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Abstract 

Wireless mesh networks has rapid development over the last few years. However, due to 

properties such as distributed infrastructure and interference, which strongly affect the 

performance of wireless mesh networks, developing technology has to face the challenge of 

architecture and protocol design issues. Traditional layered protocols do not function 

efficiently in multi-hop wireless environments. To get deeper understanding on interaction of 

the layered protocols and optimize the performance of wireless mesh network, more recent 

researches are focusing on cross-layer measurement schemes and cross-layer protocol design. 

The goal of this project is to implement a distributed monitoring mechanism for IEEE802.11 

based wireless mesh networks. This module is event-based and has modular structure that 

makes it flexible to be extended. This project results a novel Cross-Layer Monitoring Module, 

CLMM, which is a prototype that monitors each layer of the nodes locally and dynamically, 

calculates the average values of the metrics, compares these values with thresholds and 

handles the cross-layer messages of each node. The CLMM also has a routing module 

structure that can be extended to distribute the metrics to its neighbors. Two simulations are 

analyzed to verify functionality of this module.  The future work of the cross-layer monitoring 

module will also be discussed. 
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1 Introduction 

1.1 Wireless Mesh Networks 

In recent years, with the rapid development of various wireless networks, the technology of 

wireless mesh networks (WMNs) has emerged. In wireless mesh networks, a collection of 

wireless nodes communicate with peers in one or multiple hops. Therefore, it can extend the 

area of wireless broadband coverage without wiring network, or it can be used for temporary 

installation or extension to LAN/WLANs without wired connection. Several wireless network 

technologies such as Wi-Fi (based on IEEE802.11), WiMAX (based on IEEE802.16), can be 

deployed as mesh networks to provide a wireless distribution system to access other networks 

(i.e. the Internet). The cost of deploying a large scale wireless mesh network service can be 

reduced dramatically because of the lack of a wired infrastructure. Therefore, the wireless 

mesh network technology provides an option that can provide low-cost broadband access 

services for the “last-mile” access networks. 

WMNs consist of two types of nodes: mesh routers and mesh clients [1]. As shown in Figure 

1-1, wireless mesh routers have minimum mobile ability form the wireless backbone [2]. 

Mesh routers provide additional multi-hop routing functions for mesh networking. Through 

multi-hop communications, a wireless mesh router can reach the same coverage with much 

lower transmission power than a conventional wireless router. A mesh client node does not 

have gateway or bridge functions. However, the mesh client node has basic mesh routing 

functions and can also work as a router. Mesh clients access the network through mesh routers 

or other mesh clients. The hardware platform and software of the mesh clients are much 

simpler than mesh routers [1]. 

Based on the functionality of the nodes, the architecture of WMNs can be classified into three 

main groups: Infrastructure/Backbone WMNs, Client WMNs and Hybrid WMNs [1]. Figure 

1-1 shows the examples of these three groups. Infrastructure/Backbone WMNs has an 

infrastructure formed by wireless mesh routers. And infrastructure/Backbone WMNs provide 

backbone for clients and enable integration of WMNs with existing wireless networks. Client 

WMNs do not have an infrastructure. Client WMNs provide peer-to-peer networks among 

client devices. Client nodes comprise the actual network to perform routing and configuration 

functionalities as well as providing end user applications to customers. Hybrid WMNs are the 
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combination of infrastructure and client meshing. The infrastructure provides connectivity to 

other networks (i.e. the Internet, Wi-Fi or WiMAX). 

 

Figure 1-1The Hybrid Wireless Mesh Networks [2] 

In a wireless mesh network, each entity operates independently. The main characters of the 

wireless mesh network are summarized [1] as follow: 

 First, a wireless mesh network is a multi-hop wireless network which supports 

multiple hops forwarding. When new nodes join the wireless mesh network, the 

coverage, reliability and connectivity are enhanced by extending the coverage 

range without reducing the channel capacity. However, multi-hop networking also 

increases link failures, which can reduce throughput sharply. 

 Second, wireless mesh networks support ad hoc networking, and capability of self-

forming, self-healing, and self-organization. The nodes in the mesh network 

automatically setup and maintain network connectivity. Due to these properties, 

network performance is enhanced by increasing reliability and robustness. And it 

is easy to be deployed and extended in large area.  

 In wireless mesh network, the mobility is depended on the type of mesh nodes. 

The mesh routers usually have minimal mobility, while mesh clients can be 

stationary or mobile nodes.  
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 Power consumption is dependent on the different type of nodes. Mesh routers 

which have minimum mobility do not have strict constraints on power 

consumption. However, in some cases (i.e. in wireless sensor network), mesh 

clients may require power efficient protocols. Therefore the MAC or routing 

protocols designed for mesh routers may not be appropriate for mesh clients. 

Although wireless mesh networks have several advantages, there exist several challenges. 

Advanced wireless radio technologies such as cognitive radio, MIMO and smart antennas are 

complicated and the cost of these technologies is still too high for commercial applications 

[1]. Interoperability and integration of heterogeneous networks should be improved. The 

protocols such as MAC protocol and routing protocols should support the mobile ability, 

multiple hops, robustness and scalability of WMNs efficiently. Also, the network 

performance should meet QoS requirements to support the real-time multimedia applications. 

All above challenges bring new research issues to protocol designs of wireless mesh 

networks. One of the key issues is cross-layer design, which optimizes multiple layers, 

primarily the physical (PHY), medium access control (MAC) and network layers to enhance 

the capacity of wireless mesh networks efficiently. 

1.2 Problem Definition and Motivation 

Although a layered protocol has the flexibility in upgrading certain layers, easy debugging, 

and low complexity, the traditional layered protocols can not function efficiently in wireless 

mesh networks. Due to the properties of dynamic nature, multi-hop communication and no 

central instance, wireless mesh networks are significantly different from the traditional wired 

networks. For example, TCP protocol does not work efficiently in wireless mesh networks 

due to the properties of multiples hops and dynamic nature [3]. To improve the performance 

of the transport layer, [3] suggests a cross-layer approach that combines MAC layer and TCP 

layer together. In another example, [4] shows that the routing layer in wireless mesh networks 

needs to work interactively with the MAC layer in order to maximize its performance. 

Because the possibility of performance advantage in wireless mesh network, cross-layer 

design issues are capturing the interest of the research community recently. 

Not only the cross-layer protocol design is important to optimize the performance of the 

network layers, but also the cross-layer monitoring is useful for observation of the network 

behaviors. Cross-layer monitoring not only observes the network behaviors, interactivities of 

the protocols and mechanisms used in wireless mesh networks, but also helps to improve the 



 

 4 

interoperation of protocols and mechanisms. For example, in IEEE802.11s mesh networks, 

there is a local congestion control mechanism that enables MAC and IP layer work together to 

reduce the congestion [5]. With cross-layer monitoring, nodes can collect the values of 

metrics and distributes the information to the layers. Furthermore, each node can distribute its 

information to its neighbors. Thus layers and nodes can get the global knowledge of 

operational properties of the mesh network, and improve the network performance by 

adjusting parameters such as sending rate based on the monitored information.   

To gain a better understanding of the interaction of these layered protocols and improve the 

performance of wireless mesh network, we motive a cross-layer monitoring module for 

wireless mesh networks. This module is a distributed and event driven cross-layer monitor 

module. It not only observes the operational characteristics of layers, but also has the 

functions to handle and process the values of monitored metrics for the layers. Furthermore, it 

has the function to make one layer messages available for other layers or other nodes. The 

advantages of the cross-layer monitoring module for wireless mesh network are twofold: 

 First, cross-layer monitoring can help us examine each layer in a deep insight 

view. Collecting information from each layer can help each layer know and 

understand the status of other layers. Having knowledge of the every layer can 

help us to find out how these layers interact with each other. We can also set 

parameters of other layers to find out how one parameter of one layer affects 

other parameters of other layers during the communication. 

 Second, since we know how each layer interacts with each other, we can 

optimize the network performance by adjusting their parameters accordingly. 

To gain the best network performance, each layer should work together, and a 

collaboration mechanism is needed for this proposal. For example, in IEEE 

802.11s draft standard, there is a local congestion control mechanism which 

needs MAC protocol and routing protocol work together to improve the 

performance. Therefore the cross-layer monitoring module will be helpful for 

this mechanism.  

This module should be configurable, adaptive and extendible. And the implementation will be 

done in NS2 with NS-MIRACLE extension. According to that, metrics of the monitoring 

module should be selected carefully. First, these metrics can be used to improve the network 

performance efficiently. Second, they can be realized in NS2 with NS-MIRACLE. 

Furthermore, metrics, with the different monitoring goals, can be added to the framework of 

the module.  
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Based on the collected metrics, layers and nodes can take appropriate actions and thus 

improve performance. The monitoring module has a function that can compare the monitored 

values of the metrics with thresholds. When the monitored values of a metric (i.e. MAC busy 

time) reach the thresholds, the layer sends out a message to the monitoring module and the 

monitoring module handles the message accordingly. 

This Monitoring module has a structure that can be extended to distribute a set of metrics to 

its neighbors. The distribution is done by IP routing protocol. The information coming from 

its neighbors is stored in the routing table. The monitoring module reads this information and 

processes it for network performance optimization. 

Finding those heuristics and performing the actions are not part of the project. However, the 

architecture of the monitoring module is flexible so that it can be easily extended to a 

monitoring/control agent, which triggers such actions for optimizing network performance. 

1.3 Project Objectives 

The goal of this monitoring module design is twofold: first, we learn how to design and 

implement a cross-layer monitoring module for wireless mesh networks. We will learn not 

only how to design the architecture of the module, but also how to implement metrics of 

layers for the monitoring module and how to make the module process and distribute the 

messages. Second, we monitor these metrics and study interactions of layers and nodes. A 

reaction mechanism is considered in the monitoring module. This reaction function makes it 

possible to control each node’s network behaviors based on the monitored metrics. 

Furthermore, a distributing mechanism is motivated to distribute information to neighbor’s 

nodes, which can be used for performance optimization in wireless mesh networks. 

1.4 Thesis Organization 

The rest of this thesis is structured as follow: Chapter2 introduces the background of IEEE 

802.11 based mesh networks and related works of cross-layer protocol design in wireless 

networks. Chapter3 presents the architecture, functions of the cross-layer monitoring module 

and the metrics for the module. Chapter4 introduces the details of implementation of the 

monitoring module. We will also introduce NS2 and NS-MIRACLE briefly in this chapter. In 

Chapter5, we evaluate the monitoring module in NS2 with NS-MIRACLE extension and 

describe the simulation in detail. Chapter6 summaries the project and discuss the future work 

of the project. 
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2 Background and Related Work 

This chapter introduces background information about IEEE 802.11s Wireless Mesh 

Networks. First, we describe the architecture of IEEE 802.11s mesh network in section 2.1. 

Also, we introduce basic components of physical layer, MAC layer, routing protocols and 

challenges of IEEE802.11s in this section. Then we will present cross-layer design issues in 

section 2.2-2.5.  

2.1 IEEE 802.11s Mesh Networks 

Wireless mesh networking based on IEEE 802.11 wireless local area network (WLAN) has 

been developed in the last few years. In 2004, the increasing demand for mesh networks led to 

the formation of a task group (TGs) to define the Extended Service Set (ESS) Mesh 

Networking Standard. IEEE 802.11s provides frame forwarding over multiple hops and path 

selection at data link layer. It provides a transparent support to any higher layer protocols [6] 

and seamless integrates in the Institute of Electronics and Electrical Engineering (IEEE) 802 

set of standards. 

2.1.1 IEEE802.11s Architecture 

[4], [5], [6], [7] present the architecture of IEEE802.11s mesh network. The network 

architecture is showed in Figure 2-1. An IEEE802.11s mesh network consists of three types of 

nodes: mesh points, mesh access points, and mesh portals. The basic element in IEEE802.11s 

is the mesh point (MP). Mesh point supports the mesh services of control, management, and 

operation of the mesh. A mesh point (MP) can exchange frames with other nodes through 

multiple wireless hops. MAC Service Data Unit (MSDU) [8], which is the information that is 

delivered as a unit between MAC service access points (SAPs), is exchanged between mesh 

points. A STA is a device that contains an IEEE 802.11-conformant medium access control 

(MAC) and physical layer (PHY) interface to the wireless medium [8]. A mesh access point 

(MAP) is an MP but can also work as an access point that gives stations access to network 

services. The STAs do not participate in the WLAN mesh, but they can associate with the 

mesh access points (MAPs) to connect to the mesh networks. Each mesh point can operate 

like a station (STA) or forward data frames for other nodes. A Mesh Portal (MPP) is an MP 

that interconnects IEEE802.11 wireless LANs and other networks.  
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A mesh link is built by two mesh points who can directly communicate with each another via 

the wireless medium. A pair of nodes that share a link are neighbors. Mesh BSSs are 

connected via wireless mesh networking.  

 

 

 

Figure 2-1 IEEE802.11s Architecture [2] 

2.1.2 Physical Layer in IEEE 802.11s 

2.1.2.1 Physical Layer in IEEE 802.11 

The PHY layer in IEEE 802.11 consists of two sub-layers: the physical layer convergence 

procedure (PLCP) sub-layer and the physical medium dependent (PMD) sub-layer [8]. The 

PLCP is between the frames of MAC and radio transmissions in the air. It adds its own header 

and provides a mechanism for transferring MPDUs between two or more STAs over the PMD 

sub-layer [8]. PMD is a method of transmitting and receiving data via a wireless medium 

using the antenna. Data transmission over the wireless media is controlled by PMD. It 

transforms the PLCP protocol data unit (PPDU) into RF signal by using carrier modulation. 

Three physical layers are standardized in the original revision of 802.11: Frequency-hopping 

spread-spectrum (FHSS) radio PHY, Direct-sequence spread-spectrum (DSSS) radio PHY 

and Infrared light (IR) PHY. However, the infrared physical layer has never been 

implemented in a commercial product. From 1997 to 2007, four more physical layers based 
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on radio technology have been developed. The standardization of the physical layers is shown 

in Table2-1. 

 

    

Freque
ncy 

Band(
GHz) 

Max 
Data 

rate(M
bps) Modulation 

Slot 

time(s) 

SIFS 

time(s) 
Contention 
window size 

Preambl
e 

duration(

s) 

PLCP 
header 

duration(

s) 

Maximum 
MAC 
frame 

Minimum 
sensitivity(dBm) 

1 FHSS 2.4 2 GFSK 50 28 15-1023 96 32 4095 -80 

2 DSSS 2.4 2 QPSK 20 10 31-1023 144 48 4-8191 -80 

3 IR                     

4 OFDM 5 54 OFDM 9 16 15-1023 20 4 4095 -62 

5 
HR/DS

SS 2.4 11 
Barker Code  

/ CCK  20 10 31-1023 144 48 4095 -76 

6 ERP 2.4 54 

Barker Code  

/ CCK / 

OFDM 20 or 9 10 
15 or 31 to 
1,023 20   4095   

7 
MIMO-
OFDM   100+   9 16 15-1023 16 4 8191 -64 

 

Table 2-1 The Standardization of the Physical Layers [8] 

 

Basic Spread Spectrum Techniques 

As shown in Table 2-1, there are six basic spread spectrum techniques used in IEEE802.11: 

Frequency Hopping Spread Spectrum (FHSS), Direct Sequence Spread Spectrum (DSSS), 

Orthogonal Frequency Division Multiplexing (OFDM), High-Rate Direct Sequence 

(HR/DSSS), Extended Rate PHY (ERP) and multiple-input multiple-output (MIMO) OFDM.  

