Department of Computer Science

Zak Blacher

Cluster-Slack Retention Characteristics:

A Study of the NTFS Filesystem

Master’s Thesis
D2010:06

Cluster-Slack Retention Characteristics:

A Study of the NTFS Filesystem

Z.ak Blacher

(© 2010 The author and Karlstad University

This thesis is submitted in partial fulfillment of the requirements
for the Masters degree in Computer Science. All material in this
thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Zak Blacher

Approved, 10th June, 2010

Advisor: Thijs Holleboom

Examiner: Donald Ross

iii

Abstract

This paper explores the statistical properties of microfragment recovery techniques used on
NTEFS filesystems in the use of digital forensics. A microfragment is the remnant file-data
existing in the cluster slack after this file has been overwritten. The total amount of cluster
slack is related to the size distribution of the overwriting files as well as to the size of cluster.
Experiments have been performed by varying the size distributions of the overwriting files
as well as the cluster sizes of the partition. These results are then compared with existing

analytical models.

Acknowledgements

I would like to thank my supervisors Thijs Holleboom and Johan Garcia for their support
in the creation of this document. I would very much like to thank Anja Fischer for her help
proofreading and formatting this document, and to Thijs for providing some of the graphics
used to demonstrate these models. I would also like to thank Johan Garcia and Tomas
Hall for providing the C and C++ code used to generate and count the file fragments.
Additionally, I would like to thank the community at #windows on irc.freenode.net for
their help and pointers in understanding and making sense of the NTFS filesystem. I
would also like to thank the Microsoft Corporation (R) for the creation of the NTFS

filesystem.

vil

Contents

1 Introduction 1
1.1 Introduction 1
1.2 FIV.ES. . . 2
1.3 Units . . . o 0 e 2

2 Background 3
2.1 Imtroduction 3
2.2 Digital Forensics 3
2.3 Hard Drive Structure 4

2.3.1 Files and File Distributions D
2.3.2 Microfragment Analysis 6
2.3.3 NTES . . . o 8
2.3.4 Expected Microfragment Distribution 9
2.4 Overview of the Microfragment Analysis Model 10
2.4.1 Fixed Distribution L 11
2.4.2 Uniform Distribution 11
2.4.3 Exponential Distribution 000000 12

3 Experiments 15

3.1 Introductiono 15

ix

3.1.1 Testbed

3.2 findGenFrag Experiments oL
3.2.1 ’File Size Distribution” Test
3.2.2 ’Cluster Size Distribution” Test
3.2.3 730 Repetitions” Testo
3.2.4 ’'Rolling Hash” Tests,
3.3 Summary ...
4 Results
4.1 Introduction
4.2 findGenFrag Results
4.2.1 ’File Size Distribution’” Test
4.2.2 ’Cluster Size Distribution” Test
4.2.3 30 Repetitions” Testo
424 ’Rolling Hash” Tests
4.3 Summary . . . oL oL
5 Conclusion
5.1 Microfragment Collection o
5.2 Future Work
References
A
A1 Graph Data
A.1.1 Uniform Distribution Calculations
A.1.2 ’File Size Distribution” Test
A.1.3 ’Cluster Size Distribution” Test
A.1.4 30 Repetitions” Test

27
27
28
28
29
32
35
39

41
41
41

43

A2

A3

A4

A.1.5 ’Rolling Hash’ Tests 49

Fragment Analysis 51
A2.1 findGenFrag.c 51
A22 genDistrFilec oo 53
Python Scripts 64
A3 1 script2.py . ..o 64
A3.2 scriptthopy . . o oo 67
Extension & Misc Functions L. 69
A.4.1 OpenOffice Graph Export Macro 69
A.4.2 extension-functions.co oL 71

X1

List of Figures

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Hard Drive Structure 4
Windows XP Default File Distribution 6
Cluster Slack Example 7
Cluster Size v. Slack Recovery, 20
Cluster Size Distribution Test 28
Tail Overlap Example 29
Cluster Size Test (rf param v. cluster size) 30
Cluster Size Test (cluster size v. rf param) 31
Cluster Size Test (Microfragment Recovery) 32
Repetitions 4096 Test (Uniform v. Exponential) 33
Repetitions 4096 Test 34
Recovered Microfragments (Experimental v. Analytical) 34
Size Distribution Tests Comparison (Hashes v. Fragments) 35
Size Distribution Tests (Hashes by Cluster Size) 36
Cluster Size Tests (Rolling Hash) 36
Cluster Size Tests (Ratio Demonstration) 37
Microfragment v. Hash Ratios 38
Microfragment Detection Results 39

xiii

List of Tables

2.1 NTFS Feature List 9
A.1 ’Uniform Probability’ graph data 45
A.2 ’File Size Distribution’ graph data 46
A.3 ’Cluster Size Distribution’ graph data 48
A.4 30 Repetitions’ graph data 49

XV

Chapter 1

Introduction

1.1 Introduction

This chapter will present a brief overview as to the goal of this thesis as well as provide an

introduction to the FIVES project and the units used within this document.

The purpose of this dissertation is to explore and quantify the results that come from
the microfragment analysis of an NTFS volume. If these results prove consistent and
reliable, then the use of tail slack inspection (explained in Chapter 2) can be seen as a

viable means of forensic file fingerprint recovery.

This document will perform a series of microfragment analysis tests (expanded upon in
Chapter 3) and compare the results with the models described in reference [1], 'Fragment
Retention Characteristics in Slack Space.” Two tests have been additionally designed to
compare the matching abilities of microfragment analysis with that of rolling hash block

recovery, a more traditional approach used in digital forensics.

2 CHAPTER 1. INTRODUCTION

1.2 F.I.V.E.S.

The goal of the Forensic Image and Video Examination Support project[2] is to develop
a set of automated investigative tools to be used in conjunction with law enforcement
agencies to assist in the detection of data.

The role of microfragment matching is useful in demonstrating the previous existence
of offending files on a device, and is the central aspect of the FIVES toolkit. The basis
of the experiments performed in Chapter 3 will be the demonstration of the precision and
effectiveness of these tools.

FIVES is a targeted project within the Safer Internet Program3].

1.3 Units

The standard block size in this document is 512 x 8 bit bytes. All units measured refer to
the IEC binary unit unless otherwise specified. Efforts have been made to use the notation
kibibyte (2'° bytes) and its abbreviation 'KiB’ instead of the ST defined kilobyte (103 bytes)
and it’s respective abbreviation 'Kb’. Multiples of the IEC unit are mebibytes (MiB) and
gibibites (GiB) which are 22 and 23° bytes respectively. More about these units can be
found on the Wikipedia entry page for kilobyte[4].

This notation has not yet met widespread acceptance into the technical vernacular, and
a few different standards are accepted in various computer related fields. However, in this
dissertation it is important to differentiate between the SI and the IEC units as certain

calculations are performed using numbers from both bases.

Chapter 2

Background

2.1 Introduction

The purpose of this chapter is to expand upon the motivation behind this thesis; the
analysis of distributed files and detection of remnant data. To this end, this chapter will
briefly introduce the concept of digital forensics, provide a basic overview of traditional
hard drive construction and describe the process in which microfragments are generated.
Furthermore, it will provide a comprehensive description of the N'T filesystem features, a
graphic demonstrating the general trend for file sizes on a typical NTFS partition, and
finally a restatement of the formulas for calculating the expected appearance of microfrag-

ments on a device.

2.2 Digital Forensics

In contrast with criminal forensics, the goal of digital forensics is to explain the state of
the digital artifact rather than determine the cause.
The current implementations of forensic file recovery involve taking a full snapshot

of a hard disk or device, and performing an analysis on either the unallocated area or

3

4 CHAPTER 2. BACKGROUND

on the full volume. The goal of these methods is the attempt to recover metadata and
unreallocated sectors from deleted files. From the deleted sectors, it is possible to extract
parts of the underlying data, but the idea of fully recovering overwritten data is infeasible,

as the magnetic media does not retain any history.

2.3 Hard Drive Structure

Traditionally, storage has been expressed in terms of cylinder, head, and sector count tuples
(CHS). A typical hard drive is composed of several rotating platters. Each face of each
platter is divided into concentric rings called cylinders. These cylinders are further divided
into arc-sections called blocks, and these blocks typically store 512 bytes of data.

Each face of the each platter has a separate read head that floats just above the surface.
The read seeks to a cylinder, and captures data from the chosen block. Often these devices

would capture many blocks at a time (see figure 2.1.

Track/
Cylinder

Sector

Heads

B Heads,
4 Platters

Figure 2.1: Hard Drive Physical Structure

2.3. HARD DRIVE STRUCTURE >

For example, a floppy disk reports 80 cylinders, 2 heads, and 18 sectors of 512 bytes
each. 80 % 2 % 18 x 512B = 14745608 = 1440 KiB, which is the standard capacity for a
high-density floppy diskette?.

This notation is not without problems, however. The original Master Boot Record
specifications allowed 16 bits of information to represent 1024 cylinders, 255 heads, and 64
sectors[5], limiting devices to approximately 8.4 GiB. CHS was eventually phased out in
favour of Logical Block Addressing (LBA), but most I/O devices can still report information
in a CHS tuple. The more modern devices use more than 16 bits to store this information,
and will report values well outside of the maxima set originally.

For instance, a consumer SDHC card purchased in 2008 reports 122560 cylinders, 4
heads, and 16 sectors of 512 bytes?, for a total of 3830 MiB. This total is accurate despite

being a solid state device and having neither heads nor cylinders!

2.3.1 Files and File Distributions

Unsurprisingly, different files with different content and different formats will occupy dif-
ferent amounts space. Different types of files, however, seem to follow different distributive
trends. For example, we can observe that MP3 files of the same bitrate tend to be uni-
formly distributed across file ranges while JPEG images of the same resolution tend to be
distributed geometrically. An MP3 with a bitrate of 192 kilobits per second and a length
of 3 minutes occupies approximately 4.2 megabytes. This size will vary uniformly as the
length of the track varies. JPEG images of a constant resolution, say 800x600 pixels,
will occupy approximately 85 kilobytes with a geometric distribution around this point,
depending on image content and how the JPEG compression algorithms function.

Movies ripped from DVDs and stored in AVI containers are often dynamically encoded

1Data collected from the hdparm utility
2This is often incorrectly advertised as 1.44 MB

6 CHAPTER 2. BACKGROUND

in such a way that the file size is 700 megabytes — the amount of available space on a blank
CD. While not a perfect analogue for fixed file sizes, they are usually as close as possible.
Fixed file sizes are used as a parameter for the experiments as the static size comparison

model does not depend upon a random number generator.

XP fresh install

Embirical distribution |
140 |- Fitted exponential distribution —

o
o

80 [+

Number of occurences

60 [
.
40 Hil -

20

N
i B s g i o et e T

400000 600000 800000 1e+06
File size (bytes)

Figure 2.2: A graph of file sizes from a fresh Windows XP install

Figure 2.2 is a graph demonstrating the relative frequencies of file sizes as they occur
after a fresh Windows XP install. Empirical data collected from discarded hard disks

demonstrates a similar trend in file occupation on devices used for home consumption.

2.3.2 Microfragment Analysis

To ease in complexity of storing data to the hard drive and to reduce the addressing over-
head, blocks are grouped together in clusters, with a cluster being the smallest individually
addressable section. When a file is written to the hard disk, the filesystem drivers in the
operating system create a master file table (MFT) entry, determine how many clusters are
necessary for storage (rounding up for partial occupation), allocates them, and then writes

the data to the device.

