer of the network
protocol stack, and has the same advantages asnRBB application layer. However, as
usual with the stack, the type of topology and @rot on the different layers is technically
independent of each other. A mesh network can caegular client-server services
throughout the network, while a P2P application baroverlaid over any kind of underlying
network structure. However, due to the nature ofesh network where nodes may join and
leave any time, a client-server service, or a “ld/bP2P service (which requires some kind

of server according to the definition in [36]) mag inappropriate since the server may
become unreachable.

A mesh network can be configured to be connectettheolnternet. The details of this are
highly dependent on the implementation. First, onmore of the nodes must be connected to
the Internet and will function as a gateway(s). Tmaining nodes must know which node(s)

that are gateway(s), either by reading local caméion or by receiving or retrieving this
from the network.

2.1.3Distributed Hash Table (DHT)

A Distributed Hash Table (DHT) is a table which tains entries consisting of key-value- (or
name-value-) pairs. The table is distributed ovaumber of connected nodes. Clients of the
DHT can request or set a value for any key from aoge in the DHT; the request will be

forwarded within the DHT to the node which storestoould store the key-value-pair.

Which node should store which entry (or where talfa specific entry) is determined by
applying a hash function on the key. A hash fumci@dways output some value which is
dependent on the input (the same input must alywagduce the same output) but is well
distributed over the value domain. This is the oea®r hashing the key: The keys are often
not well distributed. If the keys for example catgif user names or any kind of words, some
letters will be more common than others and the DAy not be distributed equally.

Different nodes in the DHT are responsible for efiéint intervals of the hash values. How
these intervals are decided and how a node is awhrthem is determined by the

implementation.

A DHT should also be able to take advantage of nedes that join the network and handle
that nodes leave the network if done under comiotircumstances. For example, if we have
a very small DHT made up of only two nodes, witkey hash value domain of 0-255: The
first node might store all key-value-pairs with kiegsh values of 0-127, while the second
node stores all pairs with key hash values of 128-2Vhen a third node is added to the DHT,
the distribution needs to change so that, for exantipe first node stores key-value-pairs with
key hash values 0-85, the second 86-171, and thd v2-255. Depending on the

implementation, the nodes needs to be updatedasohiiy are aware of this new distribution,
and the nodes which no longer are responsibleddain key intervals needs to submit the

affected pairs to the new node.

A DHT plays a key role in different types of P2Rvmarks. It is possible to addsdructured
overlayto a P2P network, thus making the inherently ustined network structured. For
example, while the connections in a mesh netwoekP2P, a structured overlay can be added
in the routing protocol to form a structured ovgrieetwork. The most common approach to

implementing a structured overlay is by implemeg@nDHT. [41]

2.1.4Scalable Source Routing (SSR)
Scalable Source Routing (SSR) [21] is a networlelaputing approach for mesh networks
and MANETs. SSR combines source routing in the ighysietwork layer with a Chord-like
virtual ring structure.

SSR itself does not specify a way to interoperafth internet; this is left to the

implementation.

SSR is presented in more detail in [21].

2.1.4.1Structure

In SSR, each node is assigned a globally uniqueeaddqsubsequently referred to as SSR D).
The assignment is left to the implementation, whiblus is responsible for somehow
supplying a globally unigue identifier.

Each node in the network is always aware of thesiglay path to a node referred to as the
successorThe successor is the node which SSR ID is thduably closest” to the current
node, that is, the node with the lowest SSR ID thdtigher than the current node’s. To the
successor, the current node is the predecessoraddiress space is looping, thus, the node
with the globally lowest SSR ID is the successoth® node with the globally highest. This
forms a Chord-likevirtual ring. A sample with four nodes identified by SSR ID$519 and
15 is displayed in Figure 5.

o @

SSRID 1 SSRID 5
Predecessor Node Successor
15 1 5
Virtual ring 1 5 9
9 15
15 1
SSR ID 15 SSRID 9

.

Figure 5: SSR’s Chord-like virtual ring

Note that how the nodes are physically connected dot relate to the ring structure depicted
in the figure.

The virtual ring is unidirectional: One nodes vally closest node ialways its successor
even if the predecessors SSR ID is numericallyeclés the current nodes SSR ID than the
successors. Similarly, one nodes virtually mostadisnode is its predecessor. In a network
with only two nodes, both nodes are the predecemsorsuccessor to the other node at the
same time.

The routing paths to the successor and predecassatored in a routing cache, together
with the paths to all nodes physically connectaedly to the node, and a number of other
nodes which have been cached during different mgutirocedures explained below. Each
node in the network is responsible for handlingpaEltkets (or messages) targeted to any
target address equal or higher than the nodes &®lIB, but lower than the successors SSR
ID.

2.1.4.20peration

Packet forwarding

A packet contains a path known as “source routeitaining the route from the source node
to a node which is the final destination, or isoa@e closer to the final destination. While this
path has not been traversed, the nodes blindlyaiahthe packets. When the path has been
traversed, a new routing decision is made, unlespath was leading all the way to the final
destination and thus has been reached, in which tes packet is delivered to the upper
layers of the network protocol stack.

When a new routing decision is made, two metriescampared to calculate which node is
the best choice: The physical distance (the nurobghysical hops between the nodes) and
the virtual distance (the numerical difference led hode’s SSR IDs). The node walways
forward the packet towards a node which is virjualbser to the final destination node than
the current node. The path to the selected no@ppended to the source route in the SSR
packet.

If a node does not know of a node virtually closethe final destination than itself, and
itself is not the final destination, the final daation does not exist (presuming the network is
consistent). In this case, the node discards tbkegbaand sends back a control packet along

the source path to notify these nodes that the rsoassing.

Figure 6 illustrates a routing procedure for a gaakiginating from a node with SSR 1D
1, to the node with SSR ID 42.

Figure 6: SSR routing sample (from [21])

In this figure, the straight lines indicate the picgl connection, the half-circle a portion of

the virtual ring, and the shadowed lines the acpath the packet traverse. The routing

procedure for this example is as follows:

1.

Node with SSR ID 1 (“node 1”) receives a packetrfran upper layer in the network

protocol stack.

The node knows the paths to at least node 13, @788nIt forwards the packet to

node 17, because of all nodes it is aware of, #ffeivirtually closest to 42.

Node 17 knows the paths to at least node 1, 13nt932. It forwards the packet to
node 32, because of all nodes it is aware of, 82eivirtually closest to 42.

Node 32 knows the path to node 39, since it isutessor. It forwards the packet to
node 39, because of all nodes it is aware of, 8®avirtually closest to 42.

Node 39 knows the path to node 42, since it isutessor. It forwards the packet to
node 42.

Node 42 receives the packet and delivers it to higher layers of the network

protocol stack.

Maintaining the virtual ring
This virtual ring must be kept consistent (thaeery node must know the path to the correct

successor) and adapt when routers join and leaveetwork.

To accomplish this, the following procedure is doled when a node A has joined the
network:

1. Node A selects the virtually closest node (nodeBhe nodes currently in the nodes
cache. By design the cache always contains at kastodes directly physically
connected to the current node.

Node A sends auccessonotification message to the selected node.
3. Node B receives thaotification message. B compares the SSR ID of A, with B’s
predecessor (node C).
a.lf A = C (they are the same node), B already tréd@ as its predecessor. B
sends amcknowledgemeriiack to A/C. Node A/C selects B as its successor.
b.Otherwise, either C is a better successor candiftated, or A is a better
successor candidate for B. Aipdatemessage is sent to both nodes A and C.
The update message contains a concatenation obutes A>B and B> C.
B also keeps the source route from the notificati@ssage in its cache.
4. Node A and C receives the update messages, andlifsrmessage they both learn a
path to the other.
a.lIf C is a better successor to A (than to B), nodevil send a successor
notification to C, and the procedure will be repeafrom step 1.
b.If A is a better successor to C (than to B):
i. If Ais the best suitable successor to C that Awsionode A sends a
predecessonotificationmessage to C.
ii. If A knows a more suitable successor to C tharifjtsede A sends a

successoupdatemessage to C.

The result of the process is that all of the nomeslved have mutually agreed on their
predecessors and successors. The process sprebdsitarates until all nodes are mutually

correct.

10

Note that even if this results in a mutually cotreetwork it may not always be globally
correct. This problem is solved by letting everydaovhich has an SSR ID larger than its

successor (in Figure 5, it is the node with SSRHpbroadcast their address.

2.1.4.3Cache
An SSR packet contains two paths: the actual saungie, and a stub route. For each virtual
hop, a new piece is added to both paths, but thecs@ath is optimized if any parts of it are
redundant. The stub route contains the originai pathout any optimizations. This is partly
because when a node does the optimization, theisdittely to “cut its own branch”, that is,
remove the path which lead to the current node. Sthb route lets the packet find its way
back to the main route. Also, the stub route igdedeso that all nodes along the path back to
the source can be notified if the destination nbde become unavailable so that they can
remove the cached paths to it or find an altereatbute.

SSR does not require any control traffic when regtraffic is absent. Since the cache may

timeout, it will have to be rebuilt if the netwohias been idle for an extended period of time.

2.1.4.4Packet format
SSR utilize several different types of packets. Titst byte of an SSR packet identifies the
packet type, as described in Table 1.

Value of first byte Packet type

0x01 Random Walk

0x03 Connect (regular data packet)
0x04 New Node Announce
0x05 Scout Lost Neighbor [sic]
0x06 Unreachable

0x07 Neighbor [sic] Notification
0x08 Neighbor [sic] Update
0x09 Link Broken

0x0A Path Announce

0x0B Max Node Announce

Table 1: SSR packet types

11

The content of the rest of the packets differ betwihe different packet types. The “Connect”

packet type, which is used for regular data packettructured as indicated in Table 2.

Number of bytes Content

(N = length of SSR ID)

1 Packet type0x03

2 Length of stub route

N*(length of stub route) Stub route

2 Length of source route

N*(length of source route) Source route

1 Hop count (how far the source route has beerupdjs

N Current destination

N Neighbor [sic] destination

N Final (original) destination

4 Payload type (Integer, 4 = IPv4, 6 = IPv6, 0 =nblol0 =
Deliver to application layer)

Rest of packet Payload (for example, a full IPv6kea including IPv6
headers)

Table 2: Structure of SSR “Connect” packet

2.1.4.5Evaluation

SSR has been evaluated in simulations and it has fmeind to be more efficient and more
reliable than AODV and DSR. It has been proveddcsbalable well beyond 10,000 nodes,
and with low mobility and low node churn, and toréalelivery rates of more than 90% in
networks with up to 125,000 nodes.

2.1.5Linyphi

Linyphi is an implementation of the SSR protocdatissed in the previous section, 2.1.4.
Between the routers in an SSR network, SSR is udediever, the routing is completely

transparent to the hosts, as Linyphi only uses IRW&n communicating with them (see
Figure 7 below). This allows SSR to be used withaoy modifications to the end hosts,
except enabling IPv6 if not done by default. Ndtattthis limits the use of Linyphi to IPv6

enabled applications.

12

Since the hosts in a Linyphi network are unawar88R, only the routers are SSR nodes

and have SSR IDs. The problem of assigning globatligjue SSR IDs for each node are

solved by simply using the MAC-48 addresses of rigers, which by design are always

globally unique.

Both hosts and routers in a Linyphi network carm &ls identified by an IPv6 address, in the

following way:

Byte

0 1 6| 7|8 15

Example 01 00 1B FC 8D 0C AC 02 00 19 CB FF FE 06 BB F8

Description SSR prefix SSR ID, MAC-48 of router |If. MAC-48 of end host

Table 3: Linyphi IPv6 address

SSR Prefix: Always 01, a prefix that identifies that the address isgrssil by Linyphi.
SSR ID, MAC-48 of router: The SSR ID, which equals the MAC-48 address of the
router to which the end host is attached. If the5IRddress identifies a router, this is
the MAC-48 of the router.