 FHSS uses the 2.4GHz frequency band as the RF transmission media. It uses 

Frequency-hopping systems to jump from one frequency to another in a random 

pattern, transmitting a short burst at each sub-channel. FHSS uses Gaussian 

frequency shift keying (GFSK) modulation. The number of non-overlapping 

channels is 79 for the United States and Europe. The channel center frequency is 

defined in sequential 1.0 MHz steps beginning with the first channel.  

 DSSS also works in 2.4GHz band. DSSS spreads the power out over a wider 

frequency band using mathematical coding functions. It provides a WLAN with 

both a 1 Mb/s and a 2 Mb/s data rates. DSSS uses two baseband modulations: the 

differential binary phase shift keying (DBPSK) and the differential quadrature 

phase shift keying (DQPSK). The basic access rate is based on 1 Mb/s DBPSK 

modulation. The enhanced access rate is based on 2 Mb/s DQPSK. The initial 

2Mbps PHY is specification in [8]. The number of operating channels in DSSS is 
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14.  The width of each channel is 22MHz. The adjacent channels overlap one 

another partially, with three of the 14 being completely non-overlapping. 

 OFDM is operated in the 5 GHz band. It uses carrier multiplexing technique to 

divide an available channel into several sub-channels. Each sub-channel is used to 

transmit a fraction of the user data stream at the same time. By making these 

carriers orthogonal to each other they do not interfere. All the sub-channels are then 

multiplexed into a combined channel to increase the network throughput. The 

OFDM system provides the communication capabilities up to 54 Mb/s. 

 High-Rate Direct Sequence (HR/DSSS) is an extension of the PHY for the DSSS 

system. HR/DSSS works in 2.4GHz band and provides 5.5 Mb/s and 11 Mb/s data 

rates. HR/DSSS defines two PLCP preambles: the long PLCP preamble and the 

short PLCP preamble. To provide the higher rates, Complementary Code Keying 

(CCK) is used as the modulation scheme. CCK is based on sophisticated 

mathematical transforms. It consists of a set of 64 8-bit code words. It allows the 

use of a few 8-bit sequences to encode 4 or even 8 bits per code word, for a data 

throughput of 5.5 Mbps or 11 Mbps. 

 Extended Rate PHY (ERP) is operated in 2.4GHz band. It uses different 

modulations for different date rates. The major modulation is ERP-OFDM. It 

supports the same speeds as IEEE802.11a: 6, 9, 12, 18, 24, 36, 48, and 54 Mbps. 

Speeds of 6, 12, and 24 Mbps are mandatory. Other modulations are: ERP-

DSSS/CCK for the data rate of 1, 2 Mb/s and 5.5Mb/s, ERP-PBCC for the data rate 

of 22Mb/s and 33Mb/s and DSSS-OFDM. DSSS-OFDM is a hybrid scheme, which 

encodes packet data using the DSSS headers, and OFDM encoding of the payload.  

 MIMO-OFDM uses 2.4GHz and 5GHz unlicensed bands. It supports 20MHz and 

40MHz channel. MIMO uses two or more antennas to send or receive one or more 

data streams at the same time. Using multiple antennas, MIMO-OFDM combines 

OFDM and MIMO techniques. This not only increases the data transmission rate 

and enhances the transmission reliability, but also gains longer transmission range. 

Independent OFDM modulated data are transmitted from multiple antennas 

simultaneously. At the receiver, data are OFDM demodulated first. Then MIMO 

decoding on each of the sub-channels extracts the data from all the transmit 

antennas on all the sub-channels. 

 

Clear Channel Assessment 
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In IEEE 802.11, the physical layer supports a clear channel assessment (CCA) function to 

indicate to the MAC when a signal is detected. To implement the CSMA/CA in IEEE 802.11, 

the PLCP has a function to determine whether the wireless medium is busy. The structure of 

CCA is shown in Figure 2-2 [7]. The Physical Carrier Sense (P-CS), which is the part of the 

Physical Layer (PHY)’s Clear Channel Assessment (CCA), is used to determine the state of 

the medium in physical layer. With P-CS, each node senses energy in the air. If the energy is 

over the thresholds, it indicates a busy medium. Otherwise, it shall be considered idle. The 

threshold value depends on the IEEE 802.11 PHY layer. 

 

 

Figure 2-2 Clear Channel Assessment (CCA) [7] 

2.1.2.2 Physical layer in IEEE 802.11s 

IEEE 802.11s physical layer is set up based on IEEE802.11 standard. Although there are 

advanced wireless radio technologies such as smart antenna, multi-input/multi-output 

(MIMO) and cognitive radios that have been proposed in wireless mesh network in recent 

years, these new technologies are complicated and increase the hardware costs. The network 

cost has become a challenging problem in IEEE 802.11s mesh networks. All these radio 

technologies require a novel design in higher layer protocols, especially MAC and routing 

protocols. To date, MIMO is already the key technologies for IEEE 802.11n, but it is still 

optional in IEEE802.11s draft.  

2.1.3 MAC Layer in IEEE802.11s 

Due to multi-hop forwarding, the transmission of one hop may affect the next hop or any 

links in the neighbors. The available resources must be efficiently allocated for the network to 

serve a large coverage area. Functionalities need to be enhanced to improve the performance 

of the wireless mesh networks. In this section, we first introduce IEEE802.11 MAC layer, 

then we introduce the basic components of MAC layer in IEEE802.11s.  
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2.1.3.1 MAC Layer in IEEE 802.11 

The architecture of the MAC layer is shown in Figure 2-3 [8]. In IEEE 802.11, accessing 

wireless medium is controlled by three basic coordination functions: the point coordination 

function (PCF), distributed coordination function (DCF) and the hybrid coordination function 

(HCF). The PCF and HCF are provided via the services of the DCF. The PCF provides 

contention-free services and is restricted to infrastructure networks. However, the PCF is 

optional in all STAs and not implemented in real wireless networks. HCF is only present in a 

QoS STA. In a QoS STA implementation, both DCF and HCF are present.  

 

Figure 2-3 MAC Architecture [8] 

IEEE802.11 DCF is the basic medium access protocol which uses Carrier Sense Multiple 

Access/Collision Avoidance (CSMA/CA) and random backoff mechanism to reduce 

contention in the wireless medium. As shown in Figure 2-4, the basic access method is 

summarized by [9] as below: 

 Before a node transmits a frame, it uses carrier sensing to determine if the medium is 

available.  

 If the channel is idle for a Distributed Interframe Space (DIFS), the station transmits 

the frame to the destination.  

 If the channel is busy, the station waits for a specific period of time called the backoff 

interval, and then tries to sense the medium again.  

 The destination sends an acknowledgment to the source if it successfully receives the 

frame.  
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 If the source does not receive an acknowledgment within a specific period of time, it 

tries to send the frame again.  

 Retransmission starts if the channel is idle for an Extended Interframe Space (EIFS).  

 When a unicast frame is received, an acknowledgement shall be transmitted by the 

destination. Broadcast frames do not require the destination to send an 

acknowledgment of reception. 

 

Figure 2-4 The Basic Access Method [8] 

In IEEE 802.11, two types of carrier-sensing functions are used: the physical carrier-sensing 

(P-CS) and virtual carrier-sensing functions (V-CS). The medium is considered as busy if 

either carrier-sensing function indicates that the channel is busy. The physical carrier-sensing 

(P-CS) which implemented in physical layer is described in section 2.1.2. Virtual Carrier 

Sensing (V-CS) is implemented in MAC layer. It is provided by the Network Allocation 

Vector (NAV). IEEE802.11 frames carry a duration field in the MAC header. The duration 

fields can be used to reserve the medium for fixed time period. The NAV is a count-down 

timer that indicates the amount of time the medium will be reserved. As the node starts to 

initiate a frame, it sets the NAV to the time for which it expects to use the medium. All nodes 

monitor the wireless medium and get reservation information from any frame they could 

decode. Then the nodes set their NAV to the according value. To prevent collisions caused by 

hidden nodes, IEEE802.11 uses Collision Avoidance (CA) scheme.  
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Figure 2-5 Backoff Procedure [8] 

The basic backoff procedure is shown as Figure 2-5. First, before nodes initiate a frame 

transmission, they sense the wireless medium for a duration DIFS. If the wireless medium is 

idle, nodes perform a random backoff time. A node may send a frame if it senses the medium 

is idle after a backoff time. The backoff time works like a counter. If either of the P-CS or V-

CS indicates busy medium conditions, the nodes freeze the counter and wait until the wireless 

medium is idle again. The NAV counter is decremented by one whenever the wireless 

medium is idle. Before the NAV is zero, the virtual carrier-sensing function indicates that the 

medium is busy; when the NAV reaches 0, the virtual carrier-sensing function indicates that 

the medium is idle. The frame is sent out right after the NAV reaches zero. 

The backoff timer value is calculated as: 

Backoff_time = random () * SlotTime                 Equation 2-1 

Where the random () is pseudo-random integer drawn from a uniform distribution over [0, 

CW], where CW is contention window and CW is in [CW_min, CW_max]. 

Collision avoidance is done using timing intervals. To provide different priority levels for the 

different types of traffic, IEEE802.11 provides five interframe spaces: SIFS, PIFS, DIFS, 

EIFS and AIFS.  Figure 2-6 shows the relationship of IFS.  The short interframe space (SIFS) 

is shortest and used for the highest-priority transmissions, such as RTS/CTS frames and 

positive acknowledgments. The DCF interframe space (DIFS) is the minimum medium idle 

time for contention-based services. Nodes may access to the medium immediately if it has 

been free for a DIFS. The Extended interframe space (EIFS) is not a fixed interval and it is 

used only when there is an error in frame transmission. AIFS is used by QoS STAs to transmit 

frames. 
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Figure 2-6 Interframe Space Relationships [8] 

By using the NAV, nodes can ensure that atomic operations are not interrupted. When 

multiple nodes contend for wireless medium and go into random backoff, the node selecting 

the smallest backoff time using the random function will win the contention. Along with the 

Collision Avoidance scheme, it also uses immediate positive acknowledgment (ACK frame) 

for each frame received. All the unicast frames sent by a node to a receiver must be 

acknowledged. If no ACK is received, the CW Size is doubled by the sender and the sender 

retransmits frame. In some cases, the DCF may also use the CTS/RTS clearing technique to 

avoid collisions. However, CTS/RTS mechanism is never used in real wireless mesh networks 

[7]. 

2.1.3.2 MAC Layer in IEEE802.11s 

A. EDCA 

The basic coordination function (CF) mechanism of 802.11s MAC is the enhanced distributed 

channel access (EDCA) [5]. The EDCA mechanism provides differentiated, distributed access 

to the wireless medium for STAs using eight different user priorities (UPs) [8]. As shown in 

Table 2-2, these UPs are mapped to four access categories (ACs): Best effort, Background, 

Video and Voice. These ACs provide support for the delivery of traffic with UPs at the STAs.  



 

 15 

 

Table 2-2 UP-to-AC Mappings [8] 

Figure 2-7 shows an implementation of EDCA. Each AC has its own frame queue and 

backoff entity using different parameter set for medium access. EDCA uses arbitration 

Interframe Space (AIFS) instead of DIFS (shown in Figure 2-6). The duration of AIFS is 

calculated as: 

AIFS [AC] = AIFSN [AC] × aSlotTime + aSIFSTime   [8]          Equation 2-2 

Arbitration IFS Number (AIFSN), CWmin and CWmax depend on the AC. The AIFS varies 

with the priority of the packet. Compared to DCF, EDCA changes the fairness principle. 

When stations perform EDCA, they contend for Transmission Opportunities (TXOPs) which 

are depended on the AC. The higher priority uses a smaller AIFS [AC] and CW [AC] value, 

which means the higher priority queue gets more chance to use the channel. The station may 

send frames if it does not exceed the TXOP limit. Furthermore, EDCA supports Block ACK 

[8] and provides equal transmission duration to all stations. It operates more efficiently than 

DCF in one hop wireless networks. However, because its prioritization mechanism does not 

perform well in a multi-hop mesh environment, EDCA does not work well for mesh networks 

[4], [7], [10]. 
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Figure 2-7 An Implementation of EDCA [8] 

 

B. Synchronization 

[4], [5], [6] described Synchronization in 802.11s, which is an optional feature for MPs. IEEE 

802.11s defines beaconing procedures for unsynchronizing and synchronizing MPs. Two 

mechanisms are used to avoid beacon collisions. First, not all mesh points timing system 

function (TSF) should be synchronized. A TBTT (Target Beacon Transmission Time) offset 

is needed for mesh point’s synchronization. The TSF is calculated by using this TBTT offset 

and the beacon timestamp. The value of the TSF can be different. The second mechanism is 

mesh beacon collision avoidance (MBCA) mechanism. IEEE 802.11s adds information 

elements (IEs) to the standard beacon frame and probes response frame to provide TBTT 

information.  

With synchronization, each MP maintains a common Mesh TSF time by collecting beacon 

timing information with time stamp and offset received from neighbors. Furthermore, MPs 

use beacon frames to detect each other, to maintain connectivity and to synchronize their local 

clocks. 

C. Extensions to the Medium Access Control in 802.11s 

The 802.11s draft standard defines an optional hop-by-hop congestion control mechanism [5]. 

The whole process of congestion control mechanism has three modules, which are Local 

Congestion Monitoring, Congestion Control Signaling and Local Rate Control. The basic idea 
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of the mechanism is that each MP observes the level of congestion based on the transmitting 

rate and the receiving rate of packets that need to be forwarded. When the traffic increases 

and the MP can not forward and source data upstream as fast as the incoming rate, congestion 

occurs. Queue size can also be used to monitor congestion. Each MP regulates incoming and 

outgoing data to minimize the transit queue size. With sufficient queue size, a notification of 

congestion is sent to its one-hop neighbors. These neighbors adjust their sending rate 

accordingly at which they are sending to the congested MP.  

To perform local congestion control mechanism in IEEE 802.11s mesh networks, messages 

are necessary to be monitored and exchanged within different layers. Traditional layered 

protocols are not efficiently supporting the functionality. Therefore, cross-layer protocol 

design should be considered for the mechanism.  

D. Power management 

The goal of power management for WMNs is to improve the power saving, network 

connectivity and throughput. In wireless mesh networks, dependence of power-consumption 

constraints on the type of mesh nodes. Power efficiency is the major concern for the light 

weight MPs and mesh clients. MAPs are required to be active continuously. However other 

kinds of nodes such as MPs or mesh clients need a power save mechanism for saving power 

source. When the MPs do not forward traffic for other nodes, they will work in power save 

mode. At the same time, as various transmissions power level not only causes different level 

of interference, but also causes various sending rate, power management is closely coupled 

with MAC protocols. Since the connectivity affects performance of a routing protocol, power 

management is also crucial for the network layer [2]. 

In IEEE 802.11s mesh network, the power management is done by the announcement traffic 

indication message (ATIM) mechanism. The MPs work in either doze state or wake state. The 

Mesh BSS has a common Mesh delivery traffic indication message (DTIM) interval. The 

power saving MPs periodically wake up during the ATIM window to receive or send control 

messages including beacons. The ATIM window repeats every one DTIM interval. During the 

duration, peer MPs send buffered unicast frames or request the MP to remain in wake mode 

for further frame delivery. An MP may also wake up in a scheduled time period negotiated 

with other MPs. In the power save mode, packets in an MP need to be buffered and wait to be 

sent during the wake state [4].  
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2.1.3.3 Link Management 

Once a new mesh node powers up, it needs to establish peer links with its neighbors at first. 

Mesh Points (MPs) use passive or active scanning to set up peer links [6]. By using passive 

scanning, MPs listen for beacon frames. Active scanning includes transmission of probe 

request frames. IEEE 802.11s uses a new mesh ID to identify a mesh network. The mesh ID is 

attached in beacon and it probes response frames as a new information element (IE). Once a 

Mesh Link (ML) has been established, it is also necessary to perform a measure of link 

quality for each peer link. The link quality information of each peer link can also be used as 

one of the routing metrics for the routing protocol. The default airtime metric of peer MPs is 

calculated as: 

ca = (Oca + Op + Bt/r) / (1-ept)       Equation 2-3 

Where Oca is Channel access overhead, Op is Protocol overhead, Bt is the Number of bits in 

a test frame, r is MCS bit rate and epf is Frame error rate for the test frame [5]. 