2.3. HARD DRIVE STRUCTURE 7

The data is densely packed into clusters (linearly occupying all blocks per cluster) with
the exception of the final (or tail) cluster, which has only the remaining number of blocks
written to it. These clusters do not need to be contiguous, and can be distributed among
different tracks or platters, but are often placed as close together as possible to reduce
lookup times. This is a process known as fragmentation and is not to be confused with the

term microfragment

For example, in a typical NTF'S filesystem with a block size of 512 bytes and a cluster
size of 8 blocks (4 KiB clusters), a 10 KiB file would occupy 3 clusters, but only require
20 of the available 24 blocks. This example can be seen in Figure 2.3. In NTFS, neither

clusters nor blocks are shared between different files.

Empty Filesystem

3 Clusters
allocated to first
file (blue)

First file written to
disk (dark grey)
File 'deleted’,
clusters
deallocated
Same 3 clusters
allocated to new
file (red)
New file written
(light grey), old
blocks remain

Figure 2.3: A graphical representation of sub-cluster block writing

When a file is deleted, the NTF'S driver only deletes the MFT entry, effectively abandon-

ing the allocated clusters rather than removing them. This makes the undeletion process

8 CHAPTER 2. BACKGROUND

(recovery of actual data) possible, provided the blocks are not reallocated to other files.
If we return to the previous example, deleting the 10 kibibyte file would deallocate the 3
occupied blocks. Writing a new file of 9 KiB to the same location would reoccupy the 3
clusters, but only 18 blocks. Not zeroing the unused blocks in the cluster is faster, and
less intense on the physical hardware, but does present a security problem in which the

remaining 2 blocks past the end of our new file contain data from our first file.

The analysis of these remaining 2 blocks, or file microfragment, may yield information
thought deleted by the user. This paper studies the frequency and occurrences of these

microfragments.

2.3.3 NTFS
2.3.3.1 Overview

The NTFS filesystem was developed by Microsoft for the release of their Windows NT
operating system. NTFS supports journaling, hard links, alternate data streams (ADS),
sparse files, transparent encryption and compression, volume shadow copy, and copy-on-
write. (See table 2.1)

Typical formatting parameters for the filesystem are blocks of 512 bytes and clusters
of 8 blocks. When a block is written to, the remaining slack within the block is zeroed
out. The number of files allowed on the filesystem is essentially limited by the number of

available clusters on the partition, as each cluster can only contain one file[6].

2.3.3.2 Master File Table

The NTFS Master File Table (MFT) reserves approximately 12.5%[8] of the clusters for

file record entries. The MFT contains entries defining header information, specific volume

2.3. HARD DRIVE STRUCTURE 9

NTFS Version 1 1.1 1.2 (4.0) | 3.0 (5.0) | 3.1 (5.1) | 3.1 (5.2) | 3.1 (6.0)
Windows Release NT 3.1 | NT 3.5 | NT 3.51 2000 XP 2003 Vista
Year 1993 1994 1995 2000 2001 2003 2005
Forward Compatible X X X X X X
FAT Long Names X X X X X X
Compressed Files X X X X X
Named Streams X X X X X
ACL Security X X X X X
Disk Quotas X X X X
Encryption X X X X
Sparse Files X X X X
Reparse Points X X X X
USN Journaling X X X X
Expanded/Redundant MFT X X X
Volume Shadow Copy X X X
Persistant Snapshots X X
Transactional NTFS X
Symbolic Links X

Table 2.1: NTFS Feature List|[7]

Unoffical NTF'S versioning information in brackets

information (such as bad blocks or quota information), and file records. The MFT is often

allocated contiguously but may grow and shrink as the demands on the filesystem change.

2.3.3.3 Records

Each file record in the MFT contains the filename and path, security descriptor, other
associated metadata and either the location of the file content or the content itself, de-
pending on the size. For larger non-resident metadata attributes such as an alternate data
stream[9], a reference is stored for an extent record in the record block. Each record oc-
cupies 1024 or 4096 bytes, depending on the version, but regardless of filesystem format

parameters|10].

2.3.4 Expected Microfragment Distribution

When data is written to the hard disk device the final (or tail) cluster of an allocated group

contains the terminating blocks of the file. With a cluster size of 8 blocks, there would be

10 CHAPTER 2. BACKGROUND

between 1 and 8 blocks occupied by the tail end of the new file, leaving 0 to 7 available
with the data remaining from a previous write. Note that a tail cluster will never contain
all 8 blocks as slack, as this would imply that 0 blocks were needed from this cluster by

the new file.

The actual numbers and apparent frequencies of cluster slack blocks in a file system
depend strongly on the size and distribution of both overwritten and new files, as well as

the characteristic parameters of the file system.

2.4 Overview of the Microfragment Analysis Model

In order to properly compare the measured results to the modelled values, we first need
to restate the existing formulae found in the paper 'Fragment Retention Characteristics in

Slack Space.’[1]

In the following formulae, we will use the notation C' to mean cluster size (in bytes), B
to mean block size (in bytes), D to mean detection area (1 gibibyte in this document), S

to mean file size (bytes), and S to be average file size (also bytes).

Nés) is the number of clusters allocated to a file. As earlier discussed, this is equal to
the number of blocks required (rounded up) divided by the size of a cluster, and rounded

up; or more formally ’—%-‘, provided the file is large enough not to be stored directly in the

MFT.

We is the number of end clusters with the possibility of containing microfragments,
and Wpg is the number of microfragments detected, having factored in P, the probability

that a file will leave a microfragment.

The derivation and indepth explanation of these formulae is beyond the scope of this

document, and can be found in the referenced paper.

2.4. OVERVIEW OF THE MICROFRAGMENT ANALYSIS MODEL 11

2.4.1 Fixed Distribution

In a volume on which initial files have been generated with a constant file size of Sg, the

expected microfragment population Wg should appear with the following frequency:

—
n

#le

2.4.2 Uniform Distribution

With a uniform distribution, the numbers become a little bit more complex. Rather than
a fixed file size, we can say that all S lie uniformly distributed within the range L;...Lo,

allowing us to approximate the average file size of S (S) to be % bytes.

If we define L(H)¢ = [é-‘ C and L(C = L%J C, to be respectively the largest and

smallest integer multiples of C' closest to L, then within the range of L; and L, we can

(—)C’ Lng)C

expect that files within the range L; will have an average of 55 slack blocks.

NE) (L

Our tail ranges could be expected to have approximately —+B and blocks in the

lower and upper distribution tail ranges respectively.

We can approximate the expected microfragment recovery to be the following:

D B
W — @ p) — 12 2.2
C R Néu) C (C) ()
where
gw_ 1 1 @HW@HC_M+U
¢ T COLy—L;+1\t !

(LS9 — LY (L20)¢ 4 L9 L o)+

L5°(L, - £59) (23)

12 CHAPTER 2. BACKGROUND

and

pw—_1_= 24
- (24)

P is a correction factor for file sizes because the amount of cluster slack that is less

than one block cannot not detected. See reference [11] for more details.

2.4.3 Exponential Distribution

Similar to the uniform distribution, we can apply the same functions and assumptions, but
as we are using a geometric distribution for file, some of the averaging functions are altered
slightly.

Our average file size can now be approximated by

. 1
S = ann— Pp=te
n=~L1
(Li — (L1 — D)e™®) e — (Ly + 1 — Lye™?) e7tE2tD)
e—bLl _ e—b(L2+1) (25>
and the average number of allocated clusters can be expressed as
O _ Lg+)c e—bl1 _ efb(L<1+)C+1)+
¢c e—bL1 _ o—b(La+1)
et 1
oVl _ o blat]) <] _ b
Lg+)c bC br{HC
l—e™)+1]e 7 —
(|50
(-)C
[L2 (1—e?)+1 ebLé_)C> +
C
LG o=b(LEVC4+1) _ =b(La+1)
2 S c (2.6)

C o—bL1 _ o—b(Lat1)

2.4. OVERVIEW OF THE MICROFRAGMENT ANALYSIS MODEL 13
Our expected recovery count can be expressed as
Wi =wl pe (2.7)
where the block correction factor in this case is
plo _ L=eP (2.8)

1 —e0C

See Reference [11] for the detailed derivation of these formulas.

Chapter 3

Experiments

3.1 Introduction

The purpose of the following experiments is to create filesystems in which the remaining
microfragment data conforms to an expected file distribution, and then compare the col-
lected data with that of the model. These experiments will demonstrate how different file
overwriting parameters affect the number of cluster slack blocks left on the filesystem.

For the following experiments, we generate 1000 x 250 kibibyte files of known content
on a 1 gibibyte partition. These files are then deleted and overwritten with randomly
generated data conforming to specified file sizes, referred to as random files in this pa-
per. With standard NTFS formatting, each of these 250 kibibyte files will occupy 63 x 4
kibibyte clusters with only half of the tail cluster containing data. Approximately 12.5%
of the clusters on the physical volume are reserved for the master file table meaning that
approximately 27.5% of the usable file system will be initially occupied by this data. After
these files are deleted, the partition is filled with random files containing random data.
These files occupy the previously used clusters, and the remaining slack is analyzed for the
fingerprints of the initial data.

Each experiment writes files conforming to the flags on each line of the rf_params value

15

16 CHAPTER 3. EXPERIMENTS

in the parameters subsection onto the device. These experiments are performed as many
times as is specified by the field 'reps’. The variations in frequencies of microfragment

recovery should match the projected values.

3.1.1 Testbed

For the following experiments, I will be using a test machine running Microsoft Windows
XP Home (R)with Service Pack 3 as it’s operating system. Tests will be performed in
an environment running Cygwin(R) version 1.7.5 and Python 2.5 and on a device with 1
gigabyte of storage. The Python scripts used for collecting and interpreting this document
have been included in the appendix. The C and C++ sources as well as the raw collection
data and OpenOffice (R) documents used for the generation of the graphics have been
included with the offline distribution of this paper.

3.2 findGenFrag Experiments

The following two tests were performed in order to compare our predictive models to the

results gathered through real-world experimentation.

3.2.1 ’File Size Distribution’ Test
3.2.1.1 Introduction

This experiment exists to gather data as a baseline to comparison with our existing models.
We will generate files with many different file size distribution characteristics and then

contrast our empirical data with our calculated results.

3.2. FINDGENFRAG EXPERIMENTS 17

3.2.1.2 Experiment

Because the generation of the random content files has been set up to fill the entire device,
we can expect to see a tiling effect over the filesystem. For example, files with a fixed size
of 10 kibibytes would each occupy 3 clusters (12 kibibytes), leaving half a cluster of slack
data in the tail. Filling the filesystem with these files would leave approximately 1/6th
of the original data behind. As 250 000 kibibytes (25%) of the filesystem was previously
occupied by our 1000 x 250 kibibyte files, we may expect that approximately 1/12 (1/4
*1/3)! of our clusters contain slack data. The actual number will be somewhat lower
as there will be no slack data remaining where the tail of our random file is written to a

cluster previously containing the tail of our fixed content file.