If. (Interface): A number identifying the interface on the routerwhich the end host

is connected. If the IPv6 address identifies aeigutny number can be used as long as
there is a corresponding interface on the router.

MAC-48 of end host: The MAC-48 address of the end host, converted tdi64
according to the conventions described in [40] ffagldFF FE to the middle of the
address). If the IPv6 address is that of a rowsetfj the same MAC-48 is used in both
bytes 1-6 and 8-15 (in the latter converted to iB3-b

As the router assigns the IPv6 addresses for eaghest in what to the clients appear as

regular IPv6 address assignment mechanisms, théa@std does not need to know to which

interface they are connected to, or which MAC-48rads the router has.

13

N » | "‘
1 ¢ <4 IPv6 packets
&s <« ---» SSR packets

n
-
4

Figure 7: Linyphi physical topology

When an end host or a non-Linyphi router sendsc&gicto an SSR router, it is always sent
using standard IPv6 (as previously mentioned). pimyextracts bytes 1-6 from the IPv6
address to determine the SSR ID of the packet'tindg®n SSR node. If that node is the
router itself, it is passed on as IPv6 to the appate interface (as seen in byte 7 in the IPv6
address) on the router.

If the SSR ID embedded in the IPv6 packenas the current node, an SSR header (see
section 2.1.4.4) is pre-pended to the IPv6 pacR8R is then used as in section 2.1.4.2 to
route the packet closer to the destination node.

When a Linyphi router receives an SSR packettlieeiforwards it to a node closer to the
final destination (as described in section 2.1,4R)f the router is the final destination node
of the SSR, removes the SSR header. It then rbadsterface byte of the IPv6 address (byte
7) to determine which of the router’s interfaceddmward the packet on, and forwards it to
this.

Each interface (commonly, one WAN, one LAN and WieAN) on a router is essentially
a switched hub (often simply referred to as “swifclence the need to include also the
MAC-48 of the end host in the IPv6 address.

These procedures are summarized in Figure 8.

14

SSR packet from other router SSR packet to other router
> Is the packet': No >

L destination this_J
router or a host

/ connected to thisY
> router? >

IPv6 packetfrom host connecte ves IPv6 packet to this routerT
to this router to host connected to this
routel
Packets from network Linyphi Packets to network

Figure 8: Linyphi packet routing

No different than in IPv4, the end hosts are ndbmatically made aware of other hosts
connected to neither the same router as itseltooany other router. Other mechanisms

outside of Linyphi and IPv6 must be used to lealdrasses of other hosts in the network.

A Linyphi network can be connected to the IPv4 inét. Off-network packets are directed
towards a designated gateway in the network. Lingptonfiguration file defines which
router that is. Then, this router/gateway perforasie address translation (NAT) to translate

the IPv6 address of the packet into an IPv4 addeeskthe reverse for incoming packets.

Linyphi is implemented as software for the Linuxeogiting system, which makes it possible

to run it on most hardware capable of running Linux

A library exists, Liblgor, which adds a DHT API, plementing DHT functionality which

leverages the properties of SSR. However, docurtientaf this API is minimal. [20]

More information about Linyphi is available in [2hd on its website at [42].

15

2.20penWRT and Linksys WRT54GL

Figure 9: Linksys WRT54GL

Linksys WRT54GL is a network router with a builtwireless 54 Mbps 802.11b/g Ethernet
access point and a 4-port 10/100 Mbps switch

The firmware in WRT54GL is based on Linux and titasource code is publically available
as OpenSource. This has enabled the developmamainber of third-party firmwares, such
as OpenWRT [5], DD-WRT [37] and Tomato [38], amontipers. These firmwares target
different types of users; OpenWRT is primarily adn®wards advanced users and allows

vast opportunities for customization.

From the perspective of our work, the most impdrtassibilities WRT54GL and OpenWRT
provides are that of running custom routing prot®dmost importantly, SSR by running
Linyphi) and creating different testing environment

Note that OpenWRT is not limited to the Linksys WBZGL,; several other routers of various

brands are capable of running the firmware.

! Actually, the WRT54GL is essentially one WireleBthernet NIC and one Ethernet NIC. The latter is
hardwired to a programmable 6-port Ethernet swildte remaining five ports are accessible from thekiof
the router, and are labeled as 1-4 and “WAN". Tteia distinction and the routing between thesenaaee
entirely through software.

16

2.3Voice over Internet Protocol (VolP) and Session Itiation Protocol (SIP)

2.3.1Voice over Internet Protocol (VolP)

Voice over Internet Protocol (VolP) is a term désiag the transfer of digitized voice over
the Internet using the Internet Protocol (IP), fife&, making phone calls using the internet
infrastructure rather than the traditional telephaetwork.

The main advantage of VolIP is the low cost assediatith it compared to traditional
phone calls, by using the Internet infrastructurd eomputers and removing the need for the
parallel system of analogue telephone lines, statimd switches. [29]

The drawbacks are the lack of Quality of ServiceQQ In a traditional telephone network,
a “line” is reserved at the establishment of a ghoall, ensuring the quality of the phone calls
is stabile under the full duration of the call. @ Internet, no Quality of Service is widely
implemented. VolIP calls over a busy or unrelialdete may therefore suffer from varying

sound quality and delay, or even disconnectiomeliniability to make phone calls. [28]

2.3.2Session Initiation Protocol (SIP)
Session Initiation Protocol (SIP), defined in [1ig] an application layer protocol, which
provides a way of establishing and maintaining cemication sessions between hosts, often
for audio (VoIP, see section 2.3.1), video andainsinessaging. The protocol also specifies
proxy server functionality, which provides autheation, routing, enforcement of policies,
and locating facilities.

SIP doesot specify the media or compression to use duringattteal communication.
Media capabilities of hosts are attached to SIPsagess as payload, and are described using
the Session Description Protocol (SDP) [30].

The advantage of SIP is that it provides a stanzkeddand open way to initiate sessions of

any kind, not only currently existing VolP or ingtanessaging, but for use with any software

or media transfer protocol.

17

Alice's computer kau.se

REGISTER alice@kau.se |

|
Ly 200 DK !
[l]
Alice's computer kau.se

Figure 10: Sample SIP presence registration

Similar to e-mail users, each SIP user has a unidgmtifier called SIP URI [31], such as
“si p:alice@au. se”. In this SIP URI, ‘al i ce” is the user name of the SIP user, and
“kau. se” is the SIP provider. Th&au. se host will serve as a proxy for Alice; that is,
when Alice connects to some network containingaai. se host, her UAC (User Agent
Client, or SIP client) registers her presence enSH proxy located ak'au. se” by sending

it a REG STER request. This is illustrated in Figure 10. (Simyao the HTTP protocol, the
result code “2xx” indicate success, “3xx” specifyalirection, “4xx” indicate unauthorized

access, and “5xx” indicate that an error has oecuon the server.)

Boh's computer somewhere. net kau.se Alice's computer
| INVITE alice@kau.se | | |
I I I I
i E INWITE alice@kau.se >E i
i i i INVITE alice@kau.se"i
| | I . . |
i i :ﬂ 180 Ringing i
i :‘ 180 Ringing : i
:1 180 Ringing ! ! !
I I I I
| | 7 200 OK |
| | (] |
i l 200 OK l i
l 200 OK | | |
Bob's computer somewhere. net kau.se Alice's computer

Figure 11: Sample SIP invitation

18

When another SIP user such &®b@ onmewher e. net ” wishes to call Alice, he will enter
Alice’s SIP URI which he/she must know somehow. ilksstrated in Figure 11 (assuming
Bob has already registered his presence) Bob’s WMICsend anl NVI TE request to Bob’s

proxy serversomewher e. net . This proxy server will then forward the requesttie proxy

server atkau. se (as extracted from the SIP URI), which will thesnward the request to
Alice’s UAC, causing her SIP software (or hardwaestart ringing. This is indicated by a
“180 Ringing” reply. When Alice answers the call2@0 OK will be replied to Bob and the
session has been initiated. Media exchange is skanhdirectly between Bob’s and Alice’s

computer, without going through the proxy servers.

A proxy server may be either stateful or statel@ssopposed to a stateful, a stateless proxy
does only forward packets up or downstream, withmatintaining the state of ongoing
session initiation transactions.

A registrar only handleBEG STER requests to store the locations and availabilit$I®

user’s locations.

There is an extension to SIP named SIMPLE whichpedd further for use for instant

messaging (IM).

Any mesh network which can run arbitrary IP traftian run SIP. This includes Linyphi,

although it is limited to IPv6. If the mesh netwar&n be connected to the Internet, which
also includes Linyphi, there are a several wayssusan communicate over the Internet and
within a mesh network using SIP. However, theresaweral drawbacks of running SIP in a
mesh network. We attempt to explain those belowa imumber of scenarios, which are all

assuming all users are connected to same SIP $en@mplicity’s sake.

1) A SIP user is on a mesh network. He/she is usi@tPaserver on the Internet.
a.He/she communicates with a SIP user on the samle net&ork.
b.He/she communicates with a SIP user on the Intemmrein another mesh
network also connected to the Internet.
2) A SIP user is on a mesh network. He/she is usi@tiPaserver on the mesh network.

a.He/she communicates with a SIP user on the samle net®ork.

19

b.He/she communicates with a SIP user on the Intemrein another mesh

network also connected to the Internet.

All scenarios should work without any problems, Imane of them are optimal or take
advantage of the properties of a mesh networkxplaieed below.

Scenario 1a and 1bA SIP server located in the mesh network (as en&do 2) would be
closer and be more accessible to the SIP clientisermesh network. This is especially true
for scenario la: If the SIP server would be locatethe same mesh network as both clients,
the SIP service would be completely independenhefinternet, and likely keep the number
of hops minimal without the need for SIP requestsdverse the Internet.

Scenario 2a and 2b:Running a client-server structured applicationhsas SIP over the
P2P structure of a mesh network is not an optiroafiguration: It works, but does not take
advantage of the properties of the mesh netwoidy as its scalability and reliability. A node
acting as SIP server may become available, thusngake entire SIP service in the network
unavailable.

Scenario 1b and 2bThe performance of these scenarios depends onhe®IP server is
located in relation to the both SIP users (or thesh networks). Packets have to traverse the
Internet in either scenario. The performance otiépends on how close the SIP server is to
any of the two mesh networks or users. Moving a ier from the Internet as in 1b into
one of the mesh networks as in 2b, would not necigs- but could — result in better
performance than just moving the SIP server cltsene of the mesh networks, depending
for example on the size and performance of the mesivork. However, it would certainly

introduce the other drawbacks discussed above.

In short: while SIP and mesh networks are compgtitlis not very optimal to keep SIP
servers inside a mesh network due to the P2P nafuresh networks, neither is using a SIP
server outside of a mesh network when several S#Psuare connected in one single SIP

network due to the unnecessary “Internet detour”.

2.4 Objectives

In previous sections we described several techredogglevant to this thesis, we described
the advantages of mesh networks (dynamic netwarkgpdsed of mobile nodes), and SIP (a

standardized way to initiate sessions of any kik&. also mentioned that the requirement of

20

servers for SIP functionality makes it unsuitalderhesh networks (such as networks running
Linyphi).

Our objective is therefore to enable SIP commuigoabn a mesh network in some way,
which leverages the advantages of both technologieghe existence of servers in a mesh
network is a large part of what makes SIP unswgtdbt a mesh network, we need to find
some way of implementing SIP which does not regsgneers.

The solution should be independent of any remateh(ss Internet) services, independent
of any centralized service within the network, balable, and require minimal configurations

or modifications on the SIP clients.