2.1.3.4 Path selection and routing 

In IEEE802.11s, path selection and forwarding is performed at MAC layer. The IEEE 802.11s 

framework allows multiple path selection protocols being implemented in a mesh point. 

However, only one protocol is active in a Mesh BSS each time. Mesh Points use the WLAN 

Mesh Capability IE to indicate which protocol is in use. The default routing protocol in IEEE 

802.11s is called hybrid wireless mesh protocol (HWMP) [5]. HWMP is a hybrid routing 

protocol of on-demand routing and proactive tree-based routing. The on-demand routing 

protocol addresses the mobility of the mesh nodes. It is similar to Ad-hoc On-demand 

Distance Vector (AODV), which uses a simple hop count routing metric [5]. Mesh points 

broadcast beacon frames periodically. The beacon frames carry path selection and topology 

information. MPs can use a Route Request (RREQ) and Route Reply (RREP) mechanism to 

discover link metric information from source to destination. For example, the source mesh 

point A broadcasts a RREQ first before it sends data to a destination mesh point B.  The 

intermediate nodes store the address of the MP they received the RREQ from and re-

broadcast the RREQ.  When B receives RREQ, it replies with a unicast RREP addressed to A.  

The RREP follows a reverse path to A and the path is established. 

The proactive tree-based routing protocol configures a root MP in the mesh network. It builds 

and maintains a distance vector tree for other nodes to avoid routing overhead for routing path 

discovery and recovery. All MPs maintain a path to the root MP proactively. The tree can be 

set up in two ways: 
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 The Portal broadcasts Proactive RREQ (PRREQ) frames, where every MP replies 

with a Gratuitous RREP (GRREP). 

 The Portal broadcasts Portal Announcement (PANN) frames, leaving each MP the 

possibility to set up the path whenever it needs in an on-demand fashion. 

 The on-demand routing and tree-based routing schemes can run at the same time. Airtime 

cost is the mandatory routing metric for the routing protocol that measures the quality of links 

[4]. Other types of metrics such as QoS parameters, traffic load, power consumption, can also 

be used and only one metric can be used in the same mesh at a time.  

2.2 Cross Layer Design and Cross-layer Monitoring  

2.2.1 Layered Protocol and Cross-layer Protocol Design 

In traditional layered protocol model, each layer is independent and has no knowledge of the 

other layer. Each layer provides a specific service. Each service at a layer is realized by 

designing protocol for the layer. Every layer manages its own variables, and its variables are 

of no concern to other layers. The communication between adjacent layers works by using 

standard interfaces. There is no direct communication between non-adjacent layers. Also one 

layer does not interoperate with other layers. The basic example of layered protocol is the 

ISO/OSI model which has a seven-layer protocol stack. The ISO/OSI model has a modular 

structure. It models and classifies the different network functionalities and services in each 

layer. The layered architecture has several advantages: first, the layered architecture is 

flexible. By using the standard interface, the replacement of one old layer does not affect 

other layers, which means there is no need to modify the rest of the network stack when one 

layer is updated. Second, because layers are separated, one layer does not affect each other’s 

performance. 

However, layered protocol design is not efficient in wireless mesh networks. Due to the 

properties of dynamic nature, multi-hop communication and no central instance, wireless 

mesh networks are significantly different from traditional wired networks. In wireless mesh 

networks, the performance of one layer depends on the other layers. For example, in the 

physic layer, the physical rate also affects the capacity of the link. The capacity of the link 

reduces when the physical rate is dropped [2]. In wireless mesh networks, each wireless 

transmission can be heard by the neighbors and is sensed by them as for their ongoing packet 

transmissions. That means the performance of the links in wireless mesh networks is not 

independent of each other. The layered protocol design ignores the interactions between 
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layers in wireless mesh networks and causes poor network performance. For example, in 

wireless mesh network, the higher the packet transmission power can cause the higher the 

transmission rate. At the same time, the increasing the transmission power increases the 

interference to other nodes too. Therefore the power control is tightly coupled with both the 

physical and medium access layers. Another example is TCP protocol does not work 

efficiently in wireless networks due to the properties of multiples hops and dynamic nature 

[3]. For example, route failures happen frequently due to dynamic nature of the wireless 

channel and mobility of the nodes. This will result in different round trip times (RTTs), which 

can affect the congestion control in the transport layer. TCP may assume that the packet drops 

are caused by congestion and then starts congestion control, thus reducing throughput of the 

flow. 

These examples show that sharing and exchanging information with protocols is useful to 

gain better knowledge of each layer. Furthermore, layers should work together to improve the 

performance in wireless mesh networks. One example is the local congestion control 

mechanism suggested in IEEE802.11s draft, which enables MAC and route protocols work 

together to support congestion monitoring and signaling. Another example is the HWMP for 

wireless mesh networks, which has an interaction between routing and MAC/PHY layer to 

find a better routing path. However, the ideas of collaboration between the different protocols 

are not supported by layered architecture. The layered architecture can not support new modes 

of wireless communication in protocol design. Therefore it is necessary to introduce the cross-

layer design for wireless mesh networks. 

2.2.2 Basic Architectures for Cross-layer Design 

Comparing to layered protocol, cross-layer design refers to the protocol design where 

interactions exist between different layers. With cross-layer design the layers share 

information with each other and collaborate with each other to improve network performance 

accordingly. As shown in Figure 2-8, [11] suggests three basic architectures for cross-layer 

design: direct communication module, a share database module and completely new 

abstractions module. Direct communication is the way that each layer communicates with 

other layers directly and allows runtime information sharing between layers. With this 

proposal, the variables at one layer are visible to the other layers at runtime. A share database 

approach proposes a common database that can be accessed by all layers. This common 

database provides the service of storage/retrieval of information to all the layers. The 

completely new abstractions implement a new way to develop the protocols. This approach 
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allows rich interactions between the building blocks of the protocols and there is no more 

layers in the protocol stack. 

 

 

Figure 2-8 Proposals of Cross-layer Architecture [11] 

Understanding and exploiting the interactions between different layers of the protocol stack is 

the core of the cross-layer design concept. With cross-layer design, all layers can share 

information through new interfaces. Cross-layer design also allows layers to exchange state 

information in order to improve performance. Variables of layers are accessible to all 

communication layers. This character enables each layer to have a global view of the 

constraints and characteristics of the network. Therefore the performance of one layer 

influences the other non-adjacent layer. Moreover, the network protocols are jointly designed 

and integrated in cross-layer design. [10], [17] present cross-layer designs to optimize the 

network performance in wireless networks. These examples show that cross-layer design can 

allocate the resources efficiently and improve the network performance.  

2.2.3 Cross-layer Monitoring 

Cross-layer monitoring means observing and collecting the value of metrics of each layer 

during the transmissions, and providing a function that enables information sharing of layers 

in the protocol stack or the layers of neighbor’s nodes. Cross-layer monitoring is based on 

cross-layer protocol design. It uses cross-layer architecture. The main goal of cross-layer 

monitoring is information sharing. Comparing with cross-layer protocol design, cross-layer 

monitoring does not need a novel protocol stack. It only extends the existing protocols to 

provide data collection functions and interfaces for information sharing and distribution. The 

benefit of cross-layer monitoring is twofold: first, the information sharing means that only 
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minor modifications to existing models are needed. Second, it provides rich interaction 

information for layers which can be used for network performance optimization. 

The cross-layer monitoring mechanisms can be classified to time-driven cross-layer 

monitoring and event-base driven cross-layer monitoring mechanisms. Time-driven cross-

layer monitoring mechanism observes and updates information within a regular time interval 

regardless of changes to network utilization or network environment. Event-base driven cross-

layer monitoring mechanism updates information for layers or nodes by using thresholds. The 

thresholds are based on monitoring requirements. If the current value of information and the 

previously value are within the same threshold, update does not occurs. If the values fall into 

different intervals the previously value of information is considered out of date and an update 

occurs. 

In this thesis, we implement a cross-layer monitoring module based on a cross-layer 

framework. The reason of using a cross-layer framework is twofold: first, we focus on cross-

layer monitoring mechanism implementation. And these mechanisms can be done within a 

framework. Therefore we do not need to design a novel cross-layer protocol. Second, by 

choosing a widely used cross-layer framework, the cross-layer monitoring module can be 

extended quickly for future work.     

2.3 Related Work 

Several works have studied on cross-layer design in the past. [3] discusses the various cross-

layer feedback possibilities and benefits on mobile wireless devices. To improve application 

performance, it is essential that every layer tunes its parameters accordingly based on the 

cross-layer feedback. In [3], they also present a survey and introduce three main architectures 

for efficient cross-layer feedback. [11] suggests a definition for cross-layer design and 

discussed the basic types of cross-layer design with examples drawn from the literature. 

 [12] proposes JANUS, a framework for distributed monitoring of WMNs. JANUS is based 

on the SNMP management framework but the architecture is distributed. Furthermore, the 

implementation of the module combines a structured peer-to-peer overlay network (Pastry) 

and a scalable group communication system (Scribe). Every node consists of four 

components: Mesh node, JANUS Agent, Mesh knowledge base (MKB) and JANUS client. 

The basic process is described as follows: first the JANUS client sends a query to the Agent. 

The Agent replies with the MKB object tree accordingly. The client updates the MKB and 

then publishes them on the Scribe ring. JANUS collects network information at the link layer 
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and the network layer. And it shares the information to all nodes in the network. However, the 

prototype uses Pastry as a reference platform and JANUS is implemented based on Scribe. 

This architecture makes it difficult to extend to common cross-layer monitoring aspects.  

In [13], a light-weight monitoring module is developed to measure current network/traffic 

conditions and to estimate end-to-end path delay. A centralized controller uses a 

measurement-based admission control (MBAC) scheme to keep track of monitored metric 

and calculate end-to-end path delay. The MBAC uses a cross-layer monitoring for the 

module. Each node tracks the per-hop delay during the transmission and sends it periodically 

to the network layer central controller. The central controller maintains a database of the per-

hop delays. At the same time, to discover and maintain the topology of the network, [13] uses 

a “Hello” message to propagate any changes in their routing table. With the measured per-hop 

delays and the discovered topology the central controller estimates the end-to-end delay for a 

given path and makes the admission control decisions accordingly.  

 [14] presents Xian, a Cross-layer Interface for wireless Ad hoc Networks. The design enables 

interactions between the IEEE802.11 MAC layer and upper layers. That means MAC layer 

can communicate with its upper layers directly. The communication is based on a 

request/response model. XIAN implements one function for each selected metric. The 

architecture of Xian consists of three components: The Kernel Space Xian Interface (KSI), the 

User Space Xian Interface (USI), the Xian Information Transport Module (ITM) User Space 

and the Xian Extended Interface (USEI). With these four components, each upper layer above 

MAC layer gets the metrics directly. Furthermore, the USEI performs measurement function, 

operation function and comparison function based on measured metrics. Xian can be used as a 

service by other network layers or system components to access information about 

configuration and performance of MAC/PHY layers.  

 [15] proposes SWAN, a stateless network model which uses distributed feedback-base 

control algorithms to deliver service differentiation in mobile wireless ad hoc networks. 

SWAN implements a number of the mechanisms to provide rate regulation of best effort 

traffic. These mechanisms work together between IP and MAC layer. Each node regulates 

best effort traffic independently by using AIMD rate control algorithm based on the feedback 

from MAC. By using a probing request to estimate the end-to-end bandwidth, the source node 

in SWAN performs the source-based admission control for real-time traffic. The admission 

control rate is established by comparing the end-to-end bandwidth and the required 

bandwidth. To regulate real-time traffic dynamically, each node in SWAN uses ECN bits to 

mark a violation during the transmission. When the destination node monitors the ECN bits, it 
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sends a regulate message to the source. The source responses to the regulate message by 

reestablishing its real-time session on need. [15] also analyses different metrics, such as MAC 

delay and busy probability for SWAN.  

To reduce the monitoring overheads in wireless networks, [16] evaluates the impact of 

monitoring overheads during data transmission. [16] shows that even small amounts of 

overheads can cause large performance degradation in wireless networks. Several different 

techniques are suggested for reducing monitoring overheads while maintaining the 

management that needs to be achieved. For QoS provisioning with statistical monitoring, they 

use a specific delay-base routing algorithm to reduce the number of monitor agents while be 

able to monitor every link in the wireless network. For reacting monitoring, they evaluate a 

threshold-base scheme. By using this scheme, sending data is triggered by a threshold. Only 

when the measured parameter crosses the threshold, the monitoring agent sends out data. 

Comparing with the periodic sending data, thresholds-base scheme can reduce the monitoring 

traffic. [16] also evaluates the impact of frequency of reporting monitoring data on end-user’s 

performance. However, the evaluation of efficient monitoring in [16] is based on 

measurement-base monitoring. Although they use a threshold-base scheme to reduce data 

traffic, every node has to report measured data to the center sever. The centralized control 

scheme for resource and fault management is difficult to be implemented in wireless mesh 

network and it does not work efficiently due to the distributed and dynamic nature of WMNs. 

[10] presents an adaptive per hop differentiation (APHD) scheme to achieve end-to-end delay 

assurance in multi-hop wireless networks. The APHD scheme extends the capability of IEEE 

802.11e EDCA technique into multi-hop environments by taking end-to-end delay 

requirement into consideration. The core component of APHD is Node State Monitoring 

function, which monitors per class delay (PCD) and share the information with network layer. 

With the cross-layer monitor approach, APHD makes the intermediate node adjust a data 

packet's priority level to satisfy its end-to-end delay requirement. However, the cross-layer 

monitoring function in APHD is limited. APHD is implemented in NS2 for a single proposal 

of providing end-to-end delay assurance in IEEE802.11e multi-hop networks. The 

architecture is lack of cross-layer architecture design. Only network layer can share 

information from MAC layer and only one cross-layer metric (PCD) is used in APHD.   

[17] proposes a cognitive resource management framework, CRM, which is based on cross-

layer design and enables the distribution of information gathering and decision making across 

the network. CRM is multi-functional software, which has a modular structure. It carries out 

cross-layer optimization using a Toolbox. The Toolbox consists of different modules that 
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provide various optimizing techniques (i.e. genetic algorithm or statistical learning). The core 

design of CRM is based on Unified Link-Layer API (ULLA) [18]. ULLA provides an 

interface between the applications and the network devices. Furthermore, the structure of 

CRM is distributed and extensible, methods can be added in a plug-and-play fashion.  

[19] presents Multi InteRfAce Cross Layer Extension for NS-2 (MIRACLE), which is a set of 

libraries for NS-2 to enhance the functionalities offered by NS-2. NS-MIRACLE provides an 

efficient and embedded engine for handling cross-layer messages. It also provides a modular 

structure of the protocol stack in NS-2 that enables users to create multiple modules on each 

layer in the stack. For instance, multiple network, link, MAC or physical layers can be 

specified and used within the same node [19]. 

All of above approaches give us ideas to develop a novel cross-layer monitoring module 

(CLMM) for wireless mesh network in NS2 with NSMIRACLE extension. However, the 

CLMM is different from above modules. First, the CLMM monitors the data traffic and 

handles all the metrics of the layers locally. Second, the values of metrics can be shared with 

the layers. Third, both time-driven and event-driven mechanisms are implemented in the 

CLMM. That means it updates the metrics of each layer periodically or based on the 

thresholds. Furthermore, the CLMM has a modular structure and it is configurable. The 

modular structure can be easily extended for other network aspects. The configurable feature 

allows us to change metrics and events without reprogramming. The CLMM module is 

implemented in NS2 with NSMIRACLE. Although NSMIRACLE can handle cross-layer 

messages, NSMIRACLE lacks cross-layer monitoring modules for wireless mesh networks. 