!(original occupation * tail frequency)

18 CHAPTER 3. EXPERIMENTS

3.2.1.3 Parameters

These, and subsequent Parameters subsections define the set of random file generation

parameters, as well as other environmental settings.

reps = 5
fs_types = [’ntfs’]
cluster_size = [’4096°]

of _params = [

(’1000 files 250 Kbyte’ , [’-s’, ’250°, ’-c’, ’1000°]),
]
rf_params = [
(’Exponential: 10 Kbyte’ , [’-e’, 710’ , ’0.0006°]),
(’Exponential: 20 Kbyte’ , [’-e’, 7207 , ’0.0006°]),
(’Exponential: 40 Kbyte’ , [’-e’, 240’ , ’0.0006°]),
(’Exponential: 80 Kbyte’ , [’-e’, 780’ , ’0.0006°]),
(’Exponential: 141 Kbyte’ , [’-e’, 7141’ , ’0.0006°]),
(’Exponential: 800 Kbyte’ , [’-e’, 7800’, ’0.0006°]),
(’Uniform: 8-12 Kbyte’ , [’-u’, ’8 , ’12°]),
(’Uniform: 16-24 Kbyte’ , [’-u’, ’16° , ’24°]),
(’Uniform: 36-44 Kbyte’ , [’-u’, ’367 , ’44°]),
(’Uniform: 76-84 Kbyte’ , [’-w, ’76° , ’84’]),
(’Uniform: 600-1000 Kbyte’ , [’-u’, ’600’, ’1000°]),
(’Fixed: 10 Kbyte’ , ’-s?, 710°1),
(’Fixed: 20 Kbyte’ , [’-s?, 720°]),
(’Fixed: 40 Kbyte’ , [’-s?, 740°]),
(’Fixed: 80 Kbyte’ , [’-s?, ’80°]),
(*Fixed: 800 Kbyte’ , [’-s?, ’800°]),

(’Fixed: 8 Mbyte’ , [’-s?, ’8Mb’]),

3.2. FINDGENFRAG EXPERIMENTS

19

(*Fixed: 80 Mbyte’ , [’-s’,
]

’80Mb’]) ,

20 CHAPTER 3. EXPERIMENTS

3.2.2 ’Cluster Size Distribution’ Test
3.2.2.1 Introduction

The purpose of this test is to demonstrate how different cluster sizes affect the number of
slack blocks recovered. It stands to reason that the size of the cluster with respect to the

size of the initial file will generate different amounts of slack data.

. . . 16kb of 'deleted' data

1kb clusters
5 x 1 block microfragments
+1 unused cluster (white)

2kb clusters
4 x 3 block microfragments

4kb clusters
4 x 3 block microfragments

8kb clusters
2 x 11 block microfragments

16kb clusters
1 x 27 block microfragments

Figure 3.1: Cluster Size effect on Slack Recovery

Each color represents a 2.5 kibibyte file. Light grey is new data. Dark grey is old data.

3.2.2.2 Experiment

In this test we are using a smaller set of random file parameters, but running this set
against different cluster sizes to see how much resulting data can be recovered. For in-
stance, writing uniformly distributed 4-12 kibibyte files on to 32 kibibyte clusters should

leave approximately 48 blocks? on average in every cluster, whereas the same random file

264blocks — 2blocks/kibibyte * 4"’212kibibytes

3.2. FINDGENFRAG EXPERIMENTS 21

generation on clusters of 4 kibibytes will leave about 3.5% sectors per tail (every second

cluster) on average. (see figure 3.1)

3.2.2.3 Parameters

reps = 5
fs_types = [’ntfs’]
cluster_size = [’1024°,°2048°,°4096°,°8192’,°16k’,’32k’]

of _params = [

(’1000 files 250 Kbyte’ , [’-s’, ’250°, ’-c’, ’1000°’]),
]
rf_params = [
(’Exponential: 141 Kbyte’ , [’-e’, 7141°, ’0.0006°]),
(’Exponential: 40 Kbyte’ , [’-e’, 740’ , ’0.0006°]),
(’Exponential: 800 Kbyte’ , [’-e’, ’800’, ’0.0006°]),
(’Uniform: 10-30 Kbyte’ , [-w, 100, °30°1),
(’Uniform: 20-60 Kbyte’ , [’-u’, ’20° , ’60°]),
(°’Uniform: 4-12 Kbyte’ , [P-u, 4>, ’12°]),
(’Uniform: 40-120 Kbyte’ , [’-u’, ’40° , ’120°1),
(’Uniform: 400-1200 Kbyte’ , [’-u’, ’400°, ’1200°]),

3average expected result of a uniform distribution over the range 0 through 7

22 CHAPTER 3. EXPERIMENTS

3.2.3 ’30 Repetitions’ Test
3.2.3.1 Introduction

In order to determine whether or not our results can be seen as statistically reliable, the
following test has been designed to demonstrate the precision of our system. We will
perform many repetitions of the same few tests and determine whether or not individual

results with the same test parameters differ significantly.

3.2.3.2 Experiment

Because of the large amount of time* needed to perform each individual test, the sample
of tests performed has been reduced to only four. These four tests have been selected to
compare and contrast the performance of larger and smaller file size ranges versus uniform

and exponential size distributions.

3.2.3.3 Parameters

reps = 30
fs_types = [’ntfs’]
cluster_sizes = [’4096°]

of _params = [

(’1000 files 250 Kbyte’ , [’-s’, ’250’, ’-c’, ’1000°]),
]
rf_params = [
(’Exponential: 20 Kbyte’ , [’-e’, 720’ , ’0.0006°]),
(’Exponential: 800 Kbyte’ , [’-e’, 7800’, ’0.0006°]),
(’Uniform: 10-30 Kbyte’ , [’-u’, 107 , ’30°]),
(’Uniform: 400-1200 Kbyte’ , [’-u’, ’400’, ’1200°]),

4between 2-4 hours each on the given testbed, depending on generation parameters

3.2. FINDGENFRAG EXPERIMENTS

23

24 CHAPTER 3. EXPERIMENTS

3.2.4 ’Rolling Hash’ Tests
3.2.4.1 Introduction

The rolling hash tests use a different methodology for examining a filesystem for our tar-
geted files. Rather than focus on blocks in tail clusters, we examine the filesystem as a
whole. We perform a rolling hash calculation on a moving window that moves in 1 byte
steps across the device. When our rolling hash matches a trigger value®, we examine a
logical block of 512 bytes from this point, perform a hash of this block, and compare it to
our known data hashes. If this matches, we have part of an offending file. If not, we go
back to our window and continue searching. A rolling hash window and a trigger value are
used to reduce the amount of database lookups and increase the speed at which a volume
is analyzed.

The reason we use a single byte step is that modifying data header information or
compacting certain files together will alter the sub block alignment, but not the majority of
the data content of the files. MP3s and JPEG images, for example, are already compressed
and are not altered when put into an archive or data container object, but may be placed
across block and sector boundaries as slack space is removed.

It is worth mentioning that the rolling hash recovery routines do not differentiate be-
tween the allocated state of a cluster; leading to higher recovery rates at a cost of increased
scan time. This will make the comparison between microfragment recovery and hash block

matching somewhat more difficult.

3.2.4.2 Experiment

We will again perform the first two tests (sections 3.2.1 and 3.2.2) using the same param-
eters, but analyzing the device with the rolling hash algorithm rather than simple slack

analysis. This is done to compare the two methods in terms of data recovery ability.

542

3.3. SUMMARY 25

The use of this approach to forensic data recovery should give us a good indicator as to

the effectiveness of cluster slack forensic analysis versus traditional volume block analysis.

3.2.4.3 Parameters

(see the Parameters subsections of 3.2.1 and 3.2.2)

3.3 Summary

Our five experiments have been designed to demonstrate the effectiveness of microfragment
analysis. The first and last two demonstrate physical and logical block recovery techniques

respectively, and the third test demonstrates the confidence of our collection methods.

Chapter 4

Results

4.1 Introduction

The results seem to fall in line with what had been expected from the analytical model[1].
NTFS has some interesting characteristics when files of different sizes are written to it.
Earlier we stated that the MFT occupies approximately 12.5% of the space on the partition,
but the actual amount varies depending on the physical occupation of the usable space.
For example, a device with many small files would require more space to describe and
maintain attributes and metadata, and thus have a larger MFT. An extreme example of
this would be an NTFS filesystem completely occupied with 1 byte files. These files are
small enough to store directly in the MFT, and as such this device would have all of its
space devoted to the file table. Conversely, a filesystem containing only one large file would
require a single record in the master file table.

The determination of the optimal parameters in terms of filesystem construction goes
beyond the scope of this paper, but was most likely a factor for determining the defaults
for NTFS.

These factors, coupled with the wear of the physical medium during the strain of these

tests, and the fact that theory and practice often differ all affect the actual numbers

27

28 CHAPTER 4. RESULTS

gathered.

4.2 findGenFrag Results

The following two subsections detail the results of our first two experiments.

4.2.1 ’File Size Distribution’ Test
4.2.1.1 Observation

For the fixed size tests in Figure 4.1, we see that where the file size was an integer multiple
of the cluster size (4 kibibytes), there were virtually no microfragments remaining. This
is due to the fact that the filesystem was completely overwritten by the random content

files. 20 kibibyte files occupy 5 full clusters, leaving no slack data.

Cluster Size Test
25000

20000
15000
10000

5000

0 - -

Average #Slack clusters recovered

Fixed: 10 Kbyte
Fixed: 20 Kbyte
Fixed: 40 Kbyte

Fixed: 8 Mb ‘
Fixed: 80 Kbyte

Fixed: 80 MB ‘
Fixed: 800 Kbyte
Uniform: 16-24 Kbyte
Uniform: 2.4-3.6 Mbyte
Uniform: 36-44 Kbyte
Uniform: 76-84 Kbyte
Uniform: 8-12 Kbyte
Exponential: 10 Kbyte
Exponential: 20 Kbyte
Exponential: 40 Kbyte
Exponential: 80 Kbyte
Exponential: 800 Kbyte

Uniform: 600-1000 Kbyte
Exponential: 141 Kbyte

Test

Figure 4.1: Results of Cluster Size Distribution Test

However, for our example from the previous chapter, we get an approximate average
of 19917 microfragments recovered after our overwrite with 10 kibibyte files. This is less
than the expected 21764 (1/12 of our original 1 gibibyte partition), but can be explained
by the alignment of the tail sectors.

4.2. FINDGENFRAG RESULTS 29

A 250 kibibyte file occupies 62.5 clusters but reserves 63, and a 10 kibibyte file occupies
2.5 clusters but reserves 3, meaning that every 21st 10 kibibyte file written will have it’s
tail over cluster containing the tail of our 250 kibibyte file. Only 5/63 (1/4 * 1/3 * 20/21)
of our tail sectors can be expected to contain data from our original set. A demonstration

of this can be seen in figure 4.2.

Last 5 sectors
from original
‘deleted file

Last 2 blocks of
Fixed 10 kbyte file
allocated (blue)

Next Fixed 10
kbyte file
allocated (red)
Data for new file
written (light grey)
Final tail cluster
contains no slack
data (green)

Figure 4.2: Fixed 10 Kbyte files resulting in a tail overlap scenario

Last 6 kbyte of file
written (light grey)

4.2.2 ’Cluster Size Distribution’ Test
4.2.2.1 Observation

Our results are fairly straightforward for this test. As the cluster size increases exponen-
tially, the number of recovered blocks increases exponentially. From this we can see that
the recovered amount of data depends more on cluster size and initial data than on the
overwriting parameters. With smaller cluster sizes, less data is recovered as the amount of

space left in the the tail decreases.

30 CHAPTER 4. RESULTS

Figures 4.3 and 4.4 demonstrate this trend very well. In figure 4.3, we see an increasing
trend in the number of recovered blocks with respect to cluster size across all random file
distribution patterns and in figure 4.4 we can clearly see that the number of recoverable

blocks per cluster occur at the similar ratios with respect to random file parameter.