2.5 Existing solutions

In this section, we will describe currently exigtitechnologies which allows serverless SIP,

and their advantages and disadvantages.

2.5.1P2PSIP, SIPDHT and SOSIMPLE
The IETF P2PSIP work group [44] has assembled abeurof projects, including the ones
listed below.

In all of the projects, the centralized SIP servare replaced by DHTs or similar
technologies. The DHT is then used for locatingeotlisers, while the SIP protocol is used for
the remaining communication. This forms a P2P aweith the application layer. Thus, it can
be used on top of any network protocol, includinggegular TCP/IP star networks or an SSR
network. This is illustrated in Figure 12. This dey adds overhead, and the overall
efficiency of the network depends on the underlyaygr.

Using an SSR network (or any other P2P/mesh nejwaslkunderlying network is not a
feasible solution. SSR in particular is itself aPP@verlay over the physical layer. Although
SSR considers physical distance in its routing raeims, having another overlay adds
significant overhead and would bring the actuahpaiackets traverse even further from the
shortest path. This is illustrated in Figure 13.

21

underlying routing

HULU

Figure 12: P2PSIP/SIPDHT/SOSIMPLE overlay

A (T P2PsSIP
s TN overlay
VN

SSR virtual ring
overlay

physical
connections

Figure 13: P2PSIP/SIPDHT/SOSIMPLE overlay over SSR

22

2.5.1.1P2PSIP by University of Columbia

In this projects approach, upon a client registrata specific SIP client both tries to find the
SIP server using DNS (as any other SIP client wouldt is also extended so that it also tries
to find and join a Chord P2P overlay using one eVesal different methods, such as
multicasting or an external service.

Thus, a SIP client can both be connected to a ae@iP server, and simultaneously form a
P2P overlay. Connections with other P2PSIP clierts managed in the overlay, while
connections with standard SIP clients are managethd regular SIP server. Standard SIP
clients will not be able to leverage the P2P owerla

For more details, see [33].

2.5.1.2SOSIMPLE by College of William and Mary

In this projects approach, a Chord-based DHT islempnted and the traffic required is
added as additional information in the SIP pack¥esty few details exist regarding the
implementation; the latest publication regardings throject is from 2005 and makes no

statement about compatibility with standard Slerds. For more details, see [32].

2.5.1.3SIPDHT by Nokia
In this projects approach, a Passive Content Addids Network (PCAN) is used instead of
a DHT. It differs substantially to a DHT in thahaw node can only be added to the network
if invited by an existing node. The gives improvazhtrol over which nodes constitute the
network, but a PCAN scales poorly compared to a DHT

The clients constitute the network and the PCANcfiamality is added to the SIP clients.
A standard SIP client can connect to the networkdnyfiguring any of the SIPDHT nodes as
a server, but will not carry any part of the PCANyill thus function as a SIP client to one of
the nodes in the network which will act as a SliRese

For more details, see [34].

2.5.2Skype

Skype uses P2P to maximize performance by sendifagmation through other Skype
clients. However, Skype requires a connection ¢ergtral authorization service. Also, it uses
a closed proprietary protocol, meaning there isoffcial documentation on this protocol,
which makes it hard and possibly even illegal t@wlBment. Some reverse-engineering has
revealed that Skype uses a method of flooding dbal Inetwork to find other nearby hosts,

which constitutes wasteful usage of network cagaf35]

23

2.5.3Linyphone
[19] describes an implementation of a solution wh#dre user can join a mesh network
arbitrarily using a standard SIP client and a slighmodified version of Linyphi, all running

on the users local device.

SIP-Client
| signaling | | audio
& A
@ =
Bl 2
Registrar o
Redirect-Server &

DHT

send

receive

Y Y
| libigor | | ipve |

Linyphi

Figure 14: Linyphone components (from [19])

The solution consists of three software components:
- SIP Client: Any standard SIP client, configureduge a SIP server running at the local
device as a proxy server.
- SIP Registrar/Redirect-Server: A custom SIP pregistrar based on the SofiaSip
library, but is extended to control a DHT throubke Liblgor API [20].
- Linyphi: Linyphi extended with the Liblgor API.

This system is designed to be contained completaty one single device. Also,
documentation of both the entire solution and tiedor API is minimal.

Unlike P2PSIP/SIPDHT/SOSIMPLE, no P2P overlay islealj instead the mechanisms of

SSR are directly leveraged. While SSR is itselbaerlay, it uses a routing approach which

24

considers both physical and virtual distance, reduthe negative effects of the added

overlay.

Our solution: Extending Linyphi

As discussed above, neither the P2PSIP concepBSkype fulfil our requirements of not
requiring any modifications on the client. Howeveuyr solution will be very similar to the

Linyphone approach. This will be further discusbetbw.

We will extend Linyphi — which as previously memténl is an implementation of SSR — by
adding our own DHT functionality and a simple Si®xy to the routers. Different from the
Linyphone approach, this will all run on every r@utn the mesh network. Then, any user
with a standard SIP client can join the network aedome fully available to all other SIP

users in the network, only by configuring its clign use any router using the modified

&

Linyphi as SIP proxy.

= " Linyphi +
+ DHT node

-~

<\>

Linyphi +
SIP proxy Linyphi +
+ DHT node SIP proxy
+ DHT node

Figure 15: Linyphi over mesh network

The major differences compared to the Linyphonetgmi, are that Linyphi is ran on routers,
and that Linyphi will be extended with SIP and Diddmponents. On the clients, only a

25

standard SIP client needs to be used. In Linyphalhepmponents are placed on the end host

device.

All details and their motivations will be given section 3.

26

3 Design and implementation

3.1 Introduction

In this section, we will describe the details af thesign and implementation of our solution.

Essentially, our solution consists of two majorigegiecisions:
- Global architecture: How to allow a user to regist® presence in the network and to
connect to other SIP users
- Storing and retrieving current user locations: Hamd on which node(s) in the
network, to store the registered user's presendeegact location (a binding between
the user's SIP URI and current IP address of thgpoter where the SIP client is being

run).

These design decisions are explained in sectionaB® 3.3 respectively. We will then
describe what changes needs to be done to thengxilutions to make them compatible
with our new functionality in section 3.4, followéy a description how the new functionality
will be added in 3.5. In 3.6 we will describe somypical scenarios, and in 3.7 we will
describe the scope of the project, explaining whighctionality we will and will not

implement.

3.2 Global architecture

The SIP user that joins the network must somehavo@amce its current location to the rest of
the network, so that other SIP users can conneitt lbomust also be possible for a user to
connect to any other SIP user without him/her kmgwihe other SIP user's location. In a
normal SIP system, this is handled by the SIP pxnd registrars — the servers in a SIP
network. However, our system must work without auwgh servers. Therefore, the server
functionality will be implemented in the routers, such way that all routers in the network
together act towards the clients as one singledatanstateless SIP proxy, equally accessible
on all of the routers IP addresses. (In section22v® described how the most essential

communication is done with standard SIP; theserdiag apply also to this architecture,

27

except all routers can together be seen as onke sahig proxy server, to which all clients are
connected). This way, all functionality for registg and inviting other users are already
implemented in the SIP clients and therefore regumo modifications, except setting the
IPv6 address of the local router as SIP proxy & $P client’s configuration. It should be
possible to modify a SIP client to do this automelty. As described in section 2.3.2, a
stateless proxy only forward packets, without naining the state of any sessions.

When a router receives a SIP request, it parsesetheest to determine the domain name of
the SIP target server (for exampl&al. se” in “al i ce@au. se”). If the domain name is

a specially defined one, such aotal nesh”, the SIP request is treated within the network
using our implementation, and if not, our custor® $hcket handling immediately gives the
packet back to the regular routing mechanismswallgp the package to continue towards the
“normal” SIP proxy (for example, the one associawth “kau. se”). Note however that
this functionality will only partially be implemead: Our implementation will assume all SIP
messages directed to a router are meant to bedreathin the local Linyphi SSR network,
and no special domain is defined. In a future dgwelent, this special domain could be

defined for example in the Linyphi configuratiofefon each router.

Rest of (internet
> i connected)
SN SIP packet to SIP packet network
“alice@kau.se” Linyphi + forwarded
SIP proxy towards kau.se
+ DHT node
Rest of (internet
; — > ‘ > connected)
SN SIP packet to SIP packet network
“alice@localmesh” Linyphi + forwarded
SIP proxy towards proper
+ DHT node DHT node

Figure 16: Routers forwarding SIP packets differently depeg on target domain name

28

3.3 Storing and retrieving user locations

In the previous section, we described that thentdigvill use standard SIP and will connect to
local router to register themselves and to makkame calls to anyone who has registered in
the same network. In this section, we will descrpel discuss different methods of storing
the different users’ locations in the network.

3.3.1Mirrored storage

Every user's location is stored on each routehe ietwork. This makes finding a user’s
location very efficient, but was ruled out sincelswa storage method does not scale well.
When a user connects or leaves the network, thatitoc of this user must be added or
removed to/from each router in the network, usioge flooding mechanism. If the number
of routers is Rutersand the number of registered SIP usersdssithe total number of entries
in the network would have to be:

n — (n)nrouters
entries users

This is a O(H) expression which scales very poorly.

3.3.2External DHT

With this approach an external DHT service is useth as OpenDHT [25]. OpenDHT is a
publically (over the Internet) accessible DHT rumpion approximately 200-300 nodes on
PlanetLab, which allows users to store arbitrafprimation. The service is implemented

externally, that is, the nodes are spread acreskitarnet.

29

put (myKey, myValue, myHash)

Internet

Figure 17: A put request to OpenDHT

Figure 17 shows how a “put” request of a key-vadaeret hash-triple that is sent to one
arbitrary node in OpenDHT. The node (which subsatiyes referred to as the gateway)
forwards the request to the node which is currergponsible for keys such as “myKey”,
which depends on the current topology, number aespetc. This node then stores the triple,
and a result response is sent back to the reqgediant. As several applications share this
service, problems are likely to occur if two apations store a value using the same key. That

is the reason for the secret_hash being usedusted as a second, application-specific key.

This service could be used to store SIP preserioemation. This approach would scale
better (only one entry would be required for evesgr), would be very easy to implement
since the DHT facility already exist, and wouldcamvent problems such as the mobility of

nodes. However, it would make the SIP functionalitythe network dependent on the

30

external DHT service and on an Internet connectawen to reach SIP users located in the

same building.

3.3.30ur approach: Internal DHT

The approach we have chosen is to implement a DiHthe routers themselves. An internal
DHT will scale better than the mirrored storagesheaser presence/location is only stored on
one router/node. Thus the total number of entriethé network would equal the number of
SIP users. Also, the network will not be dependemtan external service or an Internet
connection. The disadvantage is the added compleritl the additional work of creating or

configuring a DHT implementation on the routers.

There will be one entry in the DHT per SIP usemtaming its SIP URI and its current
location (its IPv6 address). The value to hash QRE key) will be the SIP URI. Each entry
will be stored on the router whose SSR ID is clbseshe hashed key. This is achieved fairly
easy using the functionality of the SSR routingriNally, in every hop, each routed packet is
forwarded to the router whose SSR ID is closeshéodestination SSR ID (that is, virtually
closer to the destination). If a router does naivkrof another router virtually closer to the
destination than itself - and is not itself thetadegion - the packet will be discarded. If we
change this as described in section 3.4.1 so tmé special type of packets are delivered to
the current router if no other virtually closer teuexist, we can send packets to arbitrary
SSR IDs derived from the hashed keys, and be besedrrive at the router with the closest
matching SSR ID in the network.

One problem with this is that while the keys (hasbé SIP URIs) will be spread out
evenly over the hash value domain, the SSR IDs natl be. As an example, the SSR IDs
(and MAC addresses) of our Linksys routers in ast tbed only differs in the 16 least
significant bits. This is a problem, because thieual SSR IDs will be relatively similar, thus
the DHT will not be spread equally over the nodéke problem and the solution are
explained more thoroughly in section 3.4.2.