Our goal is twofold: First, the CLMM provides functions to monitor and distribute metrics for 

all layers. Second, the CLMM provides a cross-layer monitoring framework for NS2 with 

NSMIRACLE extension, which can be easily used and extended for wireless mesh networks.  
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3 Cross-Layer Monitoring Module for Wireless Mesh Networks  

3.1 Introduction 

In this chapter, we present the design of the Cross-Layer Monitoring Module (CLMM) for 

wireless mesh networks. The CLMM is the central instance within a mesh node for gathering 

and distributing the information. The main features of the CLMM are summarized as follows: 

 It has both time-driven and event-driven functions.  

 It has a flexible structure to define new events and their process functions for the 

CLMM.  

 It has Layer-Interface functions to each layer. Therefore every layer can 

communicate with others by using general message.  

 It can define its own interfaces. Also it can define a new interface by inheriting or 

deriving other interfaces. Every layer has its specific interfaces to handle the 

messages of the layers.  

 Each layer has the list of its metrics. Each metric encapsulates all the information it 

needs, and it can be updated automatically within the layer.  

 It has a storage module that can store values of the monitored metrics.  

 It updates the metrics of each layer periodically or based on the thresholds.  

 Not only does it output the last obtained value of the metrics directly, but also it 

calculates and stores the average values for those metrics.  

 It has an action function to compare the values of metrics (i.e. queue length) with the 

thresholds, and trigger an action accordingly when the values are out of the 

thresholds.  

A structure of module is presented in our design based on the architecture of NS-

MIRACLE. Also, we extend NS-MIRACLE code to implement metrics of layers for the 

monitoring module and enable NS-MIRCALE to collect, process and distribute the cross-

layer messages. 
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3.2 Architecture of the CLMM 

The architecture of the CLMM is shown in Figure 3-1. The CLMM has eight basic function 

modules. These function modules are the Monitor, Layer-Interface, Message Router, Action, 

Storage, Routing and Trace module. We will introduce the Monitor, Layer-Interface, Message 

Router, Storage and Trace module function in the following section s. Because the time 

limits, the Action, Routing and configuration file have not been implemented in this thesis, 

we will discuss the design of Action, Routing function and the Configuration file in section 

6.2. 
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Figure 3-1 The Architecture of the Cross-Layer Monitoring Module (CLMM) 
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3.2.1 Monitor Module 

The monitor module is the core part of the CLMM. It performs the cross-layer monitoring for 

the CLMM. It implements a time-driven mechanism and event-driven mechanism. 

Furthermore it has a calculation sub function which calculates the average values for the 

metrics. After the calculation it stores the results to the storage module. At that time, the 

values of the metrics are ready to be retrieved or delivered. It also has interfaces which 

respond to Action Module, Messages Process Module and Layer-Interface Module. The main 

functions of this module are described as follows: 

 It determines when the CLMM starts or stops the cross-layer monitoring. It performs 

event inheriting, interface inheriting and message inheriting when it initializes the 

CLMM.  

 It performs two monitoring mechanisms for the CLMM: time-driven mechanism and 

event-driven mechanism.  

 It provides interactions between the layers that enable the communication between the 

layers. 

 It provides an error control function for the CLMM. All the errors are sent to and 

handled by the monitor module. 

 The monitor module is configurable and it can be easy configured by a configuration 

file.  
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Figure 3-2 The Structure of the Monitor Module 

The structure of the monitor module is shown in Figure 3-2. The monitor module has five 

basic sub-functions, the Control, Interface, Timer, Error control and Initialization sub-

function. In following section s we will introduce the Control, Interface, Timer, Error control 

sub-functions. In section 6.2,   we will discuss the design of the Initialization function. 

3.2.1.1 The Control Function 

The Control sub-function provides the following functions: 

 It implements the cross-layer monitoring for the CLMM and it provides interactions 

between the layers. With cross-layer monitoring, the layers communicate with each 

other and exchange their metrics as they need. Furthermore, each layer has a function 

that sends out messages carrying the values of metrics (i.e. the value of sending rate) 

to the monitor module. 

 It performs two monitoring mechanisms for the CLMM: time-driven mechanism and 

event-driven mechanism. 

 It starts the message query for the CLMM. For every message query, the process is 

done by the following (shown in Figure 3-3): 

 At the beginning, the Monitor module broadcasts a monitor message to 

the message router module. The message router transfers the query 

message to the Layer-interface module.  

 When the layer receives the message, it transfers the message to the 

interface to handle the message. 

 When the message has been processed, the layer sends an interface 

message to the control function. Then the monitor module identifies each 

interface and starts to send a query message to the layers. 

 When the layer-interface receives the query message, it starts to retrieve 

its metrics directly. Then it sends the query results back to the monitor 

module.  

 After the CLMM has started, the monitor module can also send a query 

message to the storage module directly. The sequence diagram is shown 

in Figure 3-4. The storage module sends the specific metric messages 

back to the monitor module accordingly.  

 It processes the routing messages which come from other nodes and responds to them.  
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 It stops monitoring when the Error Control function reports errors and outputs the 

errors for debugging.  

 It also has a function that processes requests of other modules (such as the action 

module) and responds to them accordingly. 

Monitor Message Router Layer Interface
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query
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Figure 3-3 Sequence Diagram of Query Message to Layer-interface Module 
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Figure 3-4 Sequence Diagram of Query Message to Storage Module 

3.2.1.2 The Interface Function 

The Interface sub-function provides interfaces to the Action function, Message Process 

function, Layer-interface function and the configuration file that enables communications 

between these functions.  

3.2.1.3 The Timer Function 

The Timer provides timing function for the Control Unit. When all the functions are enabled 

and ready, it carries out the monitoring action by period. 

3.2.1.4 The Error Function 

The Error sub-function handles all of the errors for the CLMM. It outputs the errors for 

analyzing and debugging. With the Error function, the CLMM monitors the status of the 

monitoring, halts and quits the monitoring according to the error messages.  

3.2.2 Messages for the CLMM 

3.2.2.1 Message Types  

With messages, the CLMM not only carries out the cross-layer monitoring, but also gets the 

results (the values of the metrics) it monitored. In the CLMM, messages for the CLMM are 

categorized into three types: the MONITORMSG, the INTERFACEMSG and the 

ROUTINGMSG types. To identify these messages, each kind of message is assigned to a 

unique identity number.  
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 As shown in Table3-3, The MONITORMSG comes from the monitor module. These 

generic process messages carrying operating commands are used for message 

operations during the simulation, such as message query, response and delivery.  

 The INTERFACEMSG messages come from layers. The specific metric messages are 

specified by the sub types and used to identify the metrics of the layers. Each layer has 

its own metrics. Metrics of different layers are different. Therefore every layer has its 

own metric messages. And each metric message responds to one unique metric.   

 The ROUTINGMSG type identifies the messages of the routing module. The routing 

message is used to delivery the information of the source to its neighbors. The 

information is the values of metrics, specific signals (such as a congestion signal) or 

generic process message.  With the information the node’s neighbors know not only 

the status of the source node, but also the status of the link between them. And it 

reacts by adjusting the parameters according to the messages. 

In CLMM, every message has its message type and extended message type. With the 

extended message type, a new message can be defined. For example, MONITORMSG is a 

monitor message. However, it can also be defined as an internal message for several 

proposals. Furthermore, a message can be used by different modules. In CLMM, we can also 

define a new message by inheriting or by extending the existed message types. For example, 

if we want to define a TCP message, we can derive it from the super message class.  All the 

other modules will recognize this new message. Therefore the extended type makes it easy to 

define its new messages. 

 

Number name  type 

1 
Generic process 

message MONITORMSG 

2 
Specific metric 

message INTERFACEMSG 

3 Routing message ROUTINGMSG 

Table 3-1 The message types 

3.2.2.2 The Structure of the Message 

The structure of the messages is shown in Figure 3-5. The first is the message type, which 

identifies what kind of message they are. The next parameter is the sub-type, as shown in 

Table 3-2, there are two kinds of sub-types, Mtype and event_type. Each sub-type has a set of 

messages. The third parameter is dtype which defines the type of the destination (UNICAST 

or BROADCAST). The fourth is the source id.  To enable communication between the layers 
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or functions, each message sent by the source to its destination should have its source ID and 

destination ID. The source ID and destination ID indicate where the messages come from or 

go to. If the message is a UNICAST message, the dtype carries the destination ID.  If the 

message is a BROADCAST message, the dtype carries the layer id. The source ID and 

destination ID are allocated by NSMIRACLE CLMessage class and are traced by 

CLMessageTrace class. The last parameter is used to carry the values of the message.  

 

 

Figure 3-5 The Structure of Message for the CLMM 

 

 

 

 

 

 

Table 3-2 The Sub-types of the Messages for the CLMM 

3.2.3 Layer-Interface Module 

The Layer-Interface module provides interfaces for data communication between the layers 

and the Monitor module. As shown in Figure 3-6, every layer has its Layer-interface. Each 

interface of the layer has its specific metric message and generic message process sub-

function. The generic process message function processes query message and delivery 

message, and responds to these requests accordingly. The specific metric message function 

processes the metric messages that generated by this layer (i.e. MAC queue length). When the 

CLMM starts monitoring, the monitor module sends query messages to different layers. When 

a Layer-Interface receives a query message, first it checks if it is a broadcast message. If it is 

not a broadcast message, then it checks the destination ID to find out if the destination ID 

matches its location ID. If the ID does not match, then it drops the message. Otherwise it 

type subtype dtype source value

Mtype event_type

toall queue

tomonitor macinterface
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query macpktrecv
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onevent phy

error ll
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processes the query messages and responds by sending its specific metric messages carrying 

the values of metrics to the monitor module.    

Providing interfaces for the layers has two fold:  

 First, using interfaces can minimize dependencies between the layers and the module. 

Interfaces can hide properties and make it easy to be understood and implemented. 

 Second, independent interfaces make it easy to be modified for different goals in 

future work. 

APP
Specific 

metric
Generic 

messages

TRANSPORT

NETWORK

MAC

PHY

Specific 

metric
Generic 

messages

Specific 

metric
Generic 

messages

Specific 

metric
Generic 

messages

Specific 

metric
Generic 

messages

 

Figure 3-6 The Structure of the Layer-Interface 

3.2.3.1 Event-Driven Mechanism for the CLMM 

The layer-interface module has a function that every layer can define its event and its event 

handler. Every Layer-interface defines its own event and has its own event handler to handle 

its event. Every time when a new event is defined or derived from an event, a new event 

handler function is added for the new event. For example, if a queue event is defined in MAC 

layer, a queue event handler is added in MAC layer interface to handle this event.  

To implement the event-driven mechanism in the CLMM, we define events and event-handler 

functions in layer-interface module. We set up the thresholds of some specific metrics (i.e. 

queue length or busy time) in the event handler functions. The layer-interface updates the 

values of the metrics and compares the values of the metrics with the thresholds based on the 

events. If the value is between the thresholds, the event handler function does nothing but 

keeps on updating and comparing. If the value is upper or lower than the thresholds, the event 

handler function triggers an action according the configured event-driven mechanism. For 
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instance, if the value of queue length reaches the threshold, the action module delivers a 

message to the layers.  

The event handler function supports event signaling function. The event signaling function 

sends out a signaling message to the layers or neighbors when a threshold is exceeded. For 

example, when the MAC queue length reaches its maximum value that the MAC layer cannot 

handle, a queue overflow event happens, the event handler function sends out a message to 

the layers. Therefore other layers know the state of MAC queue immediately.   

3.2.4 Message Router 

The message router function works like a router. But instead of delivering packets, it delivers 

all different messages for other functions from sources to their destinations. It supports 

broadcast and unicast types. It also transfers the routing messages to IP routing protocol. In 

fact, the message router provides a data channel for the CLMM. All the messages are 

transferred through the message router. As described in section 3.2.3, all the messages are 

categorized and each message has its ID. Therefore it is easy for the message router to deliver 

messages to the destinations.  

3.2.5 Storage Function 

The Storage function provides a data pool for the CLMM. It has a small size database. This 

database stores all the values of the metrics sent by the monitoring module during the 

simulation.  

The storage function makes it easy for other functions to retrieve the values of the metrics. 

And it also reduces the retrieving time. That means the action function can take less time to 

get the data and it takes an action more quickly. Time is a very critical sector to the action 

function. The less time it spends the more accuracy it gets.  

When the storage function receives a message, it checks categorized types. If the message is a 

specific metric message, it stores the value of the metric to its database. When the data has 

been saved, it sends a “save_done” message to the source. If the message is a generic process 

message, such as a query message coming from the action module, it retrieves the value of the 

metrics accordingly and sends the result back to the action module. For example, to monitor 

whether the values are lower or above the thresholds or not, the action module retrieves the 

values of some metrics (i.e. busy time) from the storage module periodically. First the action 

module sends a query message to the storage module. Receiving the request, the storage 

module retrieves the values from the database and sends the results back to the action module 

directly. The Data types for the database are shown in Table 3-3. 
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Number Types 

1 Metric type 

2 Event type 

3 Metric name 

4 Original value 

5 Timestamp_Original 

6 Average Value 

7 Timestamp_Aver 

 

Table 3-3 The data types for the database 

3.2.6 Trace Module 

The trace module provides the trace files that record all the information generated by the 

CLMM during the simulation. With the trace module, we can not only analyze the results of 

the metrics that CLMM monitored, but also get the message information of the events.   

3.3 Extensibility of the Framework  

The CLMM is implemented in NS2 with NSMIRACLE extension. Based on dynamic and 

modular characters of the NSMIRCALE, the main character of the CLMM is modular 

extensibility. This framework provides interfaces for the monitor module. With these 

interfaces, the CLMM can be used as a prototype of cross-layer monitoring. Based on the 

prototype, it can also be extended to provide new functionalities. In this section, we will 

introduce these characters of CLMM briefly. The basic contents of NS2 and NSMIRACLE 

[19] are introduced in section 4.1 and section 4.2.  

3.3.1 Module Extensibility 

Based on NSMIRCALE, all modules of CLMM are easy to be extended. NSMIRCLE uses 

Module instead of NS2 Agent [21].  Thanks to the Module class, modules can communicate 

with each other (in same, above or bottom layers) and handle or modify packets. All the 

modules are derived from a base class Plugin which is designed to attach any module direct to 

the Node-Core external from the stack of modules [19]. We modify the Plugin class by adding 

new interfaces and functions. By using the virtual functions, we can use these new interfaces 

and functions in derived classes and functions. Interface extension and function extension can 

be easily done without modifying the father class. That means new methods and new 

configuration can be realized easily by using override or overload techniques. In CLMM, all 
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these configurations are done by the modified PlugIn class. At the same time, the 

configuration for every module is specific. For example, one module needs a sendup () and 

senddown () functions, another module has messages and message handle interfaces. By 

deriving from the PlugIn class, the sub-modules can select and configure their own functions. 

We also integrate the methods for adding and managing the interfaces. Therefore the CLMM 

can add its own interfaces and functions in need. 

3.3.2 Event Extensibility 

In CLMM, an event is defined as an instance event. That means the event must be handled 

immediately. All the events for CLMM are derived from NS2 base class EVENT [21]. That 

makes the events are scheduled and handled by NS2 scheduler.  In NS2, an event is triggered 

after duration of a time parameter.  If the parameter is zero, then the event is an instance event. 