Cluster Size Distribution Test
1000000

100000

B Uniform: 4-12 Kbyte

[Uniform: 10-30 Kbyte

O Uniform: 20-60 Kbyte

[Exponential: 40 Kbyte

O Uniform: 40-120 Kbyte
O Exponential: 80 Kbyte

B Exponential: 141 Kbyte
B Uniform: 400-1200 Kbyte
W Uniform: 2.4-3.6 Mbyte

10000

1000

Avg # Blocks Recovered

100

1024 2048 4096 8192 16384 32768
Cluster Size (bytes)

Figure 4.3: Results of Cluster Size Distribution Test (rf param v. cluster size)

Our third graph (figure 4.5) is organized slightly differently. This graph demonstrates
the trends of microfragment recovery instead of block recovery. As each cluster can contain
at most one microfragment, it’s no surprise that as the cluster size increases and the average

file size decreases, the likelihood of microfragment recovery increases.

4.2.

FINDGENFRAG RESULTS 31

Average # Slack Blocks Recovered

Cluster Size Distribution Test

Organized by Cluster Size
1000000

100000
10000
D 32768
1000 W 16384
192
0 4096
W 2048
W 1024
100
0

Random File Generation Parameters

o

Uniform: 2.4-3.6 Mbyte
Uniform: 10-30 Kbyte
Uniform: 20-60 Kbyte
Exponential: 40 Kbyte

Uniform: 40-120 Kbyte
Exponential: 80 Kbyte

Exponential: 141 Kbyte

Uniform: 400-1200 Kbyte

Uniform: 2.4-3.6 Mbyte

Figure 4.4: Results of Cluster Size Distribution Test (cluster size v. rf param)

An additional representation of the data, here grouped by random file pattern.

32 CHAPTER 4. RESULTS

Cluster Size Distribution Test

1000000

100000

10000
x Max # Clusters
/ ==25% of Clusters

== Exponential: 141 Kbyte

- o) o \ == Exponential: 40 Kbyte

== Exponential: 80 Kbyte

- T == Uniform: 10-30 Kbyte
// == Uniform: 2.4-3.6 Mbyte
Uniform: 20-60 Kbyte
/ = Uniform: 4-12 Kbyte
1000 Uniform: 40-120 Kbyte

== Uniform: 400-1200 Kbyte

Average # Microfragments Recovered
|

100

1024 2048 4096 8192 16384 32768

Cluster Size (bytes)

Figure 4.5: Results of Cluster Size Distribution Test (Microfragment Recovery)

Note: This chart is represented as a line graph for the ease of demonstrating trends. This data is not continuous.

4.2.3 ’30 Repetitions’ Test

As is seen from figure 4.7, the standard deviation very small for the smaller file sizes,
but is significantly bigger for the larger files. There is also slightly more spread with our
uniformly distributed random files than with our exponentially distributed random files.
This can be explained quite simply. A uniformly distributed file occupying between
10 and 30 kibibytes has an average length of 5.44 clusters and, barring tail alignment,

4.2. FINDGENFRAG RESULTS 33

an average of 3.54 blocks left in the tail and an 86% chance of having a microfragment.
An exponentially distributed random file occupying approximately 20 kibibytes will have
an approximate average length of 2.72 clusters, 3.83 slack blocks left, and a 91% chance
of containing a microfragment, but these numbers vary. In Figure 4.6, we can see the
variance between the probabilities for counts in block recovery. When this value is not
zero, a microfragment is generated. The variance in the fragment generation percentages

for our exponentially distributed random files accounts for the differences in precision.

With our results for larger file sizes, we see more of a spread because there are fewer files,
and thus fewer microfragments generated. Larger files occupy more clusters per file, but,
in the case of our uniform distribution, have a larger file size spread than its exponential
equivalent. In the case of our larger tests, the cluster slack block availability frequencies

approach a more uniform distribution.

The actual number of files used for overwriting the volume as well as specific sizes of

these files were not collected with the automated tools.

Combined Slack Block Distribution
Exponential 20 Kbyte v. Uniform 10-30 Kbyte

0.14
0.12
0.1
0.08
0.06
0.04
0.02

0

0 1 2 3 4 5 6 7

Slack Blocks

B Exponential 20 Kbyte
[Uniform 10-30 Kbyte

%Frequency

Figure 4.6: Uniform v. Exponentially distributed slack block probabilities

The distributions for the exponential data were taken from a sample of 5000 tests, and referenced in Table A.2.

34

CHAPTER 4. RESULTS

#Microfragments Detected

10000

1000

100

Exponential: 20 Kbyte

30 Repetitions
4096 and ntfs

Uniform: 10-30 Kbyte
Overwrite Distribution Format

Exponential: 800 Kbyte

I I I . B

Uniform: 400-1200 Kbyte

Figure 4.7: Observed Results of Repetitions 4096 NTFS

Number of clusters detected and expected, C = 4096 Byte
20000 = T y T T T T T T
| . S o legend T
: Uniform Distribution
2} §+ ffffffff Exponential Distribution
L ¥ + | i x Simulation Uniform Distributions ‘
3 o 3 i ___*__ Simulation Exponential Distributions 1
o 19000 [e e P 7
[| + | | | |
| : : | | |
3 3 Z 3 3 3 3
5 | A | | |
8 1 X | a a a
X : + : : :
2 10000 [B RS SR
° 1 ¥++ 1 | |
o | Dy | | |
S 1 oo 1 1 1
g | T | | |
° | S | |
° s g | s
g 5000 |- B O S
[| ! . | |
3 1 iy, 1 1
= 1 s : :
+++++++ :
| 1 g |
I . R .
ol . . a .]

Figure 4.8:

Mean file size, M, (bytes, log scale)

Recovered Microfragments (Experimental v. Analytical)

The general trend in the results (figure 4.8) versus our experimental model is quite

4.2. FINDGENFRAG RESULTS 35

evident. This is strong evidence that the models are accurate portrayals

4.2.4 ’Rolling Hash’ Tests

These tests yielded some interesting results in comparison with section 4.2.1. In figure 4.9
we can see a comparison between the number of microfragments recovered and the number

of hashes matched by the rolling hash algorithm.

As can be observed, the recovery trends are quite similar. Surprisingly there is a differ-
ence by a factor of approximately 6 between the number of hashes matched and the number
of microfragments detected by this series of tests. This could potentially demonstrate the

frequency and occurrence of unallocated sectors in addition to the microfragments present.

Size Distribution Test (Both)

Hashes Matched v. Microfragments Recovered
1000000

100000

10000
1000
100
M Hashes Matched
0 i i i i @ Microfragments Detected
1

rf_param

o

#Quantity

Fixed: 10 Kbyte
Fixed: 20 Kbyte
Fixed: 40 Kbyte
Fixed: 80 Kbyte
Fixed: 800 Kbyte
Fixed: 8 Mbyte
Fixed: 80 Mbyte
Uniform: 8-12 Kbyte
Uniform: 16-24 Kbyte

Uniform: 36-44 Kbyte
Uniform: 76-84 Kbyte
Uniform: 2.4-3.6 Mbyte
Exponential: 10 Kbyte
Exponential: 20 Kbyte
Exponential: 40 Kbyte
Exponential: 80 Kbyte
Exponential: 800 Kbyte

Uniform: 600-1000 Kbyte
Exponential: 141 Kbyte

Figure 4.9: Size Distribution Test Comparison (Hashes v. Fragments)

The cluster size distribution set of rolling hash tests also demontrates an interesting
pattern. With the exception of the 1024 byte cluster sizes, Figure 4.10 demonstrates a

clear trend of hash recovery with respect to cluster size and random file parameter.

36 CHAPTER 4. RESULTS

Cluster Size Distribution Test

Organized by Cluster Size
1000000
100000 \ ———
\
10000
i
o 1000
g =1024
= 2048
2 4096
@ 100
S 8192
I - 16384
3 32768
g 10
g \/
[
>
<
1
2 2 2 2 2 2 2 2
> > > > > > > >
3 3 3 3 3 3 3 3
X 4 4 4 4 4 4 4
o (=3 o o o (=3 — o
- @ @ T q ® p]
p ! 8 k] ¢ | k] 2
” p 2] g
s £ £ g E g 5 ¥
= S 8 8 5 S < £
5 = = I3 2 |53 g £
> > [s w x 2
=} & 2
=)

Random File Generation Parameters

Figure 4.10: Size Distribution Tests (Hashes by Cluster Size)

When using a cluster size of 1024 bytes, each microfragment can only contain one block.
Because of this, the microfragment recovery on a volume with this format parameter will

not yield similar levels of data in comparison with a rolling hash analysis test.

Cluster Size Distribution Test
#Hashes Matched

1000000

100000

10000
1000
100

1

1024 2048 4096 8192 16384 32768

B Uniform: 4-12 Kbyte

B Uniform: 10-30 Kbyte

O Uniform: 20-60 Kbyte

B Exponential: 40 Kbyte

B Uniform: 40-120 Kbyte
[Exponential: 80 Kbyte

M Exponential: 141 Kbyte
[Uniform: 400-1200 Kbyte

Average # Hashes Matched

Cluster Size (bytes)

Figure 4.11: Cluster Size Tests (Rolling Hash)

4.2. FINDGENFRAG RESULTS 37

The results for our cluster size distribution test seem to follow a similar trend. The
following graph (figure 4.11) demonstrates only the results from our rolling hash test, as

we would otherwise have too much data.

Cluster Size Test (Both)

Hashes & Fragments

500000

50000

/

5000
== Hashes: 2048
== Hashes: 4096
Hashes: 8192
== Fragment: 2048
== Fragment: 4096
Fragment: 8192

#Quantity

500

50

Uniform: 4-12 Kbyte
Uniform: 10-30 Kbyte
Uniform: 20-60 Kbyte
Exponential: 40 Kbyte

Uniform: 40-120 Kbyte
Exponential: 80 Kbyte

Exponential: 141 Kbyte
Uniform: 400-1200 Kbyte

rf_param

Figure 4.12: Cluster Size Tests (Ratio Demonstration)

Interesting to note, however, is that the multiplying factor between microfragment re-
covery and hash match is more dependent on cluster size, than of the overwritten data
from the random files. Figure 4.12 uses a subset of the data from this test to demon-
strate the independence, and figure 4.13 demonstrates the general trend in ratio between

microfragment collection and hash block recovery.

38 CHAPTER 4. RESULTS
Observed Ratios
#Hashes/#Microfragments
80
70 67}46
60
50
L2 40
©
o
30 28,95
20
13.63
10 5.85 .
0 003 ; -
1024 2048 4096 8192 16384 32768

Cluster Size

Figure 4.13: Microfragment v. Hash Ratios

4.3. SUMMARY

39

4.3 Summary

20000
®
o}
(2]
=]
S 15000
©
C
L
e]
o
Q
(0]
o
x
2 10000
e]
i
(8]
(0]
®
©
5
5000
Ne)
£
>
Pz
0

Number of clusters detected and expected, C = 4096 Byte

— T — T T

b ‘ o kegend

i + Uniform Distribution

§+ Exponential Distribution

¥ X % Simulation Uniform Distributions ;

! ! i ___ Simulation Exponential Distributions !
I S e e i T b

| §+ | | |

| | + | | |

| | . | | |

H H + H H H

| | | |

| | %*u‘ | |

. . . T . .

f f f w*ﬂ% f

3 3 3 S SR 3

: : : : + +*++:++

| ; s s SNV

| | | | [, BERNRAL R

2 2 g g g 2 g

S g g) a s 2

Mean file size, M, (bytes, log scale)

Figure 4.14: Block Recovery Trend Comparison

In this chapter the measured results are graphed and compared to our analytical model.

There is a good agreement between these figures as shown in figure 4.14.

Chapter 5

Conclusion

5.1 Microfragment Collection

The analysis of the results clearly demonstrates that distribution of the overwriting files as
well as filesystem format parameters have a direct and measurable effect upon the ability
to recover file microfragments.