For simplicity, communication between the nodes bel done using SIP as well. Actually,
when any router receives a SIP request (sucRE& STER or | NVI TE) it will simply
forward it with minimal changes towards that roudrich is responsible for handling the
request. For examples of how packets will be sedes clients in different scenarios, see

section 3.6.

31

3.4 Required modifications of existing Linyphi and SSR

3.4.1Packet routing enabled using only approximate SSROs

As mentioned in section 3.3.3, to implement the Didmictionality the routers needs to be
able to forward any SIP request to the router wihiab the closest SSR ID to the hash value
of the SIP URI of the forwarded packet.

2: Forward to SSR ID 5,
because 5 is closer to 10 than
1 and 25 are.

3: Forward to SSR ID

9, because 9 is closer t

5than 1 and 10 are.

<

1: Send packet
tow SSR ID 10 SSRID 1 SSRID5
Virtual ring
SSR ID 25 SSRID9

«

3: This router does not know of any router

Discarded

closer to 10 than itself, therefore, there are no
such router. Discard packet, respond “no route

to host”.

Figure 18: How “default routing” in SSR handles p&ts to none-existing nodes

When a router does not know any path to the fieatidation of an SSR packet, it will always
forward it to the router with an SSR ID closesthe destination SSR ID. By design, all SSR
routers do always know the path to the next viuateceding and succeeding router [21]. If
the router would not know any router that is clagethe destination SSR ID than itself, it is

certain that the current router is in fact the egipossible and the destination router does not

32

exist. The packet will be dropped, and — in theypim implementation — the ICMPVv6 “no
route to host” message will be sent back to thecgoof the packettrom this point, this

behaviour will be referred to dslefault routing”. The behaviour is illustrated in Figure 18.
For illustrative purposes, this figure assumesSB& node®nly know the physical path to
their predecessor and successor (the closest rydesther side in the virtual ring), thus

ignoring the nodes may have cached the path to othages.

2: Forward to SSR ID

5, because 5 is closer to 3: Forward to SSR ID

10 than 1 and 25 are.

&> &

9, because 9 is closer to|

10 than land 15 are.

1: Send packet
to SSR ID 10 SSRID1 SSRID 5

Virtual ring

SSR ID 15 SSRID9
Handled

«

3: This router does not know of any router

closer to 10 than itself, but since the packet is
sent using “closest routing” it keeps the packet

and handles it.

Figure 19: How “closest routing” in SSR handles gats to none-existing nodes

For the DHT functionality, we need to change Linyphsuch way that some packets are
treated differently, and instead of being droppedhie first scenario, will be handled by
custom code or delivered to the application lagee(section 3.5 for a discussion about that).

Thisbehaviour will be referred to dglosest routing”, and is illustrated in Figure 19.

33

SSR contains a set of packet types. There is oggespacket type which defines regular
data packets (the “Connect” packet type), and séwehers defining a number of routing
messages. What packet type a packet is of, isateticby a flag in the packet header (as
described in section 2.1.4.4).

We cannot simply implement “closest routing” on ‘@lonnect” packets. If so, all such
packets which are destined to a non-existing oeactrable router, and are not meant to be
handled by our DHT, will still always arrive at semouter, and perhaps be received by an
application. This may result in unpredictable anmdmeous results. For these packets we want
“default routing”, so that they are not handled aadthat an ICMPv6 “no route to host”
packet is sent back to the source.

Therefore, we will implement a new SSR packet tyfiee new type will have packet ID
14 OxO0E), and will be identical to the Connect packet tyywéh the only difference being
the action performed when the exact destinatiorldcaot be found. A parameter will be
appended to the functions and methods in Linypli &8R that receive and send packets;
when sending packets the parameter specifies wpatdf routing should be made, and when
receiving packets the parameter returns which tyjpenatching that have been done. The
parameter is an enumeration calleARCGET_TYPE’, and has theint values
“TARGET_TYPE_DEFAULT” (0, default) and TARGET_TYPE_CLOSEST” (1). Other
values can be added in the future if so necesseny,the parameter will be put inside a
structure TARCGET_MODE) to allow other related parameters to be addetiowit further
modifications of any function heademote: adding this extra parameter throughout the
application may affect the overall performance wiyphi.

Another approach is to beforehand inspect the ffinster’s SSR routing table and directly
locate the SSR ID closest to the hash value. Horyévis is not possible, because there is no
guarantee one SSR node is aware of all other S8Bsndhe router with the SSR ID which
best match the destination may therefore not érighe first routers routing table. It is
essential that independently of the current locatiothe SSR network, SIP URI/IP address-
pair for one specific SIP URI (the SIP URI is treykn the DHT) are always both stored and
retrieved on one, unambiguous location; otherwisy will not form a consistent DHT.

Note however, that when a router has just joinedngtwork, its routing information may
be inaccurate until the final paths have been &stednl. Therefore, when packets pass

through a newly joined router, the packet might metforwarded. However, all standard SIP

34

clients sendREG STER at regular intervals [17], so any effects of tkisould only be

temporary.

3.4.2Variation of SSR IDs

Linyphi assigns SSR IDs to be identical to the MA&-address of the first interface of the
router. Because of the way MAC-48 addresses argreskto hardware [22], this will ensure
that any SSR ID will always be globally unique. Haer, the SSR IDs will not be well
distributed over the address range, as MAC-48 addee are defined hierarchically. For
example, each hardware manufacturer owns a cemdaige of the value domain and thus
hardware from a single manufacturer will have MAE-dddresses relatively close to each
other.

This is not a problem for normal use of SSR, buemlising it as a DHT and using the
nodes addresses to determine where to store eadhelDtry in, the addresses must be well
distributed over the address value range to eveislyibute the load put on each node. An
example best describes why.

Three of the Linksys WRT54GL routers we have awglehave the following MAC-48
addresses:

Router 1.00: 1C: 10: 52: 1D:. BF
Router 2:00: 1C: 10: 52: 44: 56
Router 3.00: 1C: 10: 52: 47: B3

Table 4: MAC-48 of three Linksys WRT54GL routers

When running Linyphi on these routers, the SSR Wil§ be identical to these MAC-48
addresses. Note tha0: 1C: 10 is one of the address ranges owned by “Cisco-skisLT”
[23].

Now, consider some random 48-bit hash values. Makles are per definition spread over

the available range [24].

35

3C. 29: FO: 7C. 15: 9D
5A: 36: 26: 61: BC. C9
66: 84: 10: E2: E9: 17
9D: 9F: 7B: 21: 4F: EC
9D: A9: 22: 95: 86: 65
B2: F3: FB: 21: 2E: EO
C6: OA: F2: 6F:. D1: 13
CF: 78: 98: F6: 03: 04
El: 4F: 00: 22: 25: F8
EA: CF: 8D: F7: B8: 02

Table 5: Ten random 48-bit hash values (ordered)

Even though this sample is too small to be weltritisted, these could be hash values of
different SIP URIs. As described in sections 3.ar8d 3.4.1, this would then be the
destination of the SSR packets containing SIP ugermation: Because of the way SSR is
designed, and because its mechanism is used bRHHe each node is responsible for all
packets targeted to addresses targeting from tdesnown SSR ID up until all addresses
lower than the successors SSR ID. The table be&ig/dn which router the user information

associated with these hash values and MAC-48 askeleasill be stored.

3C. 29: FO: 7C. 15: 9D -> router
5A: 36: 26:61: BC. C9 -> router
66: 84: 10: E2: E9: 17 -> router
9D: 9F: 7B: 21: 4F. EC -> router
9D: A9: 22: 95:86: 65 -> router
B2: F3: FB: 21: 2E: EO -> router
C6: OA: F2: 6F: D1: 13 -> router
CF: 78:98: F6:03: 04 -> router
El: 4F: 00: 22: 25: F8 -> router
EA: CF: 8D: F7: B8: 02 -> router

WWWWWwWwwwww

Table 6: Distribution of hash value to SSR ID apgmaation

We can clearly see that the SIP user entries aravalb distributed among the routers, as
router 3 has to store all user information. Onle thery few hash values between
00: 1C: 10: 52: 1D: BF up until00: 1C: 10: 52: 47: B2 (router 3 was B3) will be stored
on router number 1 and 2. This is less tharf 256he available 256addresses.

The problem is also illustrated in the figure beldWe three patterns visualize the address

range in the virtual ring that each of the threet@cs cover. The figure is not to scale.

36

00:1C:10:52:1D:BF (router 1
O0.00. ()
00:1C:10:52:44:56 (router 2)

— 00:1C:10:52: 47:B3 (router 3)
// ﬁ
= 3

=
£ g
/ \
!/ Virtual ring \\
f Domain: '!
i 00:00:00:00:00:00- /
\\\ FF:FF:FF:FF:FF:FF //’ Forwarded to Router 1
X 7
\ /
== = Forwarded to Router 2
\‘\\ —

Forwarded-to-Router-3

Figure 20: lllustration of the problem with unevemlistributed SSR IDs

Clearly, the MAC-48 addresses of these routergdarelose to each other. The problem can
be worked around by manually overriding or replgdine factory assigned MAC-48 address
of the routers in the network, to some well disitéddl values.

However, a more lasting solution would be to chatigeway Linyphi assigns SSR IDs, or
how SSR compares SSR addresses to determine wtiases. This should be done in some
way which does not affect packets sent using “néroing”.

What we will do is to simply reverse the bytestud MAC-48 address when it is read from
the system, because the end of the MAC-48 is muohe mandom than the beginning.
Applying this to our example would give the muchrmamproved distribution as shown
below. Incidentally, two of the routers happenedhtve fairly close final digits, so the

distribution is still not very even, but for a l@rgamount of routers, the distribution should be
even better.

37

Router 1.BF: 1D: 52: 10: 1C: 00
Router 256: 44: 52: 10: 1C. 00
Router 3B3: 47: 52: 10: 1C: 00

Table 7: Byte wise reversed MAC-48 of three LinkK8RT54GL routers

3C. 29: FO: 7C. 15: 9D -> router
5A: 36: 26:61: BC. C9 -> router
66: 84: 10: E2: E9: 17 -> router
9D: 9F: 7B: 21: 4F. EC -> router
9D: A9: 22:95:86: 65 -> router
B2: F3: FB: 21: 2E: EO -> router
C6: OA: F2: 6F: D1: 13 -> router
CF: 78:98: F6:03:04 -> router
EA: CF. 8D: F7: B8: 02 -> router
El: 4F. 00: 22: 25: F8 -> router

PFRPPFPFEPNNNNDNPRE

Table 8: Distribution of hash value to reversed $SRpproximation

FF:FF:... 00:00:...

BF:1D...

Virtual ring

Domain:
00:00:00:00:00:00-
FF.FF.FF:FF.FF:FF

B3:47... o\
PR . Forwarded to Router 1
Vel 56144,

++++++++

N e P it T i Forwarded to Router 2

Forwardedto-Router-3

7777777777777

Figure 21: lllustration of the problem with unevegwistributed SSR IDs being solved

38

3.5Implementation of new functionality

3.5.1Motivation

Since we want to run SIP clients with minimal maxifions, our SIP and DHT functionality
needs to somehow be managed by an implementationingi on the routers. This
implementation needs to receive and handle allggi¢kets destined for the specific router
(“default routing”), and to all SIP packets whichshdestinations most approximate to the
specific router (“closest routing”).

If a packet is delivered to the application laygiLimyphi, we know that the packet should
be handled by the current router, independent ofing method; therefore we could easily
implement the SIP functionality as a second processing on the router, listening for and
receivingpackets targeted to the SIP socket of the router.