The CLMM has a base event class and event handle class. The base event class defines one 

basic event and one event handle function. With this base event class, new events can be 

extended by inheriting and deriving from the base event class. The new event handle function 

can also be added in a same way. The events are added or generated in the modules. When the 

condition is satisfied, an event occurs and it notices NS2 to schedule the event. NS2 schedules 

the event and notice the event handle function to process it. For example, based on the base 

event class, we can define a new event and event handle function for MAC layer by setting up 

a new event type. If the MAC event occurs and is thrown out, the MAC interface catches it 

and handles the event based on the event type. The character of event extension makes the 

CLMM flexible and easy to define a new event. 

3.3.3 Message Extensibility 

In NSMIRACLE, all messages are different. Every message has one global CLMessage type. 

New messages are added by deriving from the CLMessage class.  The CLMessage types are 

initialized and registered automatically when the NSMIRACLE is loaded.  In CLMM, the 

messages are different. Although the messages of the CLMM are based on NSMIRACLE 

CLMessage class, the structure of messages for the CLMM is simplified. Compared to the 

messages of NSMIRACLE, the messages implemented for the CLMM are categorized to 

three types (as described in section 3.2.2). The CLMM has a message type list and message 

sub-type list. The sub-type list includes all message sub-types. These sub-types define which 

metrics of the layers the messages belong to. By using the message type and the sub-type, the 

message processing of the CLMM is simpler than the NSMIRACLE CLMessage. The less 

message types means using less resource. Furthermore, new messages can be added and 
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extended easily by deriving from the base CLMessage class. To add new messages, first we 

add new message types and sub-types to their type lists. Then, we add message handle 

functions for these new messages. All the new messages are initialized and registered 

automatically. To add an INTERFACEMSG message is simpler. For example, if we want to 

add a message (i.e. network_ett) for network layer, we add a sub-type “network_ett” to the 

sub-type list and a message handle function for this message. By this way, message extension 

for the CLMM becomes very flexible and efficient.     

3.3.4 Metrics Extensibility 

In CLMM, each metric is encapsulated as a container. The container encapsulates data and the 

operation methods. The calculation methods and algorithms are different due to the different 

metrics. And they are implemented within the container. Thus the data and the operations 

methods are bond together to realize the data hiding. The only interfaces of metrics that 

connect to outside are setvalue(), getvalue() functions and the parameter list. Via these 

interfaces, the metrics work like “black boxes”. To get the results, what we need to do is to 

input the data. And then they can be calculated independently (without being affected of other 

modules). The advantages of using “black box” are summarized as follows:  

 Every black box has its parameter list and operation methods. The communication 

between the metrics and modules are via interfaces. To get the results, only data need 

to be input. From outside view, all the “black boxes” are the same. All metrics are 

calculated by their parameter lists and connected by their interfaces. When the metrics 

are stored, the storage module does not know (and does not care about) what it has 

stored. By this way, metrics can be highly independent.   

 Since the calculation methods and algorithms are encapsulated in the “black box”, the 

operation methods for the metrics are independent and specific too. And they are 

easily to be changed without changing other modules. For example, if we want to 

calculate a metric based on different models, all we need is to modify the operation 

methods and the parameter list without changing other parts of the modules. 

 Using “black box”, the metrics are also flexible to be extended. The metrics can be 

inherited and derived. New metrics can be created quickly by inheriting and 

overloading their operation methods.    

 



 

 39 

3.3.5 Layer-interface Extensibility  

In CLMM, layer-interfaces are specified for the layers. In fact, each layer-interface is a thin 

client of the monitor module which is hooked to the layer. The layer-interface is a friend class 

of the Layer. Therefore it can access to the layers and fetch the information of the layers.  It 

takes charge with the communication between the layers and the monitor module. It also 

handles the messages and events of the layers. The advantages of using layer-interface are 

twofold: 

 The modification for the communication between each layer and the monitor 

module is reduced to minimum.  

 With the layer-interfaces, each layer can implement its own metric handle functions 

and event handle functions. Handling metrics and events within the layers means it 

uses less resource and takes less time to react.  

All the layer-interfaces are inheriting from the base Interface class. The base Interface class 

has a basic message handle function and event handle function. The new layer-interfaces 

can be added by deriving from the base Interface class. For example, in NSMIRACLE, two 

kinds of MACs are implemented: the dei802.11mr and NSMIRACLE 802.11 MAC.  If we 

want to use these two MAC layers for the CLMM, we simply create two layer-interfaces 

for them and add the layer-interfaces in the simulation scripts. By this way cross-layer 

messages can be implemented for the layers without modification of the layers. 

3.4 Metrics 

3.4.1 Introduction 

As described in section 2.5, different sets of metrics are used for different research proposals. 

The cross-layer monitoring design for wireless mesh networks should integrate the inter-

layers and inter-nodes metrics to improve the network performance efficiently. However, [16] 

shows that too much metrics cause performance decreased. Furthermore, the limitation of 

software developing environment should be considered too. Because the implementation of 

the CLMM will be done in NS2 with NS-MIRACLE extension, parameters for the monitoring 

module should be selected carefully and following two principles: 

 First, these metrics can be used to improve the network performance efficiently. 

 Second, metrics should be implemented easily in NS2 with NS-MIRACLE. 
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To select metrics for the CLMM, we first examined all metrics used in the proposals 

presented in section 2.5. Then we made a list of these metrics and selected metrics for the 

monitoring modules according to the above two principles. The metrics we have selected are 

listed in Table3-4, Table3-5 and Table3-6. These metrics will be implemented for the 

monitoring module. However, not all metrics will be implemented in the monitoring module 

at the same time. Not only for time limit reason, but also for the reason of software overhead 

that should be considered during the software design section . Not all metrics are needed for 

one specific research proposal. Therefore metrics for monitoring module should be 

configurable. The configurable feature of the module not only makes it easy to implement 

metrics, but also flexible to add or change metrics if needed.  

First, we made a prioritization of the metrics implementation. These metrics will be 

implemented in three phases. In first phase we plan to implement the metrics listed in table1, 

which are useful and easy to be implemented for the module. These metrics should be 

finished for this project. The metrics in table2 are more difficult and will be implemented if 

time permits. The metrics listed in table3 are not supported in NS2 with NS-MIRACLE 

extension currently, but can be implemented in future work.   

Prioritization Metrics Layer Used for Classification 

Phase1  

the MAC queue length MAC rate control 

Frame 

Rates/Counters 

Metrics  the average packet send 

rate Network rate control 

Per neighbor/link 

metrics 

the average packet arrive 

rate Network rate control 

Per neighbor/link 

metrics 

the channel busy time MAC 

calculate channel 

utilization percentage 

Frame 

Rates/Counters 

Metrics 

the number of busy period MAC  channel utilization  

Frame 

Rates/Counters 

Metrics  

the number of one hop 

neighbors Network link quality 

Frame 

Rates/Counters 

Metrics 

Table 3-4 Metrics that are Implemented for CLMM  in Phase1 

3.4.2Classification of Metrics 

The metrics shown in table3-4-3-6 are clustered in three groups: Per neighbor/link metrics, 

Frame Rates/Counters Metrics and Delay Metrics. In this section we describe the definitions 

of the classifications, and then we describe these metrics in detail in section 3.6.3. 
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Prioritization Metrics Layer Used for Classification 

  

Chanel idle rate 

PHY/MAC idle channel; 

Frame 

Rates/Counters 

Metrics 

  

Channel transmission 

rate(air time) 

PHY/MAC 

channel occupied by 

successful 

transmission of the 

node;  

Frame 

Rates/Counters 

Metrics 

  

Channel collision rate 

PHY/MAC 

channel occupied by 

a collision of nodes 

Frame 

Rates/Counters 

Metrics 

  

 

 

 

Channel busy rate 

PHY/MAC 

busy channel due to 

activity of other 

nodes, detected by 

means of either 

physical or virtual 

carrier sensing 

(i.e.,NAV) 

Frame 

Rates/Counters 

Metrics 

  

the number of received 

data frames with/without 

retransmission MAC aggregated statistics  

Per neighbor/link 

metrics  

  

the number of sent data 

frames with/without 

retransmission MAC aggregated statistics  

Per neighbor/link 

metrics  

  

the number of 

retransmissions Link overhead 

Frame 

Rates/Counters 

Metrics 

  

the average channel idle 

time MAC 

calculate channel 

utilization percentage 

Frame 

Rates/Counters 

  per hop delays MAC 

End-to-end path 

delay Delay Metrics 

 Phase2 

Average frame arrival 

rate MAC Rate control  

Frame 

Rates/Counters 

  

the relative signal 

strength (RSSI) of the last 

ACK on transmission(per 

link) PHY 

CCA,link quality 

measurement(a 

measure of the RF 

energy received by 

the received signal 

strength level) 

Per neighbor/link 

metrics   

  used channels PHY Configuration states 

Frame 

Rates/Counters 

Metrics 

  the number of failed 

receptions (due to queue 

overrun, bad CRC, PHY 

errors or decryption 

problems) MAC link quality 

Frame 

Rates/Counters 

Metrics 

  

  

  

Expected Transmission 

Count /ETX Network 

link quality/packet 

loss ratio 

Frame 

Rates/Counters 

Metrics 

  ETT Network link quality 

Per neighbor/link 

metrics 

  per class delay MAC  current hop delay Delay Metrics 

  Average frame length Link/MAC traffic load  

Frame 

Rates/Counters 

Metrics 
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Table 3-5 Metrics that to be Implemented for CLMM  in Phase2 

Prioritization Metrics Layer Used for Classification 

Phase 3 

the number of received 

frames dropped or with 

wrong BSSID MAC Aggregated metrics 

Frame 

Rates/Counters 

Metrics 

transmit power PHY 

transmission range 

adaption(MAC)/power 

saving 

Per neighbor/link 

metrics 

end-to-end delay Network 

overhead/routing(delay-

based) Delay Metrics 

RTT(per hop) TCP  

threshold-based 

monitoring 

Per neighbor/link 

metrics 

 

Table 3-6 Metrics that to be Implemented for CLMM in Phase3 

3.3.2.1 Per Neighbor/Link Metrics  

Per neighbor/link metrics store per neighbor and per link information related to particular 

transmission at MAC layer [14]. This kind of metric relates the number of 

received/transmitted data frames or bytes, the relative signal strength (RSSI) or the number of 

retransmissions. These metrics can be considered as elementary metrics and can be obtained 

directly from output of trace files during the simulation in NS2. They can be used for 

calculation of average value of a given metrics (i.e. the average sending rate). 

3.3.2.2 Frame Rates/Counters Metrics 

Frame Rate/Counter Metrics provide global status on the usage of the IEEE 802.11 network 

interface during the transmission. For example, the metrics can be: the number of the frame 

retransmissions, or the number of one-hop neighbors within a time interval. 

3.3.2.3 Delay Metrics 

Delay Metrics provide the sum of time needed for a packet from source to destination. Delay 

metrics can be one-way delay metrics or round-way metrics. One-way delay is the difference 

between the time when the source sends out the first bit of the packet and the time when the 

destination receives the last bit of the packet. Round-trip delay is the sum of the time needed 

for a test packet travel from source A to destination B and from B back to A. The metrics can 

be one-hop delay, or per class delay.   
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3.4.3 Metrics for Monitoring Module 

3.3.3.1 Number of One-hop Neighbors:  

The number of one hop neighbors is the total number of one-hop neighbors of the node in a 

given time interval. The number of one hop neighbors can be counted from a routing table. 

3.3.3.2 Average Packet Arrival Rate:  

The average packet arrival rate is the number of packets that arrive at the node within a time 

interval. The average packet arrival rate is varying due to the link quality. The high packet 

arrival rate can lead to queue overflow when the node can not handle. And that will result in 

high loss level on the uplink. 

3.3.3.3 Average Packet Sending Rate:  

The average packet sending rate is the number of packets that sent at the node within a time 

interval. The average packet sending rate is varying due to the link quality. The high packet 

sending rate can lead to queue overflow when a mesh point has a high downlink delay due to 

the increase in retransmission levels or high error rate. And that will result in high loss level 

on the downlink. 

3.3.3.4 Channel Busy Time 

The channel busy time is defined to be the amount of time during which a node using the CS 

mechanism to sense the channel busy [8]. As described in section 2.1.2.1 and 2.1.3.1, the 

channel is sensed busy as a result of two different functions: physical carrier sense (P-CS) or 

virtual carrier sense (V-CS). Since all stations are synchronized in single-hop IEEE802.11 

wireless networks, the channel busy time equals the duration of a successful packet exchange 

or the duration of a collision. However, due to lack of coordination in the multi-hop wireless 

networks, the channel busy time is much longer than that in single-hop wireless networks. 

[20] computes the average channel busy time as: 

 

                                       Tb (i) = Tidle (i) [1−Q(υ)]/ Q(υ)        Equation 3-1 

Where Tidle (i) is the average duration of an idle period, Q (υ) is the probability that none of 

virtual nodes is active.   
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3.3.3.5 Number of Busy Period 

The number of busy period is the number of times that a channel is sensed busy. We denote 

the number of busy period as num_busyperiod and the total number of the busy period as 

sum_busyperiod. The calculation of the number of busy period is shown in Figure 3-7.  

As described in section 2.1.3.1, when the node starts to initiate a frame, it sets the NAV to the 

time for which it expects to use the medium. All nodes monitor the wireless medium. If the 

wireless medium is busy, the number of busy period is incremented by one and the NAV 

counter is frozen. If the wireless medium is idle, the V-CS checks if the NAV is zero. If not, 

the NAV is decremented by one and the node keeps monitoring the wireless medium. Before 

the NAV is zero, the virtual carrier-sensing function indicates that the medium is busy.  When 

the NAV reaches 0, the virtual carrier-sensing function indicates that the medium is idle. The 

frame is sent out right after the NAV reaches zero. 
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Figure 3-7THE CALCULATION OF THE CHANNEL BUSY TIME AND THE CHANNEL IDLE TIME 

3.3.3.6   MAC Queue Length 
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The value of the MAC queue length indicates the queue space utilization and how busy the 

MAC layer is. We use the MAC queue length as an indication of the current network traffic 

load.  When the traffic stream increases, the arriving rate is larger than the sending rate and 

the queue builds up. If the arriving rate reaches the maximum capacity that MAC can handle, 

this queue rapidly jams and drops occur. When the traffic is low, the queue length stays at a 

low level. One local congestion monitoring mechanism is proposed in IEEE802.11s standard 

draft [5]. Each MP observes the level of congestion based on the queue size. When the traffic 

increases, the MP can not forward and source data upstream as fast as the incoming rate, 

congestion occurs. If queue size is sufficient, the MP sends out a congestion signal to its one-

hop neighbors.  

3.3.3.7 Channel Idle Time 

The channel idle time is defined to be a duration time during which the CS mechanism has 

indicated a channel idle indication [8]. A node senses the channel is idle by using P-CS or V-

CS. [20] calculates the average channel idle time as below: 

Tidle(i) = 1/ ⅀u gu                  Equation 3-2 

Where the gu is the activation rate [20]. 

3.3.3.8 Number of Idle Time 

The number of idle time is the number of times that a channel is idle. We denote the number 

of idle time as num_idletime and the total number of idle time as Sum_idletime. As shown in 

Figure 3-7. The number of idle time is incremented by one when the wireless medium is 

sensed idle. 

3.3.3.9 Channel State Rates:  

[20] identify 4 different channel states: idle channel, channel occupied by successful 

transmission of the station, channel occupied by a collision of the station and busy channel 

due to activity of other nodes. The occurrence probability of each of the four channel states is 

specified as follows, 

 

         ∏s = τ * (1-p)                          Equation 3-3               

         ∏c = τ * p                               Equation 3-4 

         ∏σ = (1- τ) * (1-b)                  Equation 3-5 
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         ∏b = (1- τ) * b                       Equation 3-6                        

 

Where ∏s is the probability of transmission channel, ∏c is the probability of collision 

channel, ∏σ is the probability of idle channel, ∏b is the probability of busy channel, τ is the 

probability that the station sends out a packet after an idle slot, p is the probability that a 

transmission of the station is not successful, b is the probability that the channel becomes 

busy after an idle slot due to activity of other nodes [20].  