There was a strong quantitative agreement when comparing the measured results
against expected results (figure 4.14), but further work could be performed to determine
the number of hashes matched within deallocated versus tail sectors.

In conclusion, we see that cluster slack analysis presents an accurate and viable means
with which we can recover file fragments for the purposes of digital forensics. In comparison
with rolling hash analysis, we have a similar rate of recovery, but we have reduced the

amount of time, data, and false positive rates we would normally see.

5.2 Future Work

Newer disk technologies relying on flash storage often have internal wear leveling mecha-

nisms to increase the lifespan of the device. The Copy-on-Write technologies they employ

41

42 CHAPTER 5. CONCLUSION

may provide additional sources of duplicate hashes and more file fragments.

In addition, magnetic media storage densities are increasing rapidly, leading to a huge
growth in available storage space. At present, there is a push by hard drive manufacturers
to move to a standard of 4096 byte blocks at the hardware level[12]. From the standpoint
of the operating system, this will not appear any differently but this may affect the number
of microfragments recovered when new data is written.

Modeling and comparing the results of higher-order distributions (such as pareto) could
also be useful as an indicator for expected recovery on an actual consumer device.

It could also be interesting to determine which factors affect the ratio of hash matches

to microfragment recovery.

References

Thijs Holleboom & Johan Garcia. Fragment Retention Characteristics in Slack Space
- Analysis and Measurements. Proceedings 2nd International Workshop on Security
and Communucation Networks, 2010.

The FIVES initiative. http://fives.kau.se/.

The Safer Internet Program. http://www.saferinternet.org/.
Kilobyte. http://en.wikipedia.org/wiki/Kilobyte.

Andries Brouwer. Properties of partition tables.

Microsoft Corporation, http://technet.microsoft.com/en-us/library/cc781134 How
NTES Works: Local File Systems.

Paragon Software Group. NTFS features. Technical report, http://www.paragon-
software.com/ntfs/, Retrieved April 14th, 2010.

NTFS MFT technical information. Technical report, http://www.ntfs.com/ntfs-
mft.htm.

The NT filesystem. Technical report, http://www.mcmillan.cx /ntfs.html.

Technical report, The PC Guide (http://www.PCGuide.com), Site Version: 2.2.0 -
Version Date: April 17, 2001.

Johan Garcia & Thijs Holleboom. Retention of Micro-fragments in Cluster Slack - a
first model. Proceedings of IEEE Workshop on Information Forensics and Security,
2009.

Western Digitals Advanced Format: The 4k Sector Transition Begins. Technical
report. http://www.anandtech.com/show/2888.

43

Appendix A

A.1 Graph Data

A.1.1 Uniform Distribution Calculations

#Blocks Remaining | Count | Probability
0 472 0.09
1 571 0.11
2 562 0.11
3 574 0.11
4 622 0.12
5 706 0.14
6 732 0.15
7 762 0.15

Table A.1: Graph Data for "Uniform Block Distribution’” Chart
This table provides the data used in figure 4.6. The data was generated by taking 5000 samples of 20 KiB file with an

exponential differentiation.

45

46 APPENDIX A.
A.1.2 ’File Size Distribution’ Test
Microfragment Analysis Rolling Hash Matches
rf_param Avg #Microfragments | Microfragment stdev | Avg #Hashes Matched Stdev
Fixed: 10 Kbyte 19917.2 35.68 116055 2406.86
Fixed: 20 Kbyte 0.2 0.45 9 7.18
Fixed: 40 Kbyte 0.8 0.45 7.4 7.5
Fixed: 8 Mb 0.6 0.55 0 0
Fixed: 80 Kbyte 2.4 2.3 4.4 6.66
Fixed: 80 MB 0.2 0.45 0 0
Fixed: 800 Kbyte 0 0 4.8 10.73
Uniform: 16-24 Kbyte 9643 38.08 57213.2 1153.49
Uniform: 2.4-3.6 Mbyte 57.2 6.53 29301.2 247.92
Uniform: 36-44 Kbyte 4882.2 82.15 1526.8 154.26
Uniform: 600-1000 Kbyte 231.2 37.63 15197.6 421.74
Uniform: 76-84 Kbyte 2547.6 97.68 105619.33 46.01
Uniform: 8-12 Kbyte 17425.6 161.26 401.2 53.12
Exponential: 10 Kbyte 16616.8 117.63 99141.25 225.59
Exponential: 141 Kbyte 1718 76.84 10112.8 421.66
Exponential: 20 Kbyte 9288 66.32 54604.5 964.87
Exponential: 40 Kbyte 4862.6 226.58 28799.4 822.99
Exponential: 80 Kbyte 2671.6 41.69 15591.4 350.56
Exponential: 800 Kbyte 263 22.28 1662 215.25
Table A.2: Graph Data for 'File Size Distribution’ Test
This table provides the data used in figures 4.1, 4.9, and 4.11
A.1.3 ’Cluster Size Distribution’ Test
Cluster Size | rf_param Avg #Microfragments | Microfragment stdev
1024 | Exponential: 141 Kbyte 972.4 33.63
2048 | Exponential: 141 Kbyte 1469.4 29.61

Continued on next page

Al

GRAPH DATA

47

Cluster Size

rf_param

Avg #Microfragments

Microfragment stdev

4096

8192

16384

32768

1024

2048

4096

8192

16384

32768

1024

2048

4096

8192

16384

32768

1024

2048

4096

8192

16384

32768

1024

2048

4096

8192

16384

32768

1024

2048

Exponential: 141 Kbyte
Exponential: 141 Kbyte
Exponential: 141 Kbyte
Exponential: 141 Kbyte
Exponential: 40 Kbyte
Exponential: 40 Kbyte
Exponential: 40 Kbyte
Exponential: 40 Kbyte
Exponential: 40 Kbyte
Exponential: 40 Kbyte
Exponential: 80 Kbyte
Exponential: 80 Kbyte
Exponential: 80 Kbyte
Exponential: 80 Kbyte
Exponential: 80 Kbyte
Exponential: 80 Kbyte
Uniform: 10-30 Kbyte
Uniform: 10-30 Kbyte
Uniform: 10-30 Kbyte
Uniform: 10-30 Kbyte
Uniform: 10-30 Kbyte
Uniform: 10-30 Kbyte
Uniform: 2.4-3.6 Mbyte
Uniform: 2.4-3.6 Mbyte
Uniform: 2.4-3.6 Mbyte
Uniform: 2.4-3.6 Mbyte
Uniform: 2.4-3.6 Mbyte
Uniform: 2.4-3.6 Mbyte
Uniform: 20-60 Kbyte

Uniform: 20-60 Kbyte

1673.6

1785

1731.2

1495.6

2942.6

4423

4948

5127.6

4694

3731

1595.4

2353

2694.6

2776.6

2695.2

2340

5888.4

8623.2

9564.8

9579

8419

6916

31.8

54.8

59.6

63

64

67.8

3005.4

4350.8

55.44

49.17

41.08

23.22

61.69

67.83

24.24

72.78

88.88

38.31

23.52

53.51

52.84

55.4

50.23

43.12

45.59

54.64

38.21

21.33

28.37

10.56

8.01

5.07

8.96

6

5.34

7.92

46.8

73.85

Continued on next page

48

APPENDIX A.

Cluster Size | rf_param Avg #Microfragments | Microfragment stdev
4096 | Uniform: 20-60 Kbyte 5009 13
8192 | Uniform: 20-60 Kbyte 5102.6 41.45

16384 | Uniform: 20-60 Kbyte 4782.2 27.8
32768 | Uniform: 20-60 Kbyte 3952 24.96
1024 | Uniform: 4-12 Kbyte 13897.4 43.67
2048 | Uniform: 4-12 Kbyte 19656.4 96.7
4096 | Uniform: 4-12 Kbyte 20783.25 143.26
8192 | Uniform: 4-12 Kbyte 18627.8 41.22
16384 | Uniform: 4-12 Kbyte 14615.6 21.7
32768 | Uniform: 4-12 Kbyte 6878.6 41.45
1024 | Uniform: 40-120 Kbyte 1563.6 37.82
2048 | Uniform: 40-120 Kbyte 2302.8 48.63
4096 | Uniform: 40-120 Kbyte 2643.8 27.64
8192 | Uniform: 40-120 Kbyte 2759.6 21.13
16384 | Uniform: 40-120 Kbyte 2696 21.93
32768 | Uniform: 40-120 Kbyte 2225 19.43
1024 | Uniform: 400-1200 Kbyte 39.2 4.76
2048 | Uniform: 400-1200 Kbyte 62.4 4.72
4096 | Uniform: 400-1200 Kbyte 73 5.2
8192 | Uniform: 400-1200 Kbyte 80.6 3.36
16384 | Uniform: 400-1200 Kbyte 79.8 6.06
32768 | Uniform: 400-1200 Kbyte 81 7.11

Table A.3: Graph Data for ’Cluster Size Distribution’ Test

This table provides the data used in figures 4.3, 4.4, and 4.5

A.1. GRAPH DATA

49

A.1.4 ’30 Repetitions’ Test

rf_param

Avg #Microfragments

Microfragment stdev

Exponential: 20 Kbyte
Uniform: 10-30 Kbyte
Exponential: 800 Kbyte

Uniform: 400-1200 Kbyte

9229.63

9545.48

265.31

191.97

229.35

246.88

16.47

38.71

Table A.4: Graph Data for 30 Repetitions’ Test

This table provides the data used in figure 4.7.

A.1.5 ’Rolling Hash’ Tests

cluster size | rf param Hashes Matched stdev | compchunk stdev | Ratio
1024 Uniform: 4-12 Kbyte 68 8.76 13897.4 43.67 0
1024 Uniform: 10-30 Kbyte 22.8 2.77 5888.4 45.59 0
1024 Uniform: 20-60 Kbyte 11 2.16 3005.4 46.8 0
1024 Exponential: 40 Kbyte 9 3.32 2942.6 61.69 0
1024 Uniform: 40-120 Kbyte 11.6 2.41 1563.6 37.82 0.01
1024 Exponential: 80 Kbyte 9.2 3.19 1595.4 23.52 0.01
1024 Exponential: 141 Kbyte 4.25 1.5 972.4 33.63 0
1024 Uniform: 400-1200 Kbyte 7.2 8.81 39.2 4.76 0.18
2048 Uniform: 4-12 Kbyte 28454.5 | 18971.03 19656.4 96.7 1.45
2048 Uniform: 10-30 Kbyte 16818.2 495.38 8623.2 54.64 1.95
2048 Uniform: 20-60 Kbyte 8751.2 255.67 4350.8 73.85 2.01
2048 Exponential: 40 Kbyte 8410.8 217.67 4423 67.83 1.9
2048 Uniform: 40-120 Kbyte 4603.6 247.09 2302.8 48.63 2
2048 Exponential: 80 Kbyte 4703.8 132.19 2353 53.51 2
2048 Exponential: 141 Kbyte 2757.6 125.72 1469.4 29.61 1.88
2048 Uniform: 400-1200 Kbyte 123.6 15.95 62.4 4.72 1.98
4096 Uniform: 4-12 Kbyte 119780.25 391.25 20783.25 | 143.26 5.76
4096 Uniform: 10-30 Kbyte 56146 1139.02 9564.8 38.21 5.87

Continued on next page

20

APPENDIX A.