However, this only works one way. For the DHT fuoiality to work, the implementation
also needs to be able sendselected packets using our custom type of roufiolpsest
routing”). To make the implementation work as aasafe process, this option must be added
to one of the standard transport or network layerswe need to implement some inter-
process communication and thereby adding unnegessarhead.

Another option is to use Liblgor [20]. Liblgor isna&PI which uses Linyphi to act as a
transparent P2P layer for any application. Liblgan hash addresses and send them and use
routing similar to our “specific” and “closest” romg methods. This approach was used in
[19]. However, the limited documentation makesaitchto see what can actually be done with
Liblgor, and there might be a possibility that gsthis might either create a large overhead or
supply insufficient functionality.

Instead, we will implement SIP functionality ounged as a module inside the Linyphi
binary, by adding a class to the Linyphi sourceecohis allows direct communication
“between” Linyphi code and the SIP code, with vigitie overhead.

39

3.5.2Details

SSR packet fror SSR packet t
other router <t . No other router
> s the packet's >
‘A destination this //
router or a host
¥ connected to this™
> SIP to this No
>—x% router? \ >
IPv6 paCke‘from : Yes router? IPV6 packet tc
host connected to : this router or to
this router i Yes host connected
| SIP/DHT module to this router
Any response or
forwarded request
Linyphi
Packets from network Packets to network

Figure 22: Linyphi extended with the SIP module

For all packets destined for the router (eithengsidefault” or “closest” routing), a small
function of the module (technically, a method o tBIP object) will inspect the packet and
see whether it is a SIP request/response or nothargdif the SIP module should handle it.
This is done simply by checking if the destinatpmt of the packet is to the default SIP port,
5060. If so, the packet is handled by the SIP nmmdidinot, the packet is delivered to the
application layer as usuallote: adding these inspections may affect the diveeaformance
of Linyphi.

An overview of how packets will be sent to and frira SIP module can be seen in Figure
15 (compare with Figure 7, which shows Linyphi refadding the SIP module). All IPv6
packets leaving Linyphi are inspected, and if akpats a SIP packet destined for the router
itself, it is sent to the SIP module instead ofnedelivered to the application layer, and is
then parsed and handled by the SIP module.

When the SIP module sends a response packet oardsva request packet, it is simply
directed to the same function of Linyphi that aracket arriving from the network is. The
reason for this is that most packets departing frieenSIP module needs to be routed exactly
the same way as other packets arriving at the roeutee SIP module cannot easily know if

the destination host is connected to the currarterar not.

40

The module will be designed in such way that othedules in the future can be added by
adding classes similar to the SIP class. Functisaismay be used for other purposes, such as
the hash function, will be made as global functiontside the SIP class.

The module will be written in C++ using the “uclibg’ libraries (which also Linyphi use),

hence will not be affecting the requirements faming the application.

3.5.3Hash function
The hash function that will be used is retrievemfi{43] and is the following C code:

unsi gned | ong hash(unsigned char *str)
{
unsi gned | ong hash = 5381;
int c;
while (¢ = *str++) hash = ((hash << 5) + hash) + c;
return hash;

Noteworthy, it returns amnsi gned | ong. We modify it slightly to return ai nt _32
integer, to make it compatible with the “uclibc+ifiraries. Also, to be able to compare the
hash value (32 bytes) with the MAC-48 addressesb{¢d, we will pad the returned hash
value with zeroes in the least significant (thdtignost) end.

3.6 Scenarios

In this section, we will describe in detail howfdrent scenarios will be implemented.

3.6.1A SIP user registers its presence in the network

When a user sendsREGQ STER request, the request is as explained in sectidnsént to
his/her local router via IPv6 from the SIP clieofta/are. Our custom software on the router
reads the SIP URI from the request, uses a hastidanto calculate a numerical hash value,
and sends the request as an SSR packet markecldsest routing” towards the router which
has an SSR ID closest to the hash value, usingptittng method explained in section 3.4.1.
This router then stores the URI together with tharse IP of the request (which therefore

must remain unchanged when forwarding), and semdsfirmation back to the source host.

41

Host A Router 4 Router 7 Router 12 Router 16

| "REGISTER A" | | | i

I{IPvE6 to Finuterﬂ.l : ! !

| | 1 | 1

! | "REGISTER A" : ! :

! | (SSR to Router ~15] | ! :

| | I | I

! ! | 'REGISTER A" | !

I I | (SSR to Router ~15) >I |

| |] | 1

| | | | "REGISTER A" |

i i i i (SSR to Router ~15) >l

| | I |

i i i i IP adress and

! ! : : SIP URI stored

| | 1 |

| | 1 |

} } ! } "200 OK"

: : | y (SSK to Host A)

| | 1 Il [

! ! ' 200 OK" | '

I I L {SSR to Host A) | |

| | [l | 1

| | "200 OK" | | |

i I‘ (SSR to Host A) ! i i

i 200 OK" | i i i

I IPvE to Host A) | ! : !
Host A Router 4 Router 7 Router 12 Router 16

Figure 23: Sequence diagram of SIP registratiomgsaur solution

The sequence diagram in Figure 23 shows a netwmrtaming routers with SSR IDs 4, 7, 12

and 16. The hosts and the routers are physicalipexted as in the depicted order, that is,
Host A can only communicate with Router 4, Routerash only communicate with Host A

and Router 7, Router 7 can only communicate witht&o4 and 12, and so on. This topology
is used here to show how packets are sent ovevem giath; if the routers were connected
more randomly there would be several availablee®wnd the shortest routes would be
approximated by the SSR protocol. The user at Adsas a SIP URI which results in a hash

value of 15. The user at Host A registers on the/omk.

3.6.2A SIP user invites another SIP user in the network

When a user invites another user, eVl TE request is (just like ®Q STRATI ON
request) forwarded by the first router to the rouésponsible for storing the location of the
invited SIP user, based on the hash value of tRelUR| of the invited user. The invitation is

then forwarded further to the host to invite.

42

‘ Host B ‘ Router 4 Router 7 I | Router 12 Router 16 Host C
| "REGISTER B" | i i ! !
| (IPvE to Router 1) .l ! ! ! :
| |"REGISTER B" | | | |
: | (S5R to Router ~B) ! ! : :
I i 4 1 I I
I I 1 I I
! ! IP adress and ! ! !
! ! SIP URI stored ! ! !
| | | | |
i i i i i
| | [} | |
! ! "200 OK" ! ! !
: —(SSR to Host B) ! ! |
| 200 OK" | | ! | |
(P15 to Host B) | ! ! ! !
I I I 1 I I
! ! ! H ! "INVITE B" |
' ' ' i "[IF’VB to Router 16 |
I I I I I
: : : "INVITE B" | :
! ! ! '[SSR to Router ~6) | !
I I I) I I
| | | "INVITE B" | |
! ! ! 4 (SSR to Router ~B) ! !
	A i		
	IP address i		
	looked up		
I I 1 I I			
I I 1 I I			
I I 1 I I			
i i i i i			
	"INVITE B"		
' " (SSR to Host B) i ' '			
I 1 I I			
"INVITE B"			
WLIPA6 to Host B)	!	! !	
"1B0 RINGING”	i	i i	
i (IPv6 to Host C .I : ! : :			
	"180 RINGING”		
I 1 (S5R to Host © '	! ! !		
i i	"180 RINGING"	i i	
l l I (SSR to Host C) .I l l			
I I I 1 I I			
! ! !	180 RINGING”™ ! !		
			(SSRto Host C)
I I I 1 I I
: : : ! ! "150 RINGING" |
! ! ! ! | P\ to Host C)
! ! !] ! !

Host B Router 4 Router 7 I | Router 12 ‘ Router 16 ‘ Host C

Figure 24: Sequence diagram of SIP registration andtation using our solution

The sequence diagram in Figure 24 shows a netwmrtaming routers with SSR IDs 4, 7, 12
and 16. The hosts and the routers are physicatipected as in the previous section. The user
at Host B has a SIP URI which results in a hashevaf 6. The user at Host B registers on the
network. A user at Host C then tries to make a phaail to the user at Host B, knowing only
the Host B user’s SIP URI. Result2(00 OK”, assuming the user accepts the)cathedia

transfer and call teardown has been left out af dimgram.

43

3.6.3A new router joins the network

As the nodes participating in a mesh network magngke, consideration must be made to
how to react to these changes. Note that our imgeation assumes that the network is
static. However, it will be possible to add supgdort handling the addition or removal of a

new router to our implementation. Below is desatiladat needs to be implemented.

A new router that joins the network might have &R3D closer to a certain hash value than
another. For example: The network has routers 88R IDs 1, 5 and 10, and the hash value
of al i ce@au. se is 7. Therefore, the location information of Alicestored on router 5.
Then, a new router with the SSR ID 6 joins the mekwAll invitations meant for Alice is
now redirected to router 6, while her location mfi@ation is still stored on router 5. To fix
this, the following functionality must be implemedtand performed on a router, every time

the router receives information of a previously mmkn router:

For each entry in the DHT table containing SIP UREntries:
If the hash value of the SIP URI is closer to thiagd router's SSR ID than its own:
Send the entry to the new router as a SIP REEBRSmessage to the new router
(The new router will either store #r@ry and reply with a confirmation message,
or forward the message back to threent router)
For each received successful confirmation:

Remove location information from current router

3.6.4A router leaves the network
If a router that contains location information issabnnected or disabled, the location
information stored on that router would be lost.

If the disconnection is done under controlled aimstances, so that Linyphi can be made
to execute some specific “shutdown” code befordtstgudown, the locations of all SIP users
may be simply forwarded to its successor or prestare(depending on which one is closest
to the hash value of each SIP entry in the SIP IPRifidress table).

However, if the router is disconnected due to avoek failure or any other unexpected
error, the location information is lost or unreddlea This problem is only temporary

however, as SIP clients send periodic registratiessages [17].

44

It would be possible to eliminate this problem t@r@at extent by always making the
router with the SSR ID closest to the hash valumefSIP URI share its location information
with its predecessor and successor, depending achvame is closest to the hash value of
each individual SIP entry. Note that the predeagssccessor shouldot share that location
information further, as it would effectively spreatl location information over the entire
network.

This implementation is not trivial and would addedwvead, but it would make sure there
would always be at least one reachable locatiarimition entry even if one single router is

disconnected.

Another problem occurs if the removed router is phgsical link between two networks. If
this happens, it is unavoidable that hosts in W separate networks will be unable to call
each other.

Just after such an event some hosts will be unaddeheven to hosts within the same
network, if their location information was stored a router in the other network. However,
since standard SIP clients send periodic registigtithis problem will only have temporary

effects.

3.7 Scope

The items described in this section will need toirnplemented to cover all scenarios for
making our extension usable in practice; howevee, i the size of such a project, we must
focus on implementing basic functionality for tagtiand comparison with existing methods.

The sections below describe what we initially \aitid will not implement.

3.7.1Performance
The primary objective is to make the new functidgakeliable enough to prove the concept,

efforts to improve performance in second-hand Llitb@ done if time permits.

3.7.2UDP and TCP
Compared to TCP, the UDP protocol has higher thipug at the cost of detecting lost
packets [18]. This makes UDP most suitable and nooshmon for real time media
transportation, such as VolP, and SIP is desigoédriction over UDP.

We will focus on implementing all functionality f&IP packets sent using UDP. The
result of Linyphi receiving a TCP SIP packet destirfor the router will be undefined;

45

however we will attempt to prepare the new codestarth an implementation and it will be

implemented if time permits.

3.7.3Internet connectivity

As mentioned in section 3.2, the SIP module shon$pect whether the SIP request is
destined for the local network or the Internet bgking at the destination SIP URI domain.
This will only be implemented if time permits; iesid we will assume all packets are destined

for a host within the local network, regardlesshair specified domain.