3.3.3.10 Number of Received Data Frames with Retransmissions:  

The number of received data frames is the total number of decoded data frames received at 

the MAC layer within the time interval, including the retransmission data frames. It is a per-

link metric, which can be used for aggregated statistics. 

3.3.3.11 Number of Received Data Frames without Retransmissions:  

The number of received data frames is the total number of decoded data frames received at 

the MAC layer within the time interval. It does not include the retransmission of data frames.  

3.3.3.12 Number of Sent Data Frames with Retransmissions:  

The number of sent data frames with retransmission is the total number of data frames that the 

node has sent within the time interval, including the retransmission data frames. 

3.3.3.13 Number of Sent Data Frames without Retransmissions:  

The number of sent data frames without retransmissions is the total number of data frames 

that the node has sent during the transmission, but not includes the retransmission data 

frames. 

3.3.3.14 Number of the Frame Retransmissions:  

The number of the frame retransmissions is the total number of the frames retransmitted on a 

link within a given time interval. The link layer will retransmit the frame a certain number of 

times until it receives the ACK, before reporting it as lost to the higher layers. The metric 

indicates the channel condition. [16] shows that the higher retransmission value will result 

higher end- to-end delay. The number of the frame retransmissions can also be used for 

automatic rate control mechanism. We denote the number of the frame retransmissions as 

Num_retransmission and the sum of the frame retransmissions as Sum_retansmission. The 

calculation of the number of the frame retransmissions is shown in Figure 3-8. When the link 
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layer sends out a frame to the destination, first it waits an ACK frame from the destination. If 

it can not receive the ACK frame within an ACKTimeout [8] interval, the number of the 

retransmission is incremented by one. Before the maximum number of retransmission is 

exceeded, the sender retransmits until it receives an ACK.  When all retransmission attempts 

have been exhausted or an ACK frame is received, the total number of retransmission is 

outputted. 

 

Num_retransmission=0;
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Num_retransmission=Num_retransmission+1;

Num_retransmission
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No
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No
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Figure 3-8 THE CALCULATION OF THE NUMBER OF THE FRAME RETRANSMISSIONS 

 

3.3.3.15 Per-hop Delay:  

[13] measures per-hop delay for end-to-end delay measurement. In the CLMM, we denote 

per-hop delay as D=Ta-Tr, where Ta is the time at which the MAC layer ACK is received, Tr 

is the time where the MAC starts the transmission process from the frame to the receiver the 

first time. The difference between time gives us the total delay involved in forwarding a data 

frame on that link. 
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3.3.3.16 Average Arrival Rate of Frame:  

The average arrival rate of frame is the number of frames arrived at MAC layer within a time 

interval.  

3.3.3.17 Received Signal Strength Indication (RSSI):  

The RSSI is a measurement of RF energy received [8]. It is an optional parameter that has a 

value of 0 through RSSI Max (0-255, the maximum value is depended on the vendor).  RSSI 

is used for clear channel assessment (CCA) and link quality measurement. RSSI is stored on 

TX/RX descriptor and is measured by baseband PHY for each individual packet. 

3.3.3.18 Expected Transmission Count (ETX):  

[24] presents Expected Transmission Count (ETX), ETX is defined  as  the  expected  number  

of MAC  layer  transmissions  that  is  needed  for successfully  delivering  a  packet  through  

a wireless  link.  Each node estimates the frame loss ratio pf to each of its neighbors within a 

time interval, and gets an estimate pr of the reverse direction from its neighbor. These values 

are obtained using broadcast probe packets at the link layer once every second. The pf and pr 

are the fraction of the probes and the acknowledgments correctly decoded in the last ten 

seconds. As for a link metric, ETX captures the effects of packet loss ratios. This metric is 

calculated as: 

ETX=1/ (1-pf) * (1-pr)       Equation 3-7 

Where the pf is the forward loss ratio and pr is reverse delivery loss ratio. 

ETX has the best performance for static networks, but it can not react quickly enough to 

highly variable and bursty error situations.  

3.3.3.19 Expected Transmission Time (ETT): 

Because a lower bit rate ends up using the channel for a longer period of time, [25] presents 

Expected Transmission Time (ETT).  The  ETT  is  defined  as  the expected MAC  layer  

duration  for  a  successful transmission of a packet at the link. The  ETT  metric captures  the  

impact  of  link  capacity  on  the performance  of  the  path. It is calculated as: 

ETT=(s/b)/ETX                 Equation 3-8 

Where s is the packet size, b is the bandwidth of the link. 
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3.4.4 Exponentially Weighted Moving Average (EWMA) 

We use EWMA to calculate the average value for these metrics. For example, the average of 

queue length is calculated as  

Q_av n =w*Q n+ (1-w) Q_av n-1            Equation 3-9 

Where w is a weight (0<w<1), n is the number of observations to be monitored, Q n is the 

current queue length, Q_av n is current average queue length.  The delta value of each metric 

is calculated as Q_delta = Q_av n - Q_av n-1. 
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4 Implementation 

We implement the CLMM in NS2 with NS-MIRACLE extension. In this section , we will 

present the details of implementation. First we introduce NS2 and NS-MIRACLE in section 

4.1 and section 4.2. Then we present the classes and functions of the CLMM in section 4.3. In 

section 4.4, we introduce the process of the implementation. 

4.1 NS2 

To simulate and evaluate the monitoring module, it is useful to use the open source network 

simulator, NS-2 [21]. NS-2 is a discrete event simulator written in C++ and Otcl for 

networking research. It works at packet level and schedules the events such as packet and 

timer expiration. It provides substantial support for simulation of TCP, routing, and multicast 

protocols over wired, wireless and satellite networks.  NS2 is not a real time simulator. 

Instead of handling the events at the same time, the centric event scheduler handles events one 

by one. However it is not a serious problem since the events are often transitory in most 

network simulations. Nowadays, NS2 is widely used as a standard experiment environment in 

research community.  

4.1.1 NS2 Architecture 

The architecture view of NS2 is shown in Figure 4-1. NS2 consists of two kinds of classes: 

C++ classes and OTcl classes. The C++ classes are used for packet handling and event 

processing. The event scheduler is the main controller of events. The network components are 

Node, Link, Queue, etc. Both the event scheduler and network components are written in 

C++. The OTcl classes provide control and configuration functions. With OTcl scripts we can 

define network topologies, schedule events or applications that we want to simulate. The tclcl 

is a language that provides a linkage between C++ and OTcl. The compiled objects are 

available to the OTcl interpreter through the OTcl linkage. Users design and run simulations 

by using an OTcl scripts. NS2 takes the OTcl script as an input and produces a trace file as 

output. The one-one correspondence between classes of these two class hierarchies is shown 

in Figure 4-2. 
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Figure 4-1 Architecture View of NS2 [26] 

 
 

Figure 4-2 C++ AND OTCL: THE DUALITY [26] 

Figure 4-3 shows a partial OTcl class hierarchy of NS2. The TclObject is the superclass of all 

OTcl library objects (scheduler, network components, timers and the other objects including 

NAM related ones) [23]. NsObject class is the superclass of all basic network component 

objects that handle packets, which may compose compound network objects such as nodes 

and links. The basic network components have two kinds of subclasses: Connector and 

Classifier. A connector performs some function such as receiving and delivering the packet to 

its neighbor. The function of a classifier is to distribute incoming packet to the correct agent 

or outgoing link. 
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Figure 4-3 Class Hierarchy (Partial) [26] 

4.2 NS-MIRACLE 

Although multi-rate features are added to the simulator, however, NS-2 lacks flexible tools 

for handling the cross-layer messages. [19] presents Multi InteRfAce Cross Layer Extension 

for NS-2 (MIRACLE), which is a set of libraries for NS-2 to enhance the functionalities 

offered by NS-2. NS-MIRACLE provides an efficient and embedded engine for handling 

cross-layer messages. It also has a modular structure of the protocol stack in NS-2 that 

enables users to create multiple modules on each layer in the stack. NS-MIRACLE libraries 

make multi-layer design and interlayer communication in NS2 possible and flexible. For 

instance, users can set up specified multiple layers in the same node. Cross-layer messages 

can be exchanged among the Layers. Therefore it is useful to help researcher in implementing 

any type of cross-layer and multi-technology solutions. 

4.2.1 NS-MIRACLE Architecture 

NS-MIRACLE has a multi-layer architecture with cross layer communication functionalities. 

There are a set of new classes that are the basic blocks to model heterogeneous architectures. 

Figure 4-4 shows the architecture of NS-MIRACLE. The basic classes of NS-MIRACLE are: 

Module, PlugIn, NodeCore, Cross-layer Message. We will introduce these classes in the 

following section s. 
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4.2.1.1 Module 

Module is a class designed to contain any protocols or modules placed in stack to follow the 

OSI model in the designing process of the structure [19]. As shown in Figure 4-4, one or more 

modules are placed in the same protocol layer. The main function of Module is to 

communicate with each other (in same, above or bottom layers) and to handle or modify 

packets.  The communication between the modules of adjacent layers is supported by the 

Server Access Point (SAP). The SAP is a channel for the communication between modules of 

adjacent layers. SAP is also used for tracing in simulations. All of the modules in the same 

layer are connected to the NodeCore via Cross-layer SAP (CLSAP). ClSAP is defined to 

deliver the cross layer messages for the modules. 

 

Figure 4-4 An Example of NS-MARICLE Architecture [23] 

4.2.1.2 Node-Core and Cross-Layer Message 

Node-Core is a class that dispatches all cross layer messages of modules.  NodeCore is 

designed to enable communication among Modules and thus to facilitate cross-layer design. 

And NodeCore functionality consists of managing information and providing functionalities 

of common interest for all Modules [23]. With NodeCore the cross-layer messages of the 

modules can be shared and exchanged in NS-MIRACLE. Also NodeCore maintains the 

geographical position for each node.  

In NS-MIRACLE, the cross-layer message is defined in the ClMessage class. There are two 

message types in NSMIRACLE: the synchronous (UNICAST) and the asynchronous 

(BROADCAST) CLmessages. The asynchronous CLMesssage does not request any direct 

response answer. The message is directed to all the modules of a specific layer or of the whole 

architecture. The synchronous ClMessages need the recipient answers when the ClMessages 

has been received. The message is directed to a specific module or plugin recipient.  
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Every message has its source id and destination id.  The source id is a unique id that generated 

during the simulation. If the message is a UNICAST message, the destination id is the id of 

the destination module or plugin. If the message is a BROADCAST message, the destination 

id is the layer id or the broadcast address. The CLMessage class has member functions to 

handle the messages.  With the CLMessage class it is possible to define new messages in 

order to allow cross any type of cross layer communication [23].  

These cross-layer messages are exchanged via the CLSAP. The CLMessages delivery is done 

by the CLTracer class. The CLTracer class has CLMessageTracer classes. When the 

CLTracer hanldes the messages, it checks the incoming CLMessage ID and gives it to the 

correctly ClMessageTracer.  

As shown in Figure 4-4, all Modules and PlugIns connect to Node-Core via CLSAP. 

Therefore all cross-layer messages are exchanged through the CLSAP and are managed by 

Node-Core. With this structure, cross-layer messages of each layer can be designed and 

obtained as we need. Furthermore, these messages can be shared and used by different 

modules. That means the management of the state of common resources or information about 

the current module status is available in NS-MIRACLE.  

4.2.1.3 PlugIn 

PlugIn class is the parent class of Module. It is designed to attach any module direct to the 

Node-Core external from the stack of modules [19]. PlugIn has only the cross layers 

communication functionalities of a Module. Therefore it is equipped with the ClSAP to 

connect to the Node-Core. PlugIn makes it possible to contain all features that are difficult to 

put in a fixed position of the stack. Also it provides external functions for collaboration of 

modules in the stack and management of cross-layer functionalities.  

4.3 Implementation of the CLMM 

The CLMM is implemented in NS-MIRACLE. The implementation consists of: 

 An implementation of the MonitorPlugIn, tmClMessage, Metrics, Mac_Interface  

and storage module; 

 An extension and modification of NSMIRACLE PlugIn module, ClMessage 

module, Mac_802.11 module; 

 A modification of Aodv-uu for NSMIRACLE [29]; 

 A modification of  dei80211mr for NSMIRACLE: 
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 Port Garretto patch [28] for NS2. The Garretto patch [28] for NS-2 monitors 

MAC layer busy time. From the MAC busy time the MAC metrics can be 

derived. 

 Two scenarios evaluate the CLMM and analyze the results. 

The basic modules of CLMM are MonitorPlugIn, tmClMessage, Metrics, Interface, Routing 

module. Figure 4-5 shows the relationship of classes of CLMM. In this section, we will 

describe these modules and their classes and functions in detail.  
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Figure 4-5 The Relationship of Classes of CLMM 
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4.3.1 The MonitorPlugIn Module 

The MonitorPlugIn module defines the two monitoring mechanisms that provide time-driven 

and event-driven monitoring functions for cross-layer monitoring. It handles cross-layer 

messages receiving and delivering. It calculates the average values for these metrics. It also 

has a storage sub-function which stores the results in a data pool. Using these results, the 

MonitorPlugIn module not only outputs statistic data for the simulations and evaluations, but 

also supports other modules (i.e. the action module) to perform data retrieving and comparing 

functions for network performance optimization mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-6  The structure of the MonitorPlugIn class 

The structure of MonitorPlugIn module is shown in Figure 4-6. The MonitorPlugIn module is 

inherited from PlugIn class [19], which is the father class of Module in NSMIRACLE. As 

described in 4.2.1.3, the NSMIRACLE PlugIn Module has the message events handling 

function, message exchanging and delivering function. All modules are connected by 

dedicated objects, referred to here as Connectors [19]. The MonitorPlugIn class has a built-in 
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friend class MonitorTimer which carries out timing monitoring action. All the messages are 

collected via this module. The virtual function crLaycommand ( ) handles the two kinds of the 

cross layer messages: INTERFACEMSG and ROUTINGMSG.  When an event occurs during 

the run time, an 'onevent' message is sent to the monitorPlugIN module. The crLaycommand( 

) handles the message by checking the event type and taking an action accordingly. For 

example, if a queue overflow event occurs, the monitorPlugIn sends out a signal message with 

the value of the metric. If a metric event (I.e. macpktsend or macpktrecv) occurs, the 

monitorPlugIn fetches the values of the metric, calculates the average values and stores the 

results to the storage module. When the monitorPlugIn receives a 'queryresult' message, it 

fetches the values of the metrics, calculates the average values and stores the results to the 

storage module. 

Function Start ( ) is used to broadcast messages to all modules and discover the modules that 

can be monitored. It is also used to send the message to these modules. The member Mtmr_ is 

a timer class which has timing function for the MonitorPlugIn. When the modules are ready, 

the Mtmr_ triggers monitor action by period. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 The structure of the Storage Module 

 

4.3.2 The Storage Module 

The Storage module is a sub-module of the MonitorPlugIn module. The storage module stores 

all the values of metrics that the CLMM monitor. The structure of this module is shown in 
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Figure 4-7. The storage module has the basic functions of insert, remove, find and output 

operation.   

4.3.3 The Mac_Interface Module 

The Mac_Interface module is inherited from Interface Class. As showed in Figure 4-8, the 

MAC_interface module consists of recv( ), crLayMsgHandle( ) and onEventAction( ) classes. 