cluster size | rf param Hashes Matched stdev | compchunk stdev | Ratio
4096 Uniform: 20-60 Kbyte 29276 643.19 5009 13 5.84
4096 Exponential: 40 Kbyte 29242.2 830.91 4948 24.24 5.91
4096 Uniform: 40-120 Kbyte 15506 273.52 2643.8 27.64 5.87
4096 Exponential: 80 Kbyte 15674.8 204.87 2694.6 52.84 5.82
4096 Exponential: 141 Kbyte 9573.6 351.45 1673.6 55.44 5.72
4096 Uniform: 400-1200 Kbyte 436.2 42.27 73 5.2 5.98
8192 Uniform: 4-12 Kbyte 250555.6 941.58 18627.8 41.22 | 13.45
8192 Uniform: 10-30 Kbyte 127684.67 1387.36 9579 21.33 | 13.33
8192 Uniform: 20-60 Kbyte 69324.2 636.17 5102.6 41.45 | 13.59
8192 Exponential: 40 Kbyte 71565.5 1629.26 5127.6 72.78 | 13.96
8192 Uniform: 40-120 Kbyte 37314 963.81 2759.6 21.13 | 13.52
8192 Exponential: 80 Kbyte 38890.33 613.02 2776.6 55.4 | 14.01
8192 Exponential: 141 Kbyte 23989.33 1251.15 1785 49.17 | 13.44
8192 Uniform: 400-1200 Kbyte 1107.4 88.02 80.6 3.36 | 13.74
16384 Uniform: 4-12 Kbyte 411896.2 2254.81 14615.6 21.7 | 28.18
16384 Uniform: 10-30 Kbyte 218746.4 1581.79 8419 28.37 | 25.98
16384 Uniform: 20-60 Kbyte 139592.2 1507.24 4782.2 27.8 | 29.19
16384 Exponential: 40 Kbyte 145732.2 1750.46 4694 88.88 | 31.05
16384 Uniform: 40-120 Kbyte 75823.8 1997.98 2696 21.93 | 28.12
16384 Exponential: 80 Kbyte 82618 817.43 2695.2 50.23 | 30.65
16384 Exponential: 141 Kbyte 52462.6 3732.51 1731.2 41.08 30.3
16384 Uniform: 400-1200 Kbyte 2242.4 119 79.8 6.06 28.1
32768 Uniform: 4-12 Kbyte 678958 2408.65 6878.6 41.45 | 98.71
32768 Uniform: 10-30 Kbyte 319959.4 2628.59 6916 10.56 | 46.26
32768 Uniform: 20-60 Kbyte 230784.8 1386.56 3952 24.96 58.4
32768 Exponential: 40 Kbyte 279487.8 7654.1 3731 38.31 | 74.91
32768 Uniform: 40-120 Kbyte 146799 2452.7 2225 19.43 | 65.98
32768 Exponential: 80 Kbyte 163100.6 4234.95 2340 43.12 69.7
32768 Exponential: 141 Kbyte 103249.8 2058.69 1495.6 23.22 | 69.04
32768 Uniform: 400-1200 Kbyte 4592 467.59 81 7.11 | 56.69

This table provides the data used in figures 4.10, 4.11, 4.12, and 4.13.

A.2. FRAGMENT ANALYSIS

A.2 Fragment Analysis

A.2.1 findGenFrag.c

/*
Adapted from code taken from Johan Garcia. - Zak Blacher 2010
NOTE: When compiling use gcc -Wall -D_FILE_OFFSET_BITS=64 -o findGenFrag findGenFrag.c

to make sure that the file handling functions in glibs will be able to handle
files>2Gb. See also http://www.suse.de/"aj/linux_lfs.html

*/

//-———- Include files

#include <stdio.h> // Needed for printf() and feof()
#include <stdlib.h> // Needed for exit(), atof(), and gsort()
#include <string.h> // Needed for strcmp()

//---—= Defines

#define READ_BLOCKSIZE 10%1024%1024 //Should be multiple of chunksize
#define READ_MARGIN 64%x1024

#define PRINTINTERVAL 1

//--=-= Globals

//-==== Type defines

typedef unsigned char byte; // Byte is a char

typedef unsigned short int wordi6; // 16-bit word is a short int

typedef unsigned int word32; // 32-bit word is an int

//-—=—-= Constant defines

#define FALSE 0 // Boolean false

#define TRUE 1 // Boolean true

//-=--= Global variables

int64_t N=0; // Number of bytes in checkfile

//

//= Main program =
//

void print_usage(char *name)
{
printf ("Usage: %s \n"
" [-d <debug>] Debug level (0-2)\n"
" [-m] Machine readable output (cannot combine with -d)\n"
[-c <checkfile>] file to check for matches\n",name);
exit (1);
}

n

int main(int argc, char *argv[])
{

FILE *checkfileptr=0; // File pointer to input file #2
word32 debug=01,machine_readable=01;

char *checkfile=NULL;

word32 i,j; // Loop counter

char *buffer;

int printinterval = PRINTINTERVAL;

int argctr=0;

word32 read=01,nr_startheaders=01,nr_endheaders=01,nr_fragments=01;

52 APPENDIX A.

int64_t slackdata=011;
unsigned int filenumber,chunknr,chunksize;

if (argc < 2) {
print_usage(argv[0]);
}

while (++argctr < argc) {
if ((*(argvlargctr])) != °->) print_usage (argv[0]);
switch (*(argv[argctrl+1)) {
case ’d’ : debug=atoi(argv[++argctr]); break;
case ’m’ : machine_readable=1; break;
case ’c’ : checkfile=argv[++argctr]; break;

}
if (debug && machine_readable)
exit (1);
}

buffer=calloc(READ_BLOCKSIZE,sizeof (byte));

if (checkfile != NULL) {

checkfileptr=fopen(checkfile,"r");

if (checkfileptr==NULL) {fprintf(stderr,"Could not open file %s",checkfile); exit (1);}
}

N=011;
read=0;
do {
read=fread(buffer,sizeof (char) ,READ_BLOCKSIZE, checkfileptr);
N += read;
if (!(--printinterval) && !machine_readable) {
fprintf (stderr,"Searched: %11d\r",N);
fflush (stdout);
printinterval=PRINTINTERVAL;
}
for (i=0;i < read ;i++) {
if (buffer[i]l=="F’) { //
if (!strncmp(buffer+i,"FIVB",4)) {
nr_startheaders++;
if (debug>1) printf ("\nStartheader found at position %11d (non-fp) ",N-read+i);
sscanf (buffer+i+23,"%d" ,&filenumber); // Evil magic nrs correlated to output format...
sscanf (buffer+i+39,"%d",&chunknr) ;
sscanf (buffer+i+55,"%d" ,&chunksize) ;
if (debug>2) printf ("Filenumber: %9u, Chunknumber: %9u (Chunksize:%5u)",
filenumber,chunknr,chunksize);
if (!strncmp(buffer+i+chunksize-4,"FIVE",4)) { //Complete chunk?
nr_endheaders++;
slackdata += chunksize;
} else {
for (j=0;buffer[i+64+j]1=="J7;j++);
slackdata += j;
}
if (strncmp(buffer+i+chunksize,"FIVB",4)) { //If not followed by chunk, increase fragcounter
nr_fragments++;
}
}
¥
}
} while (read == READ_BLOCKSIZE);

fclose(checkfileptr);
if (machine_readable) {
fprintf (stdout,"%u;%11d;%11d;%u;%u\n" ,nr_fragments,N,slackdata,nr_endheaders,nr_endheaders-nr_startheaders) ;

A.2. FRAGMENT ANALYSIS 93

fprintf (stdout, "microfragments: %u\n", nr_fragments);

fprintf (stdout, "processed-bytes: %11d\n", N);

fprintf (stdout,"slack-bytes: %11d\n", slackdata);

fprintf (stdout, "complete-chunks: %u\n", nr_endheaders);

fprintf (stdout,"incomplete-chunks: %u\n", nr_endheaders-nr_startheaders);

} else {
fprintf (stdout,"\nFinished.\n");
fprintf (stdout,"’11d bytes processed",N);
fprintf (stdout,"%u microfragments found\n",nr_fragments);
fprintf (stdout,"’11ld bytes of slack data found\n",slackdata);
fprintf (stdout,"%u complete chunks found\n",nr_endheaders);
fprintf (stdout,"%u incomplete chunks found\n",nr_endheaders-nr_startheaders);
fprintf (stdout,"%u last chunksize detected\n",chunksize);

// Output closing trailer
printf (" \n");
}

return O;

}

A.2.2 genDistrFile.c
/*
Adapted from code taken from Johan Garcia. - Zak Blacher 2010

TODO:

* Think about when to use llong and when to use double

* Think about if the random generating function is sufficient,
It uses only ints to store seed

Compile with: gcc -Wall -std=gnu99 -1m genDistrFile.c

*/

//-=--—= Include files

#include <stdio.h> // Needed for printf() and feof()
#include <stdlib.h> // Needed for exit(), atof(), and gsort()
#include <string.h> // Needed for strcmp()

#include <limits.h> // Needed for LLONG_MAX etc
#include <errno.h> // Needed for errno ...

#include <sys/types.h> // Needed for stat()

#include <sys/stat.h> // Needed for stat()

#include <sys/time.h> // Needed for gettimeofday()
#include <time.h> // Needed for stat()

#include <math.h> // Needed for pow(), sqrt(), logQ),
Y Defines

#define BUFFERSIZE (16%1024%1024) //Size of writebuffer for efficient writing

//-=-=== Global variables

int debug=0; //Amount of debug info to output

enum DISTROS {STATIC, UNIFORM, NORMAL, TRUNC_EXPON, EXPON, PARETO, BOUNDED_PARETO, FILE_SEQ, FILE_RAND, END_MARKERD} distrib
enum AMOUNTS {NRFILES, MIN_SIZE, MAX_SIZE, EXACT_SIZE, END_MARKERA} amounttype = END_MARKERA;

enum FILLTYPE{CHUNK, RANDOM, TEXT, END_MARKERF} filltype = CHUNK;

unsigned int chunksize=512; //Size of chunks with identificators for generated files

unsigned int filenumber=0;

char *fillstring;

54 APPENDIX A.

//-—--—- Function prototypes

char *write_file (char *outputdir, long long filesize);
double pareto(double a, double k);

double bpareto(double a, double k, double p);

double expon(double x);

double norm(double mean, double std_dev);

double rand_val(int seed);

double unif(double min, double max);

void checkdir (char *outputdir);

//
//= Main program =
//
/*

Filerna som genereras skall ha fljande karakteristik:

Bestr av ett antal chunkar, varje chunk har:
Startheader -- Paddad med 119 -- slutheader

Startheader: FIVB, 4bytes filnummer, 4bytes chunknummer, 4bytes chunkstorlek
Slutheader FIVE, 4bytes filnummer, 4bytes chunknummer, 4bytes chunkstorlek

*/

long long getLlong(char *valstring)

char *endptr;
long long val;

errno = 0; /* To distinguish success/failure after call */
val = strtoll(valstring, &endptr, 10); //Use base 10

/* Check for various possible errors */

if ((errno == ERANGE && (val == LLONG_MAX || val == LLONG_MIN))
Il (errno != 0 && val == 0)) {
perror("strtoll");
exit (EXIT_FAILURE) ;
}

if (endptr == valstring) {
fprintf(stderr, "No digits were found\n");
exit (EXIT_FAILURE);

}

/* If we got here, strtol() successfully parsed a number */

if (xendptr != ’°\0’) { /* Not necessarily an error... */
if (!strncmp (endptr,"KbKi) val=val*1024;
else if (!strncmp (endptr,"Mb",2)) val=val*1024*1024;
else if (!strncmp (endptr,"Gb",2)) val=val*x1024*%1024%1024;
else if (!strncmp (endptr," ",1)) ; // For size file with more text on line
else {
printf ("Further characters after number: %s\n", endptr);
exit (EXIT_FAILURE);
}
}

if (debug>0) printf("getLlong returns %1ld\n", val);
return val;

A.2. FRAGMENT ANALYSIS

55

void print_usage(char #*name)
{
printf ("Usage: %s\n"

" Distribution characteristics for generated files, select one: \n"

[-s <static size>]
[-u <lower limit> <upper limit>]
[-n <mean> <stddev>]

[-t <mean> <shape> <max>]

[-e <mean> <shape>]

[-p <mean> <shape>]

[-b <mean> <shape>]

[-f <input filename>]

[-g <input filename>]

Out

" [-o <output file directory>]
[-w <filename>]

" Output amount options, select one: \n"
" [-c <number of files>]

" [-k <min total file size>]

" [-1 <max total file size>]

" [-m <exact total file size>]
Other options: \n"

" [-z <chunksize>]

" [-q]

" [-y <text_string>]

" [-r <seed value>]

One static file size\n"

Uniformly distributed values. Limits are inclusive. \n"
Normal\n"

Truncated exponentialln"

Exponentiall\n"

Pareto\n"

Bounded pareto\n"

Read sizes from file sequentially\n"

Random draw from file with sizes\n"

put generation options, select one or both: \n"

Directory to store the generated files in \n"
File to log the file sizes in \n"

The number of files generated\n"
Minimum amount of cumulative file sizes, total may be larger. \n"
Maximum amount of cumulative file sizes, total may be less. \n"

Exact amount of cumulative file sizes. Last file may be truncated.