3.7.4Mobility

We will assume that no changes will be made totdipelogy, that is, the location of each

router does not change, and no router joins oreledlve network after it has been set up. In
practice, this means that the functionality desilin section 3.6.3 and 3.6.4 will not be

implemented (unless time would permit).

3.7.5SIP specification compliance
We will focus on making the SIP functionality wovkith the SIP client we will use for
testing, SofSip-Cli. All SIP requests excePEG STER” will be forwarded to the destination
specified in the SIP header. Note however, thas thiiould be sufficient for other
implementations than SofSip-Cli, but some resposesrequests from our implementation
may break the rules defined in the SIP definitibn][

The SIP URI table (the DHT table) will be very sim@nd entries will be stored in the

router's RAM until Linyphi is terminated.

3.7.6Authorization and security
No authentication or encryption functionality wik implemented. Also, there will be no way

to ensure that any SIP URI is unique.

3.7.7Error handling
Unless time permits, we will not implement any Hargl of or recovery from unexpected

errors (such as malformed packets or insufficieatory).

46

4 Result and evaluation

4.1 Introduction

In section 4.2 and 4.3, we will describe the protdeencountered during the realization of our
solution. In 4.4 through 4.6, we will then evaluate work, by looking at how much of the
functionality we managed to implement and otherisiess and plans made in section 3. In

4.7 through 4.9 we will evaluate the performancewfsolution.

4.2 Versions of Linyphi

When we started working on the project, there waly one version of Linyphi publically
available, 0.1. However, as described below inicec#.5-0, we were unable to achieve
performance comparable with that described inA2ffer contact with the authors of Linyphi,
we learned that there are four relevant versionsrofphi:

- An initial version: The version used in [2].

- 0.1: The initial version above was modified to lmenpatible with the ARM platform,
but as a side effect of these changes, performamt¢iee Linksys MIPSEL devices was
affected negatively. This was unexpected, andritigli version is no longer available.
This version does not compile for OpenWRT Kamikakkis version was the only
available version of Linyphi during most part ofrawork, so it is this version we have
added the extension to.

- 0.2: Has similar performance as 0.1, but does cdengi OpenWRT Kamikaze, and
has some other modifications (which do not affesfgrmance significantly).

- A newer version, currently under development: Thuthars of Linyphi are currently in
the process of making a new version of it, compjdtem scratch. This new version is

expected to have greatly improved performance.
Due to the substantial work it would require, wedhaot attempted to adapt our extensions

for 0.2. It should be kept in mind that some issdissussed in the following sections may

already have been resolved, or might be resolvéigeiupcoming version.

47

4.3 Encountered problems

In this section, we discuss problems we did noeekfo encounter, and how we tried to solve

or circumvent them.

4.3.1Lack of IPv6 capable SIP software

The requirement of IPv6 compatible SIP softwaresnscial to the usability of our work.
However, the lack of such proved to be a problehest were the most promising and usable
IPv6 compatible SIP applications we were ablernd:fi

- SofSip-cli [14]: Fully functional SIP client that uses the Sofia-Siprary [13]
(developed by Nokia) and the GStreamer library [THjs is the client we used for all
our testing. However, as it is console based, practically unusable for most end
users. Also, the actual media transfer is done bRet.

- Linphone [12]: User friendly graphical client for Linux and Wingds with IPv6
support, however, some technical problem preveaseflom using it (it crashed upon
start-up). Linphone _(Limx + phong should not be confused with the previously
mentioned Linyphone (Linypl phong.

- KPhone [16]: Graphical SIP client, of which different versiofi®, 11] have been
modified to support IPv6. We have not been ableotapile or successfully run any of
these under Ubuntu 7.10.

4.3.2Linyphi and the Linux kernel

Linyphi is a stand-alone application, and doesuset any kernel modules. It receives packets
from the network only using system calls and regqdimom raw network sockets. However,
the kernel does some things independently and dbgar of the actions performed in Linyphi,
such as responding to inappropriate packets. Simeekernel finds some ICMPvV6 routing
packets inappropriate (which are actually used ibyphi), the kernel will respond with other
ICMPV6 packets. Linyphi prevents these kernel raspe from reaching the network by
automatically setting up iptables to drop certaitgoing ICMP packets.

When creating our extension, we ran into a singtablem. When sending an IPv6 packet
directly to the router (that is, not to one of thests connected to the router), the packet was
delivered by the kernel “up” to the applicationttiglistening on the destination port of the
packet. If no such port was found, the kernel radpd with an ICMPv6 message. This is
normally correct and appropriate, however this ais® done when Linyphi itself discarded

or handled the packet, in our case by our SIP sidanThat is, even though a SIP packet was

48

forwarded or handled properly by Linyphi and outegsion, it was also delivered to the local
application layer. As no application was registeiedtisten to the packets destination port, an
ICMPV6 packet was returned to the SIP client, mgkirbelieve the delivery failed while the
packet was actually handled properly by Linyphi.

We considered using iptables to block the resulti6yiPv6é messages, but for our
problem, we found it more suitable to simply creattedummy listener”: While Linyphi is
running, it is itself listening to the default Sgert (5060), and quickly discards all packets
delivered to it from the kernel (remember thatses other, lower-level, methods to retrieve
the packets from the kernel).

This approach also prevents other, possibly cdirftic SIP proxies or registrars to listen to
the same port, and it is also not sensitive todmetal modifications of iptables while Linyphi

iS running.

4.3.3No media transfer
Unfortunately, due to the lack of IPv6 compatibld® Slients, we have been unable to
successfully establish media transfer between lmstisLinyphi. This is because the only SIP
client we have successfully configured and usedSiBecli, only uses IPv6 during session
initiation setup (when SIP is used). After the g@s$ias been successfully established using
SIP and IPv6, the client leaves it up to the meddalule to establish a media connection. We
were unable to find a compatible media module v6l We have confirmed that the
connection attempts for media over IPv4 are dortevd®En the correct hosts using their
correct IPv4 address, and we assume that if IPvdldvbe enabled, media would transfer
properly. Once the call is being ended by the caltecallee, it is torn down properly by the
SIP protocol.

Note that this is a client related issue; evenghielated to SIP and Linyphi in this matter

appears to be functioning properly.

4.3.4Linyphi robustness and compatibility

As described in section 4.2, we added our extersidiinyphi 0.1. During the testing phase,

a newer version (0.2) of Linyphi was made availdbfeits authors. We have worked very

little with 0.2 compared to 0.1. The following ptelms were encountered in 0.1, and may

very well have been resolved in 0.2.

49

There are two relevant releases of OpenWRT: WhitssRn and Kamikaze. White Russian
is based on Linux kernel 2.4 while the newer Kaméés available with both Linux kernel
2.4 and 2.6. [5]

While it would be most appropriate to use the latesilable version of OpenWRT, we
were unable to build Linyphi 0.1 for the Kamikazersion of OpenWRT. Linyphi 0.does

compile for Kamikaze.

Linyphi did on a few occasions (in some cases aftaning uninterrupted for several days,
sometimes sooner) crash with a memory allocatiooreWe observed this behaviour also in

the unmodified version (that is, before any modificns were made to it in this project).

We also noticed that if the router is overwhelmeithvwpackets in such way that a large
amount of packets arrive faster than they are fotea (very noticeable when packets arrive
from a host connected by 100 Mbps wire, with a idatibn being a host only reachable
through a 54 Mbps wireless connection), the kesnglinsmission buffer would quickly be
filled. While this is normal, Linyphi does not hdedhis situation properly but crash when a
sending error occurs due to the overfull buffer. S¥served this very quickly using SIPp [8],
when establishing about 3-4 connections or morespeond (more connections made it crash

quicker).

4.3.5No change in SSR ID assignments
In section 3.4.2, we described that because ofwig Linyphi assigns SSR IDs for the
different nodes, IDs often do not spread approgiyab form a well balanced DHT. We also
described how to solve this problem.

We attempted to do it according to these plans. él@w the required changes were more
complex than first expected, and due to time caids; we decided to use the work-around

also described in 3.4.2, which is to manually oderthe MAC-48-addresses on the routers.

4.4 Evaluation of functionality

In section 3.7 we discussed items that we in bbeford decided to implement only if time
would permit. Only limited time was spent to make extension less sensitive of malformed
or unusually formed SIP packets, and to optimize performance of some of the most

complex functions.

50

In effect, the extension needs to be developedhdurand all items in section 3.7 should be

implemented before our work can be practically ulsef

Preferably, also the change in SSR ID assignmdatswie failed to implement (see section

4.3.5) should be implemented on the routers.

4.5 Performance evaluation method

As described in section 4.2, before gathering aepmngful data, we saw clear indications
that Linyphi did not perform nearly as well as désed in [2]. We originally planned to
compare Linyphi with our SIP extension against pswutions, primarily AODV. However,
the current performance of Linyphi made the firdanped tests meaningless, so we
abandoned them and planned a new series of tegte kections below, we describe both the

abandoned test plan and the new, revised test plan.

4.5.10riginal (abandoned) test plan

Initially, we intended to measure the performanceuw work by comparing call setup delays
on the Linksys WRT56GL routers, using our modifieasion of Linyphi with a standard SIP
server running on a host in an IPv4 AODV. The testild be made using four hosts
connected to four routers, as described in therdiguelow. Different tests would then be

performed to evaluate the performance and scalabiliLinyphi.

\7

L%*‘%»
30 70 DO

A0

<«—» Ethernet wire

Figure 25: Physical test setup (abandoned). Numbadger routers indicate SSR IDs.

51

<----» Physical connection, SSR

<«— Physical connection, IPv6

m‘\/ » '\;{,

Figure 26: The virtual SSR ring in the abandonesd setup

We intended to test, for both SSR and AODV:

- Round trip time of echo request/response from &o&0 to DO

- SIPREQ STERfrom host aA0 to router30, 70, A0 andDO (to measure scalability)

- SIPI NVI TE from host aDO invite host connected #0 and registered &0
- SIPI NVI TE from host aDO, to host alA0, registered a0

- SIPI NVI TE from one host dD0, to other host oDO, registered a0

- SIPI NVI TE from one host dD0, to other host &D0, registered ab0

For AODV, we would set up a host running a SIP pfegistrar to replace the routers

registration services. All tests would be perforrbeth with and without background traffic.

Note that for our SIP extension, it is not norm@lchoose which router to register on: The

first router, which is set as SIP proxy in the Sliént software, will forward the registration,

and the routers will continue to forward it untibrrives at the router which SSR ID is closest

52

possible to the hash value of the SIP URI. By delkely using a set of SIP URIs of which
we have calculated and know the hash values forcameensure that user locations will be
stored on routers of our choice. For example, $o deregistration on rout&0, we register a

SIP URI which we know have a hash value virtualbsest possible t80.

The figures and lists above are simplified. Fornegke, routerAO actually has one SSR ID

and two MAC addresse#0: AO: AO: AO: AO: 27 is the SSR ID and MAC address of the
wired interface, whileAQ: AO: AO: AO: AO: 29 is the MAC address of the wireless
interface. The explanation for these particular Madiiresses are as follows:

- The last two bits in a MAC-48 address’ first bytetermine if the address is unicast
(0) or multicast 1), and globally uniqueQ(or locally administeredl(), respectively.

If the unicast/multicast bit is set fig the MAC-48 address may cause problems. To
make the generation of MAC addresses as easy abj@sve always set the last four
bits to0. The result is that we set the first byteXth whereX is any value.

- For easy generation of MAC addresses, we set fleiag four bytes to the same as
the first byte.