The recv( ) class receives a cross-layer message during the run time. The crLayMsgHandle( ) 

class handles the  message according to the type of the message. If the message type is 

MONITORMSG, it answers the monitorPlugIn module by sending back the INTERFACE 

message to the monitorPlugIn module. If the message is a query message, it fetches the values 

of the metrics and sends the results back to the monitorPlugIn module. The onEventAction( ) 

implements event-driven mechanisms for  the CLMM. Currently this function handles two 

kinds of events: QLENGTHEVENT (a queue overflow event) and MACEVENT (a metric 

event, for example, a packet receive event). If the event is a QLENGTHEVENT event, which 

means a queue overflow event occurs, the Mac_interface module retrieves and updates the 

values of queue length. Then it sends out a signal message (an 'onevent' message) to the 

monitorPlguIn module.  If the event is a MACEVENT, the Mac_interface module updates the 

value of the metric and sends a message to the monitorPlugIn module. 

The Mac_Interface module is a module hooked to the monitorPlugIn modules. When it is 

loaded in Mac modules, it takes in charge of all message delivery, data collection, message 

processing and event handling. It also responses to the monitor module command.   

                

 

 

 

 

 

 

Figure 4-8 The Structure of the Mac_interface Module 
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4.3.4 The tmClMessage Module 

The tmCLMessage Module has two kinds of base classes: the ClMessage and CLMessage 

Tracer classes.  As shown in Figure 4-9, this module consists of three message classes and 

tracer classes:  

 ClMsgMonitor( ) and ClMsgMonitorTracer( ),  

 ClMsgInterface( ) and ClMsgInterfaceTracer( ), 

 CLMsgRouting( ) and CLMsgRoutingTracer( ). 
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Figure 4-9 The Structure of tmClMessage Module 

The tmCLMessage module defines the basic messages, the message types and sub-types. 

Every message has its source id and destination id. The message types and sub-types for the 

CLMM are shown in Table3-3 and Table3-4. By using this module we can define new 

message types and sub-message types. We can also derive new messages and message handle 

functions based on the existing messages. 

The ClMsgMonitor( ), ClMsgInterface( ) and CLMsgRouting( ) classes are derived from 

CLMessage class. The basic message handle functions for these class are: getMtype(), 

setMtype(), getEventType(), setEventType(), getValue(), setValue(). Furthermore, these 

classes have their own message handle functions. 

The ClMsgMonitorTracer( ), ClMsgInterfaceTracer( ) and CLMsgRoutingTracer( ) are 

derived from CLMessageTracer class. With these ClmessageTracer classes, the message route 

module is implemented. The tmCLMessage module checks the source id and destination id 

and delivers the messages to the destination. 
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4.3.5 Metrics module 

The Metrics class is inherited from NSObject class. The Metrics class provides a set of 

functions to support the operations of metrics during the run time.  With these function, each 

metric can be set up and get by its name, type and ID number.      

4.3.6 Routing module 

 We modified the Aodv-uu for the NSMIRACLE [29] for the CLMM Routing module. The 

routing module not only provides routing function for the CLMM, but also supports message 

delivery for the CLMM. Furthermore, with using the Aodv-uu for the NSMIRACLE, the 

routing module also provides routing metrics (for example, the number of one hop neighbors) 

for the CLMM. 

4.3.7 Ifhanlder class 

 Ifhandler class handles events for the layer interfaces when the events occur.  Two kinds of 

events are implemented for this class: QLENGTHEVENT and MACEVENT. The function is 

shown in Figure 4-10. 

 

Figure 4-10 The Ifhandler Function 

4.3.8 Interface class 

Interface class supports a new interface setup and retrieving.  It has a set of functions to set up 

a new interface for the CLMM. Each interface has its name and id.   

4.4 Otcl Script 

To test the functionality of the CLMM module and analyze the simulations, two scenarios 

were written by Otcl.  To monitor the cross-layer messages, some modules are added in the 

script according to the implementation the CLMM and modification of NSMIRACLE 

modules.  
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MonitorPlugIn 

The command of setting up a new PlugIn module is shown as below: 

set plg [new MonitorPlugIn] 

When the MonitorPlugIn has been set up, it can be configured by adjusting the monitoring 

period value, the command is shown as below: 

$plg set period_ value 

To attach the MonitorPlugIn to the nodes, we use the following command: 

set p [$node addPlugin $plg 1 "PLUGIN"] 

MAC_Interface Module 

To add a new MAC_Interface module for the CLMM, we use the command as below, 

set macinf [new MAC_InterFace] 

Once the MAC_Interface module is set up, the MAC_Interface can be configured by setting 

up thresholds of the metrics, id and name. The configuration commands are: 

$LL set Qlen_threshold value 

                                                    $macinf setid value 

                                                    $macinf setname "string" 

To attach a new MAC_interface module to the link layer, we use the following command: 

$LL($n) addInterface $macinf 

 

Metrics module 

The different metrics are set up by using following command: 

                                               set met [new QlenMetric] 

Each metric is configured by its ID and name:  

                                               $met setid value 

                                               $met setname "string" 

The new metric can be added to the link layer by using a command: 

                                                     $LL($n) addMetrics $met 

The Variable of Metrics 

Six variables are set up in the scripts. The variables are shown in Table4-9.  To get the values 

of the metrics during the run time, we use following commands: 

set bt($i) [$plg($i) set busytime_ave] 

set ql($i) [$plg($i) set qlength_ave] 

                 set num_bp($i) [$plg($i) set num_busyperiod_] 
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     set num_neighbor($i) [$plg($i) set num_neighor_] 

set send($i) [$plg($i) set pktsend_ave] 

set recv($i) [$plg($i) set pktrecv_ave] 

 

variable Description 

busytime_ave the average busytime 

qlength_ave The average queue length 

num_busyperiod_ the number of busy perioid 

num_neighor_ 
the number of one hop 
neighbors 

 pktsend_ave 
the average number of packets 
send per second 

pktrecv_ave 
the average number of packets 
received per second 

 

Table 4-1 Variables of the Metrics 

Module/AODVUU 

The Module/AODVUU is attached to each node. The setup command is: 

$set Aodvs   [new Module/AODVUU] 

The command of setting up IP address and subnet for the each node is: 

                $set IpIfs [new Module/IP/AODVInterface] 

                                           $IpIfs addr value 

                                           $IpIfs subnet value 

Output Stored Data 

In order to verify the results of the stored data, we use a command to output all the data that 

the CLMM monitored: 

                                                 $ns at end_time "$plg($n) showmetrics" 

Start/Stop commands   

To start and stop AODVUU and PlugIn during the run time, we use the “start” and “stop” 

commands in the scripts: 

Aodv-uu start   

Aodv-uu stop 

PlugIn start 

PlugIn stop 

Two simulation scripts named clmm_mr.tcl and clmm_miracle.tcl are used to verify the 

performance of the CLMM module. Each simulation uses xgraph tool to draw the graph of the 

metrics. The graphs of metrics are aggregated into one aggregated graph.  
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5 Simulation and Evaluation 

5.1 Simulation setting 

Two simulations are written for the CLMM. The main goal of simulation is to evaluate the 

CLMM. In the first simulation we use NSMIRACLE MAC/802_11/Multirate for MAC layer. 

In the second simulation we use MAC/802_11/Miracle for MAC layer. The difference 

between MAC/802_11/Multirate and MAC/802_11/Miracle is link character. 

MAC/802_11/Multirate uses multi-rate MAC while MAC/802_11/Miracle uses single-rate for 

simulation. By default NSMIRACLE uses MAC/802_11/Multirate. To evaluate CLMM and 

compare the result of simulation, we modify MAC/802_11/Miracle MAC and make it usable 

for CLMM. Each simulation generates two CBR traffics. The first CBR traffic (CBR1) is sent 

from node0 to node4. The second CBR traffic (CBR2) is generated between node5 and node6. 

The first CBR traffic starts at the 1
st
 second. The second CBR traffic begins at the 31st 

second. The sending rate of the second CBR increases 100 packets every 10 seconds during 

the first 190th seconds. The sending rate of the second CBR deceases 100 packets every 10 

seconds after the 200th seconds. Because there is no variable “rate_” in NSMIRACLE, we 

can only set up CBR rate by using interval variable “period_”.  The setting of the simulations 

is shown in Table5-1. Each simulation runs two times. The first time we use topology 1. The 

second time we use topology 2. The difference between these two topologies is the distance of 

the wireless mesh nodes.   

Name Value 

simulation time 200 

PHY LAYER   

Carrier Sensing threshold 1.47E-011 

Receiving power threshold 7.14E-011 

Transmitter signal power 7.21E-003 

Frequency 2.47E+009 

Propagation Model Freespace 

Path loss 1 

MAC LAYER   

RTS/CTS off 

Routing   

Protocol Aodv-uu* 

Application1 CBR1 

Packet size 1000Byte 

Period 0.01 
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CBR1 start time 1st second 

CBR1 end time 291
th
 second 

Application1 CBR2 

Packet size 1000Byte 

Period * 

CBR2 start time 31
th
 second 

CBR2 end time 261
th
 second 

* Aodv-uu for NSMIRACLE 
[29]   

 

Table 5-1 Simulation Setting 

5.2 Simulation Topology 

The simulation topologies are shown in Figure 5-1 and Figure 5-2. There are 7 wireless mesh 

nodes in each scenario. Node1, node2 and node3 are the nodes that only forward the traffic. 

The distance between each one hop nodes in topology one is 160m. In topology two, the 

distance between node5 and node 1, node6 and node2 are 300m. The difference distance 

should result different values of the metrics due to the nature of interference in wireless mesh 

networks.  

 

Figure 5-1 Topology One 
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Figure 5-2 Topology Two 

5.3 Simulation Results 

The simulation 1 evaluates the performance of CLMM using NSMIRACLE 

MAC/802_11/Multirate.  The results are shown in Figure 5-3--Figure 5-10. We will discuss 

these results in following section. 

5.3.1 Cross-layer messages 

The cross-layer messages are traced and output to the cltrace.tr file. As shown in Figure 5-3, 

the first column is the type of module, the second is the simulation time, the next one is node 

ID, the fourth column is the source module name, the fifth is the destination name, the sixth 

column includes message id, source id, destination type (unicast or broadcast) and destination 

id, the last column is the name of cross-layer message.  

 

node2 

CBR1 

node4 node1 node0 node3 
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CBR2 
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d2=300m 

d1 d1 d1 

d1 

d2 d2 



 

 67 

 

 

Figure 5-3 The Cross Layer Message Trace File 

When a layer event occurs, the CLMM sends out a layer event message and updates the 

values of the metrics (shown in Figure 5-4). 

 

Figure 5-4 A Layer Event Message 

When a threshold of a metrics is exceeded during the run time, the CLMM also reacts by send 

out a signal message. Figure 5-5 shows this message sent by CLMM when the queue length 

reaches its threshold. 

 

Figure 5-5 A Queue Length Overflow Event Message 

5.3.2 Results from Storage Module  

To show the values stored in the storage module, we use the following command in the Otcl 

Scripts: 

$ns at end_time “plg$n showmetrics” 
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The result is shown in Figure 5-6. 

 

Figure 5-6 The Output of Storage Module 

5.3.3 Metrics 

5.3.3.1 Simulation 1 with Topology 1 

 

The Number of Packets Sent per Second 

The number of packets sent per second of node5 increases 100 packets every 10 seconds at 

the first 150 seconds. After that, when node5 tries to send more data than the MAC layer and 

channel speed can handle, the packets will queue up in the packet queue. When the packets 

rate reaches the maximum MAC service rate, this will lead to a queue overflow. New packets 

can not be stored in the queue and dropped. After the 201
th 

second, the sending rate of CBR2 

drops 100 packets every 10 seconds. Because the sending rate of CBR1 does not change 

during the run time, the number of packets sent per second of node0 stays at one level 

accordingly. 

 

The Number of Received Packets per Second 
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Figure 5-7 shows that the number of received packets per second of node6 changes according 

the dynamic sending rate of node5. When the sending rate of node5 reaches the maximum 

MAC service rate, packet loss occurs. The number of received packets per second of node6 

stays at a high level instead of increasing with the sending rate. After the 241
th

 second, when 

the queue length drops with the decreasing sending rate of node5, the number of packets 

received changes with sending rate again. The number of received packets per second of 

node4 stays at one level due to one sending rate of CBR1. Since each node can only 

communicate with its one hop neighbors in topology 1, the number of received packets per 

second of node1 and node2 also follows the changes with node5 and node6. 

The Queue Length 

 We can also find the relationship between the number of sent packets per second and the 

queue length. If node5 tries to send more data than the MAC layer and channel speed can 

handle, the packets will queue up in the packet queue. From the 151
th

 second to the 241
th

 

second the queue length of node5 jumps sharply and stays at a high level. When the packets 

rate reaches the maximum MAC service rate, this will lead to a queue overflow. 

The Busy Time and the Number of Busy Period  

In topology 1, since each node can communicate with its one hop neighbors, the number of 

busy period of node1, node2 and node6 rises quickly due to the rising of the packets sent per 

second of node5. And because node1 is between node0 and node5, node1 can receive more 

packets from node0 and node5, its busy time is higher than node6.  

The number of busy period of node1, node2 and node6 increases with the rising packets sent 

rate of node5 too. The number of busy period of node2 is higher than node6. The number of 

busy period stays at a same level when MAC is not busy. 

The Number of One Hop Neighbors 

Figure 5-7 also shows the change of the number of one hop neighbors. When Aodv-uu starts, 

as each node can only communicate with its one hop neighbors in topology 1, every node gets 

the right number of its one hop neighbors. After 20 seconds, since there is no traffic between 

node5 and node6, the number of one hop neighbors of node1, node2, node5 and node6 drop 

one. We find if there is no traffic after Aodv-uu started, the number of neighbors always drops 

after 20 seconds. When the CBR2 starts at the 31th second, the number of one hop neighbors 

increases one. To some nodes, for example node1 and node2, the number of one hop 

neighbors of nodes drops again after the 51
th

 second. The reason is the distance between 

node1, node5 and node2, node6 lead to interference between these nodes. The results of 

simulation1 with topology2 prove above assumption.  When the distance between node1 and 
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node5, node2 and node6 are out of the sensing range, the number of one hop neighbors will 

be changed accordingly. 
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Figure 5-7 The Values of the Metrics (number of packets sent per second, number of 

packets received per second, busy time, number of one hop neighbors, number of busy period, 

queue length)  in simulation1 using topology 1 
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5.3.3.2 The Simulation1 with Topology2 

The Number of Packets Sent per Second 

The number of packets sent per second of node5 increases 100 packets every 10 seconds at 

the first 160 seconds. From the 161
th

 second to the 201
th

 second, when node5 tries to send 

more data than the MAC layer and channel speed can handle, the packets will queue up in the 

packet queue. When the packets rate reaches the maximum MAC service rate, this will lead to 

a queue overflow. New packets can not be stored in the queue and dropped.  After the 201
th 

second, the sending rate of CBR2 drops 100 packets every 10 seconds. Because the sending 

rate of CBR1 does not change during the run time, the number of packets sent per second of 

node0 stays at one level accordingly. 

 

The Number of Received Packets per Second 

Figure 5-8 shows that the number of received packets per second of node6 changes according 

the dynamic sending rate of node5. When the sending rate of node5 reaches the maximum 

MAC service rate, packet loss occurs. The number of received packets per second of node6 

stays at a high level instead of increasing with the sending rate. After the 231
th

 second, when 

the queue length drops with the decreasing sending rate of node5, the number of packets 

received changes with sending rate again. The number of received packets per second of 

node4 stays at one level due to one sending rate of CBR1. Since node1 can not communicate 

with node5 and node2 can not communicate with node6, the numbers of received packets per 

second of node1 and node2 do not follow the changes with node5 anymore. 