Chunksize to be used for contents in files. Default 512\n"
Fill genereated files with random bytes,not chunks\n"
Fill with specified string. Spaces not allowed\n"
Value to use for random seed\n"
Show this help\n"
Print debug messages according to debug level (0-2)\n"

" Byte is default for all sizes, use KbKiGb for KbKiMbyte. example: 500KbKi

" [_h]
" [-d <debug>]
n \n"
,name) ;
exit (EXIT_FAILURE);

}

int main(int argc, char *argv[])
{

FILE *srcfileptr=0;

FILE *printfileptr=0;

// File pointer to file with sizes
// File pointer to size log file

char *srcfile=NULL,*outputdir=NULL,*printfile=NULL;
long long staticsize=0, startlimit=0, endlimit=0, meansize=0, stddev=0;

double shape=0;

long long numberoffiles=0, totalfilesize=0, size=0, generatedfiles=0, generatedsize=0;

int argctr=0, seed=0;
int sizelines = 0, currentline=0, pos=0;
long long *filesizearray = NULL;

if (argc < 2) {
print_usage(argv[0]);
}

while (++argctr < argc) {
if ((x(argvlargctr])) !'= -7) {

fprintf (stderr,"Parsing error at s\n",argv[argctr]l);

print_usage (argv[0]);
}
switch (*(argv[argctrl+1)) {
case ’s’
distrib = STATIC;
staticsize = getLlong(argv[++argctr]);
break;

\Il"

26 APPENDIX A.

case ’u’
distrib = UNIFORM;
startlimit=getLlong(argv[++argctr]);
endlimit=getLlong(argv[++argctr]);
break;
case ’n’
distrib = NORMAL ;
meansize=getLlong(argv[++argctr]);
stddev = getLlong(argv[++argctr]l);
break;
case ’t’
distrib = TRUNC_EXPON;
meansize=getLlong(argv[++argctr]);
shape = strtod (argv[++argctr],NULL);
endlimit=getLlong(argv[++argctr]);
if (shape == 0) {
fprintf (stderr,"Could not parse shape parameter %s\n",argv[argctr]);
exit (EXIT_FAILURE);
}
endlimit=getLlong(argv[++argctr]);
break;
case ’e’
distrib = EXPON ;
meansize=getLlong(argv[++argctr]);
shape = strtod (argv[++argctr],NULL);
if (shape == 0) {
fprintf (stderr,"Could not parse shape parameter %s\n",argv[argctr]);
exit (EXIT_FAILURE);
}
break;
case ’p’
distrib = PARETO ;
meansize=getLlong(argv[++argctr]);
shape = strtod (argv[++argctr] ,NULL);
if (shape == 0) {
fprintf (stderr,"Could not parse shape parameter %s\n",argv[argctr]);
exit (EXIT_FAILURE);
}
break;
case ’b’
distrib = BOUNDED_PARETO ;
meansize=getLlong(argv[++argctr]);
shape = strtod (argv[++argctr],NULL);
endlimit=getLlong(argv[++argctrl);
if (shape == 0) {
fprintf (stderr,"Could not parse shape parameter %s\n",argv[argctr]);
exit (EXIT_FAILURE);
}
break;
case ’f’
distrib = FILE_SEQ ;
srcfile=argv[++argctr];
break;
case g’
distrib = FILE_RAND ;
srcfile=argv[++argctr];

break;

case ‘o’
outputdir=argv[++argctr];
break;

case ’c’

amounttype = NRFILES;
numberoffiles=getLlong(argv[++argctr]);
break;

case ’k’

A.2. FRAGMENT ANALYSIS o7

amounttype = MIN_SIZE;
totalfilesize=getLlong(argv[++argctr]);
break;
case 1’
amounttype = MAX_SIZE;
totalfilesize=getLlong(argv[++argctr]);
break;
case ’'m’
amounttype = EXACT_SIZE;
totalfilesize=getLlong(argv[++argctr]);
break;
case ’w’
printfile=argv[++argctr];
break;
case 'z’
filltype = CHUNK;
chunksize = (int)getLlong(argv[++argctr]);
if (chunksize == 0) {fprintf (stderr,"Chunk size O no allowed\n"); exit (EXIT_FAILURE); }
break;
case ’q’
filltype = RANDOM;
break;
case ’y’
filltype = TEXT;
fillstring = argv[++argctr];
break;
case ’r’
seed = (int)getLlong(argv[++argctrl);
if (seed == 0) {fprintf (stderr,"Seed value O no allowed\n"); exit (EXIT_FAILURE); }
rand_val (seed);
break;
case ’h’
print_usage (argv[0]);
break;
case ’d’
debug = (int)getLlong(argv[++argctr]);
break;
default:
print_usage (argv[0]);
break;
}
}

if (!'seed) {

struct timeval tv;

gettimeofday (&tv,NULL) ;

rand_val ((int)tv.tv_usec);

if (debug) printf ("Timebased seed :%d", (int)tv.tv_usec);
}

if (numberoffiles != 0 && totalfilesize != 0) {
fprintf (stderr,"Not possible to both specify number of files and total file size\n\n");
exit (EXIT_FAILURE);

}

if (BUFFERSIZE)chunksize != 0) {
fprintf(stderr,"Illegal chunksize (i.e.BUFFERSIZE mod chunksize !=0) \n (%d mod %d)\n",BUFFERSIZE, chunksize);
exit (EXIT_FAILURE);

}

if (srcfile '= NULL) {
srcfileptr=fopen(srcfile,"r");

if (srcfileptr==NULL) {fprintf(stderr,"Could not open file %s\n",srcfile); exit (EXIT_FAILURE);}

char linebuf [5000];

o8 APPENDIX A.

while (fgets(linebuf,5000-1,srcfileptr) != NULL)
sizelines++;

rewind(srcfileptr);

filesizearray = malloc(sizelines*sizeof (long long));

while (fgets(linebuf,5000-1,srcfileptr) != NULL)
filesizearray[currentline++] = getLlong(linebuf);
currentline=0;

}
if (printfile != NULL) {
printfileptr=fopen(printfile,"w");
if (printfileptr==NULL) {fprintf(stderr,"Could not open file ¥%s\n",printfile); exit (EXIT_FAILURE);}
}
if (outputdir != NULL) checkdir(outputdir);

int cont=1;

do {

switch (distrib) {
case STATIC: size = staticsize; break;
case UNIFORM: size = round(unif (startlimit,endlimit)); break;
case NORMAL: size = round(norm (meansize,stddev)); break;
case TRUNC_EXPON: size =1; break;
case EXPON: size = round(expon(meansize)); break;
case PARETO: size = round(pareto(meansize,shape)); break;
case BOUNDED_PARETO:size = round(bpareto(meansize,shape,endlimit)); break;
case FILE_SEQ: size = filesizearray[currentline++];

if (currentline >= sizelines) currentline =0; break;

case FILE_RAND:
do {pos=floor(rand_val(0)*sizelines);} while (pos > sizelines-1); //To handle case where rand_val=1.0

size=filesizearray [pos]; break;

case END_MARKERD: fprintf(stderr,"Please specify distribution to generate\n"); exit(1);
break;

}

switch (amounttype) {

case NRFILES: if (generatedfiles >= numberoffiles) goto nofile; break;

case MIN_SIZE: if (generatedsize + size >= totalfilesize) cont=0; break;

case MAX_SIZE: if (generatedsize + size > totalfilesize) goto nofile; break;

case EXACT_SIZE:
if (generatedsize + size == totalfilesize) cont=0;

if (generatedsize + size > totalfilesize) {
fprintf (stderr,"Note: Last generated value truncated! Should be %11d, was truncated to %11ld.\n",
size,totalfilesize - generatedsize);
size = totalfilesize - generatedsize;
cont = 0;

}

break;

case END_MARKERA: fprintf(stderr,"Please specify amount to generate\n"); exit(1);

break;

}
if (size<0) {fprintf(stderr,"Size > O : %101ld, Check parameterization\n",size); exit (EXIT_FAILURE);}

char *tmpptr=NULL;

if (outputdir != NULL) tmpptr = write_file (outputdir,size);

if (printfile != NULL) fprintf (printfileptr,"%1011ld %s\n",size,tmpptr == NULL ? " " : tmpptr);
generatedfiles++;

generatedsize += size;

if (debug) {fprintf (stderr,"File#:%811ld Size:%1011d Generatedsize:%811ld\n",generatedfiles,size,generatedsize); }
} while (cont);
nofile:

A.2. FRAGMENT ANALYSIS

return (EXIT_SUCCESS);
}

char *fillchunk_old (char *writebufferidx, unsigned int *chunknrp, int thischunksize)

{
int k;

strncpy (writebufferidx,"FIVB",4);

(unsigned int) (writebufferidx+4) = (unsigned int) filenumber;
(unsigned int) (writebufferidx+8) = (unsigned int) (*chunknrp)++;
(unsigned int) (writebufferidx+12) = (unsigned int) thischunksize;
for (k=16; k<thischunksize-4;k++) *(writebufferidx+k)=’J’;

strncpy (writebufferidx+k,"FIVE",4);

return writebufferidx+k+4;

}

char *fillchunk (char *writebufferidx, unsigned int *chunknrp, int thischunksize)

{
int k;

strncpy (writebufferidx,"FIVB ",16);

snprintf (writebufferidx+16,16,"Filenr:%8u",filenumber) ; //D0 NOT CHANGE !!
snprintf (writebufferidx+32,16,"Chnknr:%8u", (*chunknrp)++); //SCANF USES FORMAT
snprintf (writebufferidx+48,16,"Chnksz:%8u",thischunksize); //IN findGenFrag!!

for (k=64; k<thischunksize-4;k++) *(writebufferidx+k)=’J’;
strncpy (writebufferidx+k,"FIVE",4);
return writebufferidx+k+4;

char *write_file (char *outputdir, long long filesize) {

unsigned int i,j,k,retval;

FILE *fp;

unsigned int chunknr=0;

static char filename[2048]={""}; // Output file name string
static char writebuffer [BUFFERSIZE]; // Buffer
char *writebufferp=writebuffer;

if (outputdir[strlen(outputdir)-1] == ’/’)

snprintf (filename,512, "Ys%s%d" ,outputdir, "genfile_",filenumber) ;
else

snprintf (filename,512,"%s%s%d" ,outputdir,"/genfile_",filenumber);

if (debug) fprintf(stderr," %1011d ¥%s\n",filesize, filename);

if ((fp = fopen(filename, "wb")) == NULL){
fprintf (stderr,"ERROR in creating output file (%s) Aborting.\n", filename);
exit(1);

}

// If text, preload buffer once.
if (filltype == TEXT){
k=strlen(fillstring) ;
while (writebufferp-writebuffer+k < BUFFERSIZE) {
strcpy (writebufferp,fillstring);
writebufferp += k;
}
strncpy (writebufferp, fillstring,BUFFERSIZE - (writebufferp - writebuffer));
}

//Fill full buffers

for(i=filesize/BUFFERSIZE; i>0; i--) {
if (filltype == RANDOM) { // TODO: Additional £ill VARIANT ;RANDOM;RAND BLOCK COPY??