- We set the last byte 7 and29. These values are selected randomly. (In fact, the
default addresses on one of our Linksys routers &nth 27 and29.) It seems to be
common practice by Linksys to assign default adséresvhere the last byte of the
MAC-48 are numerically odd (last bit i%), and the addresses of the wireless
interfaces is two bits higher than the wired irdeds. (Each router has one wireless
and one wired interface). To avoid problems we K practice. To more easily
remember the addresses we set ther@7tand 29 on all routers regardless of the
previous bytes.

- The SSR ID assigned by Linyphi is the MAC-48 addrefsthe wired interface (which
ends with27), simply because it is the first interface in tevice. Recall that the only
reason Linyphi reads the MAC-48 address, is toagealue which is ensured to be

globally unique. [2]

The original MAC addresses and SSR ID assignmentiansable because the first 32 bits are
the same for all our four router€Q: 1C. 10: 52), which is a problem we described in
section 3.4.2. There, we also describe a possitlgien, which we describe why we failed to

implement in 4.3.5. Therefore, we must manuallyrode the MAC address of the routers, by

53

setting an NVRAM variable which overrides the plogdly assigned MAC address. This must
be done during every start-up of the routers, leetbe network interfaces are brought up, or
the original MAC-48 address will be used and carm®tmodified. Therefore this must be

done in a start-up script on the router. (The NVRA#Va memory space in the non-volatile

flash memory of the router, which is used to stm@st of the routers configuration in the

form of a large amount of key-value pairs. The t ant shell command is used to set and get
these variables. Note that use of the NVRAM hasilamndoned in OpenWRT Kamikaze, in

favour of less complicated configuration files.)

4.5.2Revised test plan
With the current poor performance of Linyphi on MEPSEL routers, a comparison with any
other protocol (such as AODV, as intended) would he meaningful. Instead we will
perform tests which will attempt to show that:

1) The current performance is well below what is ataile for transferring VolP

2) The poor performance can be solved by using fdetedware or by optimizing the

source code
We will also investigate if:

3) Our modifications have penalized the performanceoni-SIP traffic over Linyphi.

This will be done through four tests, each desdribethe sections below.

In all tests, everything will be connectby wire to avoid any interference and to maximize

the performance. The network will be completelyefcé any other load.

4.5.2.1The reference test
This test alone will partly show if Linyphi curréytperform sufficiently for VolP. All other

tests will be compared to this test, and all othst setups will be based on this one.

54

in
Host A gcg

Figure 27: Reference test; unmodified Linyphi rungnon one Linksys router

In this test, we will connect two hosts to a Linkgputer running an unmodified version of
Linyphi 0.1. The hosts will be connected to semarattual interfaces on the router, enabling

Linyphi to handle the packets sent between theshost

The average of 100 ICMPvV6 echo (“ping”) requestt e used to measure the transmission
delay, here defined as the time passed betweenngeadpacket at the source host, until
receiving it at the target host. In voice commutiarg this isroughly the delay until a spoken

sound is heard by the remote person (“mouth-todeday”). (It is an approximation because
in actual voice communication, also microphone,taa@pand encoding/decoding processes
increase the actual delay.) ITU-T claims in [3]ttki@e mouth-to-ear-delay should be lower
than 400 milliseconds to be acceptable for voiceroanication by most users. The round
trip times the ping utility will calculate is thetal delay from sending an echo request until
receiving a response. The transmission delay shoeildpproximately half of the round trip

time.

The average transmission speed (or bit rate) wilifeasured by repeatedly (5 times) sending
a large file (approximately 700 MB) between thethassing SCP. In voice communication,
higher transmission speed allows increased soumtityjuDeciding a minimum value for
voice communication is difficult, as the requireahdwidth is dependent on which codec is
used to compress the audio. There is a codec whgires only 800 bits/second to transfer
(or store) understandable speech [6]; howeverdbightful the sound quality is acceptable by
users. On the other hand, today's standard “analoginones use not more than 64

Kilobit/second lines [7], which therefore surelyndae regarded as acceptable bandwidth.

55

4.5.2.2Testing scalability
With this test, we intend to show if Linyphi in itsirrent state is capable of VolP.

Linyphi

Da———

- in '
Host A ol Router ey Host
Versus
Linyphi Linyphi
N ping ping »
Host A SCP Router Router SCP Host E

Figure 28: Scalability test; unmodified Linyphi ming on two Linksys routers

In this test, we will perform the reference tesaiagbut add one (or more) router(s) in serial.
We will compare the results with the reference tessee how performance is affected by

additional hops over several routers.

4.5.2.3Testing processing power
The purpose of this test is to see if adding preiogspower to the router and/or optimizing

the source code can solve the current performarategm.

56

Linyphi

- in - i
Host A P Linksys ol Host
router
Versus
Linyphi

— =

ping Host E
SCP

Host A SCP

X86 router

Figure 29: Processing power test; Linksys routersus homemade x86 router

In this test we will repeat the reference test, Wil replace the Linksys router. The new
router will have similar network capabilities buave more processing power. We will then
compare the results with the reference test.

Before we explain the details of the new routemember that the WRT54GL router, as
well as many other routers, is essentially a swe@ihputer with a number of wired network
interface cards each connected to a switch, andwireess network interface card [4].
Knowing this, we will build our own router by usiray standard x86 PC. It will contain
two 100 Mbps network interface cards, thus havimg $ame network performance as the
Linksys router, but will have far more powerful pessing capabilities. If transmission delay
and speed is higher when using our home made rthaerin the reference test, we know that
the low performance of Linyphi on the Linksys rautedue to insufficient processing power,
and can be solved either by using a more poweoiutler or by optimizing the Linyphi code.
The same unmodified version of Linyphi as in thiemence test will be used, but it will need
to be recompiled for the different processor asgtiires (x86 for the home made router and
MIPSEL for the router).

57

4.5.2.4Testing our modifications
The purpose of this test is to find whether our ifications have affected the performance of

Linyphi for non-SIP traffic.

Original Linyphi
- in i
Host A cop Router ey Host
Versus
Modified Linyphi
Route SCP

Figure 30: Testing our modifications; Original Liplyi versus modified Linyphi

In this test, we will repeat the reference test, taplace the unmodified Linyphi with a
version containing our modifications as describadprevious chapters. (Except for the
different Linyphi, the test will be identical toghreference test.) We will then compare the

results of this tests with the ones received frbenreference test.

Note that in all other tests than this, the origimamodified, Linyphi 0.1 will be used.

4.5.2.5Equipment and configuration
This section lists the configuration of the hostd auters used in our tests.

Host A: Intel Pentium Dual-Core @ 2 x 1,600 MHz (x86), KB RAM, 1 Gbps Atheros
wired NIC (as there are no other 1 Gbps interfanethe network, this device will always
operate in 100 Mbps mode), Ubuntu 7.10 (Gutsy Qibbasing kernel 2.6.22

58

Host B: Intel Pentium 4 @ 1,700 MHz (x86), 512 MB RAM, 1Mbps LiteOn wired NIC,
Ubuntu 7.10 (Gutsy Gibbon), using kernel 2.6.22

Linksys WRT54GL routers [4]: Broadcom 5352EKPB @ 200 MHz (MIPSEL), 16 MB
RAM, 5 x 100 Mbps wired ports, 54 Mbps 802.11b/gelass interface (but only the wired
interfaces will be used during our tests), OpenWRT (White Russian. This is not the latest
version - Kamikaze 7.09 is more recent [5] - b Batest version is currently incompatible
with the version of Linyphi we have used.) The witeAN ports are divided into two virtual
interfaces, to enable Linyphi to route packets letwthem (the router hardware routes

packets itself within the virtual interfaces).
Homemade x86 router:Intel Pentium Il @ 733 MHz (x86), 384 MB RAM, 10@bps

3Com wired NIC, 100 Mbps Realtek wired NIC, Ubuitd0 (Gutsy Gibbon), using kernel
2.6.22

4.6 Performance results

The table below lists the performance results. ifdras in the table are described below it.

See the appendix for complete measurement tables.

Reference Scalability Processing Our

(two routers) |power modifications
Minimum round trip |1.628 ms 9.378 ms 0.414 ms 1.742 ms
time
Average round trip |1.695 ms 9.532 ms 0.617 ms 1.810 ms
time
Maximum round trip| 2.748 ms 10.351 ms 7.031 ms 1.888 ms
time
Calculated average |0.8475 ms 4.766 ms 0.3085 ms 0.9050 ms
transmission delay

59

Reference Scalability Processing Our

(two routers) |power modifications
Minimum 564 s 3500 s 82s 614 s
transmission time
Maximum 1.24 MByte/s |0.200 MByte/s|8.54 MByte/s 1.14 MByte/s
transmission speed
Maximum 565 s 3511 s 97 s 615 s
transmission time
Minimum 1.24 MByte/s |0.199 MByte/s|7.22 MByte/s 1.14 MByte/s
transmission speed
Average 565 s 3507 s 90 s 615 s

transmission time

Average

transmission speed

1.24 MByte/s

0.200 MByte /

57.78 MByte/s

1.14 MByte/s

Table 9: Performance measurements

Minimum round trip timeThe shortest round trip time measured of the X® eesponses,

as reported by the ping utility.

Average round trip timeThe average round trip times (RTT) of all 100 ecésponses as

reported by the ping

Maximum round trip timeThe longest round trip time measured of all 1000e@sponses, as

reported by the ping

Calculated average transmission deldeasured by dividing thaverage round trip timéy

2.

Minimum transmission timefhe shortest time it took to transfer the 700 MB fout of 5

repeated runs.

Maximum transmission speetiransmission speed of the minimum transmission {ieragth

utility.

utility.

of file in bytes divided by theninimum transmission tirma seconds)

Maximum transmission timé&he longest time it took to transfer the 700 MEe fout of 5

repeated runs.

60

Minimum transmission speed@iransmission speed of the maximum transmission (lergth
of file in bytes divided by thenaximum transmission tinie seconds)

Average transmission timéverage transmission time of the 5 transfers.

Average transmission speedlverage transmission speed of the 5 transfers ttheaffile in

bytes divided by thaverage transmission time seconds

The length of the transferred file was 734,275 b@#és.

4.7 Performance conclusions

4.7.1Scalability
We can clearly see that even though the performantee reference test may be sufficient
for VoIP, and even so in the test with two routdrst the system does not scale. Only a

fraction of the available bandwidth is utilized owaly one single router.

Bandwidth utilization = Average transmission spé&tieoretical maximum transmission speed

Using 100 Mbps (mega bits per second) as theoletiaaimum transmission speed and the
average transmission speed of the reference teshenformula above, we observe a
bandwidth utilization of 9.92%. (Note that even enddeal conditions, 100% bandwidth
utilizations cannot be reached as some of the bitldws used for Ethernet headers, error
detection, etc.)

When using two routers, only a “fraction of thectian” of the bandwidth is utilized. If
using the average bandwidth in this scenario (02@yte/s) in the formula as above, we
observe a bandwidth utilization of 1.60%.

Remember that these tests were performed in idealittons: A fast, wired, local network

connection with no other network load.

4.7.2Processing power
When using the more powerful router, Linyphi ackei@erformance so good that we suspect
other factors, such as the read/write speed ohénd disk drives or even limitations of the
network may be bottle necks.

The only factor changed here compared with thereaefie test was the hardware: The

bandwidth to the connected devices was still 100tMlband the version of Linyphi is

61

identical, except it was for compiled for the x8@stead of the MIPSEL architecture.
Effectively, the only thing different between tlugstom built router and the Linksys routers,
is the speed of the processor and the memory.

As Linyphi performs excellent on this more powerfaluter, we can conclude that the
processing power of the Linksys routers is the lbotick and the cause of the low
performance seen in the reference test. Thus, ke miayphi work on the Linksys routers, its
source code needs to be modified or optimized twoime more suitable for the Linksys

devices.