The Queue Length 

Because of less interference between node1, node5, and node2 and node6, queue length takes 

longer time to reach its highest level and the time that queue length stays at high level is also 

shorter than the value in topology1. The queue reaches the highest level at the 161
th

 second 

and drops after the 231
th

 second.  

The Busy Time and the Number of Busy Period  

The busy time of node6 rises quickly due to the rising sending rate of node5. The number of 

busy period of node6 increases with the rising sending rate of node5 too. Since node1 can not 

communicate with node5 and node2 can not communicate with node6, the busy time and 

number of busy period of node1 and node2 is much lower than node6.  

The Number of One Hop Neighbors 

Figure 5-8 also shows the change of the number of one hop neighbors. Because node1 can not 

communicate with node5 and node2 can not communicate with node6, when Aodv-uu and 
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CBR1 starts, only node1, node2, node3 and node4 gets the number of its one hop neighbors. 

Node5 and node6 can not get the number of its one hop neighbors because there is no CBR2 

traffic at the first 30 seconds. When the CBR2 is started at the 31
th

 second, the number of one 

hop neighbors of node5, node6 increase one. Because of less interference between node1, 

node5, and node2 and node6, the number of one hop neighbors does not change after Aodv-

uu and CBR traffic start. 
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Figure 5-8 The Values of the Metrics (number of packets sent per second, number of 

packets received per second, busytime, number of one hop neighbors, number of busyperiod, 

queue length)  in simulation1 using topology 2 

5.3.3.3 Simulation2 with Topology1 

We also evaluate the performance of CLMM with MAC/802_11/Miracle which uses a single 

rate for MAC. Simulation2 uses same two topologies described in section 5.2. The results of 

the simulation2 with topology1 are shown in Figure 5-9. 

The Number of Packets Sent per Second 

The number of packets sent per second of node5 increases 100 packets every 10 seconds at 

the first 190 seconds, and then decreases 100 packets every 10 seconds from the 200
th

 second 

to the 260
th

 second. The number of packets sent per second of node1, node2 and node3 is 

changing continuously during the simulation. 

The Number of Received Packets per Second 

The results of the number of received packets per second are quite different. The number of 

received packets per second of node6 does not rise with the sending rate accordingly. Instead 

these values stay at a low level. The maximum value is 108 packets per second. Because 

node1 can communicate with node5 and node2 can communicate with node6, when the CBR2 

traffic starts, the number of received packets per second of node 3 and node4 drops sharply 

due to the interference. And they stay at a low level until the CBR2 stops.  

The Queue Length 
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Due to the single MAC rate, the values of queue length of node0, node1 and node5 reach the 

highest level after the CBR traffics starts. After the CBR2 starts, the queue length of node0 

changes greatly due to the interference. The interference degrades the link quality between 

node1 and node2. Because much less packets can be received, the queue length of node2 

drops to zero after the 31
th 

second.  

The Busy Time and the Number of Busy Period  

The number of busy period of node1 and node6 rises quickly due to the rising of the packets 

sent per second of node5. And these values are much lager than the values in section 5.3.3.1. 

The number of busy period of node6 increases with the rising sending rate of node5 too. And 

number of busy period of node2 is higher than node6.  

The Number of One Hop Neighbors 

The change of the number of one hop neighbors is similar to section 5.3.3.1.  
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Figure 5-9 The Values of the Metrics (number of packets sent per second, number of 

packets received per second, busytime, number of one hop neighbors, number of busyperiod, 

queue length)  in simulation2 using topology 1 

5.3.3.4 Simulation 2 with Topology 2 

The queue length of node0 and node5 stay at high level due to the single MAC rate. The 

numbers of one hop neighbors are not the same as simulation2 with topology1. Still the 

results of the number of received packets per second are not correct. The values of node6 do 

not change with the sending rate of node5. We will discuss this in section 5.4.2  

 

The Number of Packets Sent per Second 

The results of simulation2 with topology2 are shown in Figure 5-10. The number of packets 

sent per second of node5 increases 100 packets every 10 seconds at the first 190 seconds, and 

then decreases 100 packets every 10 seconds from the 201
th

 second to the 261
th

 second. The 

number of packets sent per second of node1, node2 and node3 is changing continuously 

during the simulation. 

The Number of Received Packets per Second 

Because node1 can not communicate with node5 and node2 can not communicate with node6, 

there is less interference between node1, node5, node2 and node6. The results of the number 

of received packets per second are different from the results in section 5.3.3.3. The curve of 

node6 is smoother. And the number of received packets per second of node4 varies between 

50 and 70 packets per second during the simulation.  

The Queue Length 
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Due to the single MAC rate, the values of queue length of node0, node1 and node5 reach the 

highest level after the CBR traffics starts. Because there is less interference between node1 

node5, node2 and node6, the link quality between node1 and node2 is much better than that in 

section 5.3.3.3. The curve of node0 is much smoother. 

The Busy Time and the Number of Busy Period  

The number of busy period of node6 rises quickly due to the rising of the packets sent per 

second of node5. And these values are much lager than the values in section 5.3.3.2. The 

number of busy period of node6 increases with the rising sending rate of node5 too. And the 

number of busy period of node6 is higher than others.  

The Number of One Hop Neighbors 

The change of the number of one hop neighbors is similar to section 5.3.3.2 
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Figure 5-10 The Values of The Metrics (number of packets sent per second, number of 

packets received per second, busytime, number of one hop neighbors, number of busyperiod, 

queue length)  in simulation2 using topology 2 

5.4 Discussions 

In section 5.3.3.3 and section 5.3.3.4, we note that the number of received packets per second 

of node6 does not change correspondingly. And the values always stay at a low level 

(108packets/second) during the run time. Even when node1 can not communicate with node5 

and node2 can not communicate with node6, the throughput of CBR2 traffic still keeps low. 

Since both MAC/802.11/Multirate and MAC/802.11/Miracle use a same module to calculate 

the number of received packets, we assume the reason might be that MAC/802.11/Miracle 

always uses the base rate. We set up a scenario in NSMIRACLE to test this problem. The 

scenario has two nodes. The setting of the scenario is shown in Table5-2. 

 

name value 

simulation time 61 second 

PHY LAYER   

Carrier Sensing 
threshold 1.47E-011 

Receiving power 
threshold 7.14E-011 

Transmitter signal 
power 7.21E-003 

Frequency 2.47E+009 

Propagation Model Freespace 

Path loss 1 

MAC LAYER   
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RTS/CTS off 

Application1 CBR1 

Packet size 1000Byte 

Period 1 from 1
st
 second 

to 11
th
 second 0.05 

Period 2 from 11
th
 

second to 21
th
 second 0.02 

Period 3 from 21
th
 

second to 31
th
 second 0.01 

Period 4 31
th
 second to 

41
th
 second 0.005 

Period 5 41
th
 second to 

51
th
 second 0.002 

Period 6 51
th
 second to 

61
th
 second 0.001 

distance between node0 
and node1 160m 

CBR1 start time 1rd second 

CBR1 end time 
61th

 second 

 

Table 5-2 Setting in a Test Scenario 

The result is shown in Figure 5-11. From 1
st
 second to 41

th
 second, the number of received 

packets per second changes with the CBR rate. From 41
th

 second to 61
th

 second, the number 

of received packets per second varies between 106 packets/second and 108 packets/second. 

The result shows the maximum received packets per second using MAC/802.11/Miracle is 

108 packets/second. 

 

 

Figure 5-11 The Number of Packets sent per Second 
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Figure 5-12 The Number of Packets Received per Second 
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6 Conclusion and Further Discussion 

6.1 Conclusion 

In this thesis, we proposed a distributed cross-layer monitor module based on NS2 with 

NSMIRACLE extension. This Cross-Layer Monitoring Module (CLMM) is the central 

instance for gathering and distributing the information. It has both time-driven and event-

driven mechanisms for cross-layer monitoring. It has an action function to compare the values 

of metrics (i.e. queue length) with the thresholds, and trigger an action accordingly when the 

values are out of the thresholds. The modular structure of CLMM is flexible to define new 

events and their process functions that help to extend the event functions for different 

proposal.  

We designed the CLMM based on NSMIRACLE framework in the project. We wrote new 

classes and modified the NSMIRACLE classes to realize the functions of CLMM.  The two 

simulations show that the CLMM performs cross-layer monitoring as designed. It monitors 

metrics of the layers and queries the value of the metrics. It calculates the average value for 

the metrics and stores results to the storage module. When an event occurs it reacts by 

sending out a signal message and updating the metrics. Our simulations also show that these 

metrics of the layers interact with each other and one parameter of one layer affects other 

parameters of other layers during the communication. 

By doing this project, we learned how to extent the NSMIRACLE framework to design a new 

module. We also learned how to use the new module for network performance analyst. We 

believed we archive the design goals as described in chapter 1. The project results a prototype 

of cross-layer monitoring module for NS2 with NSMIRACLE extension and it is ready to be 

used and extended for future work.  

The project still has more work that needs to be done. Thus, we would like to propose some 

future work in section 6.2. The following section highlights some of ideas that can be 

extended to build a framework of the cross-layer monitoring module. 



 

 85 

6.2 Future Work 

6.2.1 Initialization Function for the CLMM 

To establish simulations more easily, we propose the Initialization function that performs the 

initialization for the CLMM whenever it starts the monitoring. As shown in Figure 6-1, the 

Initialization Function has four sun-functions: Event_add, Event_handler, Metric_add and 

Message_add functions. The Event_Add, Metric_Add and Message_Add functions register 

events, metrics and messages for the CLMM. The Event_Handler function handles events 

dynamically. When an event is triggered, the Event_Handler function processes this event and 

updates its metrics. 

Event_Handler Metric_Add Message_AddEvent_Add

 

Figure 6-1 The Initialization Function 

With the Initialization function, simulation is configured by a configuration file. The 

configuration file is not a module for the CLMM, but is used to set up CLMM environment. 

Before the CLMM starts monitoring, events, messages and metrics can be changed on 

demand. Thresholds also are added or modified according to different proposals. The 

configuration is loaded into the monitor module when the CLMM initializes the modules. 

Then the CLMM performs cross-layer monitoring based on the configuration. Using 

configuration file makes it easy to set up the CLMM environment without changing the main 

structure of the module. And it makes the module works in a more efficient way. 

 As shown in Figure 6-2, the configure file consists of three parts: the event list, the metric list 

and the message list. These lists include events, metrics and messages.  When the CLMM 

starts initialization, the events, metrics and messages that are set up in the configuration file 

are loaded and transferred into event queue, metric queue and message queue 

correspondingly. The Initialization function registers these events, metrics and messages for 

CLMM.  
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Event List Metric List Message List

Event_Handler

Function

Metric_Add

Function

Message_Add

Function

Event_Add

Function

Event Queue Metric Queue
Message 

Queue

Configuration File

Initialization Function

 

Figure 6-2 The structure of configuration file and the Initialization Function 

6.2.2 The Error Function for the CLMM 

Currently the error function only output an error message to the monitor module. However the 

errors function can be extended to two more sub-function: operation error control function 

and metric error function. The operation error control function monitors the status of the 

CLMM modules during the run time. When a status error occurs, the error function processes 

and responses it accordingly. The metrics error function contains error control functions for 

the metrics that handle all errors information of the layers or its neighbors. For example, if a 

queue length value is exceeded, the action sends an error message to the metrics error 

function, the error control operation is triggered when it receives the error massage.  

6.2.3 Action Module 

The action module provides the action functions for the CLMM. The action functions are 

signaling and reaction functions which are based on event-driven or time-driven mechanism. 

The event-driven action function is similar to the event handler function implemented in 

layer-interface. However, instead of handling the events that come from the layers, the event-

driven action function handles these events that come from its neighbor nodes. For example, 

when the uplink neighbor node receives a congestion signal message from its downlink node, 

it handles this signal message and raises a congestion event. Then action module can reduce 

its sending rate accordingly. 

The action module can also take an action based on retrieving and comparing values of 

metrics. We set up the thresholds of some specific metrics (i.e. queue length or busy time) in 
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the action function. When the CLMM starts to monitor, the action function retrieves the 

values of the specific metrics from the storage function periodically, and then it compares the 

values with the thresholds. If the value is between the thresholds, the action function does 

nothing but keeps on retrieving and comparing. If the value is upper or lower than the 

thresholds, the action function triggers an action according to the configuration.  

 

Action 

Function

Comparison 

Function 

Retrieving 

Function

Event

Handler

Function

 

 

Figure 6-3 The Structure of the Action Module 

 As shown in Figure 6-3, the action module has four sub-functions: the action, retrieving, 

comparison and event handler function. The retrieving function retrieves the values of these 

metrics from the storage function periodically. When it gets the values, the comparison 

function compares these values with the thresholds. If it finds there is a value overloaded, it 

signals the action function to take an action. The event handler function has an event list.  If 

an event occurs, first it checks if the event is in the list, if it is, it handles this event and signals 

the action function to take an action. The action function takes an action based on an event or 

a threshold. 

With the action module, the cross-layer monitoring is extended to not only making the 

protocols collaborate, but also making the node’s neighbors work together. It also makes it 

possible to observers how these nodes behaviors can interact with each other. Therefore we 

can optimize the network performance by adjusting parameters of the neighbor’s nodes.  
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6.2.3 IP Routing Protocol 

IP routing protocol not only provides routing metrics (such as the number of one hop 

neighbors) for the CLMM, but also supports the function that delivers a specific message to 

its neighbors. Delivering a message via a hello packet to its neighbors can make it possible 

that the neighbor’s nodes know the status of the nodes. The message carrying the value of 

metrics or a signal is delivered periodically or triggered by an event-driven mechanism. The 

type of the message that is used to carry the values of the metrics for its neighbors is a routing 

message. Before being sent out, the routing message is packed into a hello packet. The node 

sends out the packet to its neighbors. With the message the node’s neighbors have the detailed 

knowledge of the node and of the link crossing these two nodes.  

The CLMM uses an IP routing agent to deliver a message to its neighbors. The IP routing 

agent is modified, therefore it can communicate with the message routing module.  For the 

CLMM, the message sent to its neighbors is a routing message. When the message router 

receives a routing message, it simply transfers the message to IP routing agent. IP routing 

agent packs the routing message to a “Hello” message, and then it sends out the “Hello” 

message to its neighbors. The routing message from the source is marked with a specific ID, 

therefore each one hop neighbor of the nodes know where it comes from. When a node 

receives a routing message from its neighbor, first it checks if it has received this message 

already. If it has, the node drops the message.  Otherwise the message is processed and sent to 

the monitor module. If the message is a signal message, for example, a congestion signal, and 

if the message is from downstream node, the monitor module reduces the data rate 

accordingly. The node keeps on monitoring the downstream node, if there is no congestion 

any more. The node increases the data rate to gain the maximum throughput.   

With the routing module, the CLMM not only delivers a message to the layers, but also 

distributes messages to its neighbors. This makes it possible that each node not only shares 

metrics with the layers, but also shares the metrics with its neighbors.  

The future work could be done by following steps: 

 First, IP routing protocol is extended to process messages which go to or come from 

its neighbors. 

 Second, the Action module is extended to make the protocols collaborate and the 

node’s neighbors work together. 

 The initialization function is added to make the configuration more easy and flexible. 
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6.2.4 Summary 

With the above three extension modules, the CLMM could be extended to perform cross-layer 

monitoring based on the configuration, without changing the main structure of the module. 

And it could distribute the messages to its neighbor nodes, which makes it possible that each 

node not only shares metrics with the layers, but also shares the information of the metrics 

with its neighbors. Furthermore, based on the shared information, the action module could 

implement new reaction mechanisms to adjust the parameters for network performance 

optimization. We believe that the CLMM could be a useful tool for implementing and 

optimizing cross-layer mechanisms in NS2 with NSMIRACLE extension environment.    
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