4.7.30ur modifications
Unfortunately, there is a slight performance penahen using our modified version of

Linyphi. Average transmission delay was increasednf0.8475 s in the reference test to
0.9050 s (6.8% longer) in the test where our mediftode was used. Average transmission
speed was decreased from 1.24 MByte/s to 1.14 M8Y88% slower).

Recalling previous sections, there were two modiftms we made to the original source

code which may affect the performance of Linyphi:

- In section 3.4.1 we described a method requiringesina parameter to be passed
around, which is used to detect if an SSR packet semt using “closest” routing or
not.

- In 3.5.2 we described an inspection performed ch @acket (both plain IPv6 packets
and IPv6 packets embedded in SSR packets) to finether the packet is a SIP

packet, and if so, intended for the current router.

We believe any of these modifications may be om#dito improve performance, primarily
the latter one, because:
- Itis ran on all IPv6 packets, both plain IPv6 petskand IPv6 packets embedded in
SSR
- It consists of more code that must be executedalfgrackets, it must parse the IPv6
header and compare if the destination IPv6 addregshes the current routers. (The
subsequent parsing to see if the packet is SSRresgeven more computations, but
since it is only done if the packet was actuallgéded to this particular router, this

only affects the handling speed of these partiquéerkets.)

62

5 Conclusion and future work

5.1 Conclusion

Our solution is clearly not practically usable e Linksys MIPSEL devices. The version of
Linyphi the solution it is based on is too slowtbese devices to be used in more than only a

very few hops under ideal conditions, and our smtutacks many basic features.

However, we have proved that our concept (implemgra SIP proxy with a DHT backend
contained within the routers by extending Linypta, create a functional SIP service in a
mesh network, without needing to make any changeh® client) could work in practice. A
faster Linyphi and a more developed SIP proxy/DKiession is all that is required to have a

practically usable solution.

5.2Lessons learned

Clearly, we should have tested the performancdrofhi beforestarting to add functionality
to it. Discovering the low performance so late wase of the major setbacks during our work.
Also, many encountered problems, and the longofideft out features which was made
even longer after the completion of our work, makesswish we had investigated and
considered the solutions used in Linyphone [19jreater depth, more specifically, the use of
IGOR and a separate SIP proxy running besides hinyphey might have been a better

solution than we first believed.

5.3 Future work

Although we have tried to leave “threads easy tok pup” in the code where future
improvements could be added, we suggest no morke stimuld be commenced until the new,
rewritten, version of Linyphi is released.

It may very well be possible to adapt our extensitm the new version, however, we
suggest considering using IGOR for the DHT fundciigg rather than our custom DHT
implementation for increased performance and easmmementation. Still, there may be

some parts of our SIP code may be sufficient ferftinctionality needed on the routers, and

63

could possibly be reused in a future implementation easier thdapting a library like
SofiaSIP.

Also, before such a new implementatiorridy useful, there needs to be more available SIP

clients compatible with IPv6.

64

References

[1] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ra\ar8ta and Steven Lim. A Survey
and Comparison of Peer-to-Peer Overlay Network ®elsd EEE Communications
Survey and Tutorial2004.
http://lwww.cl.cam.ac.uk/teaching/2005/AdvSysTowsyr pdf

[2] Pengfei Di, Massimiliano Marcon, and Thomas Fuhmamnyphi: An IPv6-Compatible
Implementation of SSRhird International Workshop on Hot Topics in Peée+Peer
Systems, Rhodes Island, Gree2@06.

[3] ITU-T G.114: One-way transmission time. Internaéibhelecommunication Union, 2003.
http://www.itu.int/rec/T-REC-G.114-200305-1/en

[4] Paul Asadoorian, Larry Pesce. Linksys WRT54G: UitiemHacking. Syngress
Publishing.

[5] OpenWRT. http://www.openwrt.org

[6] Xiangling Wang, and C.-C. Jay Kuo. An 800 bps V@dshLPC voice recorder. The
Journal of the Acoustical Society of America, 103{378. 1998.

[7] ITU-T G.703: Physical/electrical characteristicsh@rarchical digital interfaces.
International Telecommunication Union, 2001.
www: http://www.itu.int/rec/T-REC-G.703-200111-l/en

[8] SIPp. http://sipp.sourceforge.net

[9] Kent Beck and Cynthia Andres. Extreme Programmixgl&ned: Embrace Change.
Addison-Wesley, 2000. http://www.extremeprogrammning

[10] KPhone — IPv6. http://old.iptel.org/products/kphone
[11] WIRELab Software. http://wire.cs.nthu.edu.tw/softecphp

[12] Linphone: OpenSource SIP Video-phone for Linux &idbws.
http://www.linphone.org/index.php/eng

[13] Sofia-SIP Library. http://sofia-sip.sourceforge.net

[14] SofSipClIi. http://wiki.opensource.nokia.com/pro@&ofSipCli

[15] GStreamer: open source multimedia framework. higpuv.gstreamer.net
[16] SourceForge.net: KPhone. http://sourceforge.ngéptekphone

[17] RFC 3261: SIP: Session Initiation Protocol. Int¢aegineering Task Force, 2002.
http://www.ietf.org/rfc/rfc3261.txt

[18] RFC 768: UDP: User Datagram Protocol. Internet B®egiing Task Force, 1980.
http://www.ietf.org/rfc/rfc768

[19] Johannes Eickhold (Thesis). Entwicklung einer S&Bidsten Peer-to-Peer-
Telefonieanwendung fiir das Nokia 770. Thesis, Rakiiir Informatik, Universitat
Karlsruhe (TH). 2006.

[20] The distributed Video Disk Recorder: IGOR.
http://i30www.ira.uka.de/p2p/videgor/igor.en.html

65

[21] Thomas Fuhrmann, Pengfei Di, Kendy Kutzner, and Camer. Pushing Chord into
the Underlay: Scalable Routing for Hybrid MANET®echnical Report, Fakultat fur
Informatik, Universitat Karlsruhe (THR006.

[22] IEEE 802: IEEE Standard for Local and Metropoliferea Networks: Overview and
Architecture. IEEE Computer Society. 2002.
http://standards.ieee.org/getieee802/download/@A-Ddf

[23] IEEE list of registered OUIs. http://standards.ieggregauth/oui/oui.txt
[24] Hash functions and Block Ciphers. http://burtleleunet/bob/hash/index.html
[25] OpenDHT: A Publicly Accessible DHT Service. httppéndht.org

[26] Mobile Ad-hoc Networks Work group: Manet Status &ag
http://tools.ietf.org/wg/manet/

[27] F. Baker. An outsider’s view of MANET (draft.nakeranet-review-01).
http://w3.antd.nist.gov/wctg/manet/draft-baker-mamesiew-01.txt

[28] Tadeus Uhl. Quality of Service in VolP CommunicatidEU - International Journal
of Electronics and Communicatian§8(3):178-182, 2004.

[29] Zachary A. Barnes. Is implementation of Voice oveernet Protocol (VolP) more
economical for businesses with large call centbta8ter of Science Graduate Research
Report, Bowie State University. 2005.
http://faculty.ed.umuc.edu/~meinkej/inss690/banmafs.

[30] RFC 4566: SDP: Session Description Protocol. IeteEngineering Task Force, 2006.
http://www.ietf.org/rfc/rfc4566.txt

[31] RFC 2396: Uniform Resource ldentifiers (URI): Gea&yntax. Internet Engineering
Task Force, 1998. http://www.ietf.org/rfc/rfc239@.t

[32] David A. Bryan, Bruce B. Lowekamp, and Cullen Jegsi SOSIMPLE: A serverless,
Standards-based, P2P SIP Communication Sy#iém:-IEDA 20052005.
http://www.cs.wm.edu/~bryan/pubs/bryan-AAA-IDEA20Q8f

[33] Kundan Singh, and Henning Schulzrinne. Peer-to-Peemet Telephony using SIP.
Report, Department of Computer Science, Columbiaéisity.
http://www1.cs.columbia.edu/~library/TR-repositoggorts/reports-2004/cucs-044-
04.pdf

[34] SIPDHT. http://sipdht.sourceforge.net

[35] Saikat Guha, Neil Daswani, and Ravi Jain. An Experital Study of the Skype Peer-
to-Peer VolIP System. 2005. http://saikat.guha.d@iptps06-skype.pdf

[36] Rudiger Schollmeier. A Definition of Peer-to-PeertiNorking for the Classification of
Peer-to-Peer Architectires and Applicatiofoceedings of the First International
Conference on Peer-to-Peer Computing (P2P’01) 2002
http://csdl2.computer.org/persagen/DLAbsToc.jspiuese Path=/dl/proceedings/&toc=co
mp/proceedings/p2p/2001/1503/00/1503toc.xmlI&DOI4109/P2P.2001.990434

[37] DD-WRT. http://www.dd-wrt.com
[38] polarcloud.com: Tomato Firmware. http://www.polarod.com/tomato

[39] AODV-UU: Ad-hoc On-demand Distance Vector Routifgr real world and
simulation. http://core.it.uu.se/core/index.php/AGDU

66

[40] Guidelines for 64-bit Global Identifier (EUI-64) Bistration Authority. IEEE Tutorial.
http://standards.ieee.org/regauth/oui/tutorialstml

[41] Sameh El-Ansary and Seif Haridi. An Overview ofustured P2P Overlay Networks.
Swedish Institute of Computer Science and Roy#tutes of Technology2004.
http://eprints.sics.se/237/01/elansary-singlespacid

[42] Linyphi: An IPv6-Compatible Implementation of SSR.
http://i30www.ira.uka.de/p2p/linyphi/

[43] Hash functions. http://www.sparknotes.com/cs/seagthashtables/section2.rhtml
[44] P2P SIP. http://www.p2psip.org

67

A Source code

The source code of Linyphi 0.1 including our extens is available on the attached CD-
ROM.

B Test data

Raw test data (output from the Ping6 and SCP soétwee used to test the performance) are
available on the attached CD-ROM.

C Useful links

We would like to supply addresses to some sitesiwbontains information which we found

useful during the development of our solution andrdy the writing of this paper:

A Brief Socket Tutorial

http://sage.mc.yu.edu/kbeen/teaching/networkinglreses/sockets.html

Brandvaggsskydd med netfilter/iptables, mer avancexde saker
http://lwww.lysator.liu.se/~kjell-e/tekla/linux/segty/iptables/avancerad-netfilter.html

Definition of the Differentiated Services Field (DSField) in the IPv4 and IPv6 Headers
http://www.ietf.org/rfc/rfc2474.txt

Error Codes - The GNU C Library
http://www.gnu.org/software/libc/manual/htm|_nodeti-Codes.html

Input/Output Redirection in Unix
http://www.codecoffee.com/tipsforlinux/articles2Zhtml

68

Internet Protocol Version 6 (IPv6) Parameters

http://www.iana.org/assignments/ipv6-parameters

Internet Protocol, Version 6 (IPv6) Specification
http://lwww.ietf.org/rfc/rfc2460.txt

IPv6, Internet Protocol version 6
http://www.networksorcery.com/enp/protocol/ipv6.htm

IPv6 Flow Label Specification
http://www.ietf.org/rfc/rfc3697.txt

Porting IPv4 applications to IPv6
http://uw714doc.sco.com/en/SDK_netapi/sockC.Poda#pplIPv6.html

Programming Escape Characters
http://www.wilsonmar.com/leschars.htm

Protocol Numbers
http://www.iana.org/assignments/protocol-numbers

SIP Test Messages
http://www.cs.columbia.edu/sip/sipit/testmsg.html

Sisela
http://the.earth.li/~martin/sisela/

Sockets tutorial
http://www.linuxhowtos.org/C_C++/socket.htm

UDP, User Datagram Protocol

http://www.networksorcery.com/enp/protocol/udp.htm

69

Web-Based UML Sequence Diagram / UML Generator

http://www.websequencediagrams.com

70