60 APPENDIX A.

for (j=0; j<BUFFERSIZE; j+=2) *(unsigned shortx*) (writebuffer+j) = (unsigned short) (random()%65535);

} else if (filltype == CHUNK) { //Make chunkheaders
do {
writebufferp=fillchunk (writebufferp,&chunknr,chunksize);
} while (writebufferp-writebuffer < BUFFERSIZE); //N.B BUFFERSIZE J CHUNKSIZE must be 0
} else if (filltype == TEXT){ //Already preloaded
} else {
fprintf (stderr,"No filltype defined....");
exit(1);
}

if (fwrite(writebuffer, 1, BUFFERSIZE, fp) != BUFFERSIZE) {
fprintf (stderr,"ERROR when writing to file (%s) \n", filename);
return filename;

}

writebufferp = writebuffer;

}
//Fill last partial buffer

if (filltype == RANDOM) {
for (j=0; j<filesize),BUFFERSIZE; j+=2) *(unsigned shortx*) (writebuffer+j) = (unsigned short) (random()?%65535) ;
if (debug) fprintf(stderr," fillrandom %d\n",RAND_MAX);
} else if (filltype == CHUNK) { //Make chunkheaders
while (writebufferp-writebuffer+chunksize < filesize),BUFFERSIZE) {
writebufferp=fillchunk (writebufferp,&chunknr,chunksize);
};
writebufferp=fillchunk (writebufferp,&chunknr, (filesize-(writebufferp-writebuffer))jchunksize);
} else if (filltype == TEXT){ //Already preloaded
} else {
fprintf (stderr,"No filltype defined....");
exit(1);
}

if ((retval=fwrite(writebuffer, 1, filesize/BUFFERSIZE, fp)) != filesize),BUFFERSIZE) {
fprintf (stderr,"ERROR when writing to file (%s) Wanted %11ld, Got %u\n", filename, filesize),BUFFERSIZE, retval);
return filename;

}

fclose(fp);
filenumber++;
return filename;

}
int fileoutput_oldgenfile(int argc, char** argv){

return O;

}

/*
void dummy (void){
int i,num_values=1;
double exp_rv ;
// Generate and output exponential random variables
for (i=0; i<num_values; i++)
{
exp_rv = expon(1.0 / lambda);
fprintf (fp, "%f \n", exp_rv);
}

*/

A.2. FRAGMENT ANALYSIS

//

//= Function to generate Pareto distributed RVs using
//= - Input: a and k
//= - Output: Returns with Pareto RV

//
double pareto(double k, double a)

{

double z; // Uniform random number from O to 1
double rv; // RV to be returned

// Pull a uniform RV (0 < z < 1)
do
{
z = rand_val(0);
}
while ((z == 0) || (z == 1));

// Generate Pareto rv using the inversion method
rv = k / pow(z, (1.0 / a));

return(rv);

}

//

//= Function to generate bounded Pareto distributed RVs using
//= - Input: a, k, and p

//= - Output: Returns with bounded Pareto RV

//

double bpareto(double k, double a, double p)

{

double z; // Uniform random number from O to 1
double rv; // RV to be returned

// Pull a uniform RV (0 < z < 1)
do
{
z = rand_val(0);
}
while ((z == 0) || (z == 1));

// Generate the bounded Pareto rv using the inversion method
rv = pow((pow(k, a) / (zxpow((k/p), a) - z + 1)), (1.0/a));

return(rv);

}

//

//= Function to generate normally distributed random variable using the
//= Box-Muller method

//= - Input: mean and standard deviation

//= - Output: Returns with normally distributed random variable
//

double norm(double mean, double std_dev)

{

double u, r, theta; // Variables for Box-Muller method
double x; // Normal(0, 1) rv

double norm_rv; // The adjusted normal rv

// Generate u

u=0.0;

while (u == 0.0)
u = rand_val(0);

62

APPENDIX A.

// Compute r
r = sqrt(-2.0 * log(u));

// Generate theta
theta = 0.0;
while (theta == 0.0)
theta = 2.0 * M_PI * rand_val(0);

// Generate x value
x = r * cos(theta);

// Adjust x value for specified mean and variance
norm_rv = (x * std_dev) + mean;

// Return the normally distributed RV value
return(norm_rv) ;

}

//

//= Function to generate exponentially distributed random variables =
//= - Input: Mean value of distribution =
//= - Output: Returns with exponentially distributed random variable =
//

double expon(double x)

{

double z; // Uniform random number (0 < z < 1)

double exp_value; // Computed exponential value to be returned

// Pull a uniform random number (0 < z < 1)
do
{
z = rand_val(0);
}
while ((z == 0) || (z == 1));

// Compute exponential random variable using inversion method
exp_value = -x * log(z);

return(exp_value);

}

//

//= Function to generate uniformly distributed random variables =
//= - Input: Min and max values

//= - Output: Returns with uniformly distributed random variable =
//

double unif(double min, double max)

{

double z; // Uniform random number (0 < z < 1)

double unif_value; // Computed uniform value to be returned

// Pull a uniform random value (0 < z < 1)
z = rand_val(0);

// Compute uniform continuous random variable using inversion method
unif_value = z * (max - min) + min;

return(unif_value);

}

A.2. FRAGMENT ANALYSIS 63

/* CHECKME: Seems to give non-random numbers for too large seeds */

/*

[johan@localhost FragEvalTools]$./a.out -d O -n 100 20 -c 10000 -w test.txt -r 422343534454345519; awk ’{tot=tot+=43} END
1000000

*/

/* Also, should resolution be 64 bit-based instead of 32 bit? */

//

//= Multiplicative LCG for generating uniform(0.0, 1.0) random numbers =
//= - From R. Jain, "The Art of Computer Systems Performance Analysis," =
//= John Wiley & Somns, 1991. (Page 443, Figure 26.2) =
//
double rand_val(int seed)

{

const long a = 16807; // Multiplier

const long m = 2147483647; // Modulus

const long q = 127773; // m div a

const long r = 2836; // m mod a

static long x; // Random int value

long x_div_q; // x divided by q

long x_mod_q; // x modulo q

long X_new; // New x value

// Set the seed if argument is non-zero and then return zero
if (seed > 0)
{
x = seed;
return(0.0);
}

// RNG using integer arithmetic
x_div.g = x / q;
x_mod_q = x % q;
x_new = (a * x_mod_q) - (r * x_div_q);
if (x_new > 0)

X = X_new;
else

X = X_new + m;

// Return a random value between 0.0 and 1.0
return((double) x / m);
}

void checkdir (char *outputdir)
{

struct stat sb;

if (stat(outputdir, &sb) == -1) {
perror ("Parsing output dir");
exit (EXIT_FAILURE);

}

if ((sb.st_mode & S_IFMT) !'= S_IFDIR) {
printf ("Unexepected file type for output directory: ");
switch (sb.st_mode & S_IFMT) {
case S_IFBLK: printf("block device\n"); break;
case S_IFCHR: printf("character device\n"); break;
case S_IFIF0: printf("FIFO/pipe\n"); break;
case S_IFLNK: printf("symlink\n"); break;
case S_IFREG: printf("regular file\n"); break;
case S_IFSOCK: printf ("socket\n"); break;
default: printf ("unknown?\n"); break;

}

64

APPENDIX A.

exit (EXIT_FAILURE) ;
}
}

A.3 Python Scripts

A.3.1 script2.py

#!/usr/bin/env python

written for python 2.5 & cygwin compatibility

By Zak Blacher - 2010

from subprocess import Popen, PIPE, list2cmdline, call

from os import fork
from os.path import abspath

from time import time, sleep
import sqlite3

--- EXECUTION PARAMETERS ---

start =0

Where to start in the iteration process (for resuming)

path_to_exec =" /"
Path to C executables

max_iter_time 60*x60 # 1 hour

ps_check_int =5 # check every 5 seconds

parameters for process babysitting

max_genfile_amt = "1Gb"

generate this much data

output_file = "collection.db"

database for storing collected information
table_name = "cluster_size_distr_all"

table in database for this test

dd_buffer_size = ’16MB’
dd buffer size

fs_params = {

’name’ : ’haystack’,
‘dev’ : ?/dev/sda2’,
’path’ : ?/cygdrive/d’,
’win_path’ : ’D:’

}

target filesystem parameters

--- TEST PARAMETERS ---

reps = 5

fs_types = [’ntfs’]

cluster_sizes = [’1024’,’2048°,°4096°,°8192’,

Offending File Generation Parameters
of _params = [

116k’ , 32k’]

(1000 files 250 KbKi , [’-s’, ’250KbKi-c’, ’1000°1),

A.3. PYTHON SCRIPTS

65

]

Random File Generation Parameters
rf_params = [

(’Exponential: 141 KbKi , [’-e’, ’141KbKi0.00006°]1),
(’Exponential: 40 KbKi , [’-e’, ’40KbKi0.00006°]),
(’Exponential: 80 KbKi , [’-e’, ’80KbKi0.00006°]),
(’Uniform: 10-30 KbKi , [’-u’, ’10KbKi30KbKi
(’Uniform: 2.4-3.6 Mbyte’ , [’-u’, ’2458KbKi3686KbKi
(’Uniform: 20-60 KbKi , [’-u’, ’20KbKi60KbKi
(’Uniform: 4-12 KbKi , [’-u’, ’4KbKil2KbKi
(’Uniform: 40-120 KbKi , [’-u’, ’40KbKi120KbKi
(’Uniform: 400-1200 KbKi , [’-u’, ’4000KbKi1200KbKi
1

#Here Be Dragons

def list3cmdline(s):
print and flatten command line
s = list2cmdline(s)
print s
return s

def format_permute(start=0):
generator for parameter permutations
count = 0
for i in range(reps):
for j in fs_types:
for k in cluster_sizes:
for (1,m) in of_params:
for (n,p) in rf_params:
if (count >= start):
yield (i,j,k,(1,m),(n,p))
count += 1

print "Performing",len(cluster_sizes)*len(fs_types)*len(of_params)*len(rf_params)*reps,"Tests..."

try to create table
dbconn = sqlite3.connect(output_file)
cursor = dbconn.cursor ()

try:
cursor.execute(’create table ’+table_name+’ (rep,fs_type,cluster_size, \
of _param,rf_param,b_nrfrag,b_procbyte,b_slackbKi \
b_compchunk,b_icompchunk,a_nrfrag,a_procbyte,a_slackbKia_compchunk,a_icompchunk)’)
repetition, filesystem type, cluster size, original file parameters, random file parameters,
before {number of fragments, processed bytes, slack bytes, complete chunks, incomplete chunks}
after {number of fragments, processed bytes, slack bytes, complete chunks, incomplete chunks}
except:
pass

for (rep,fs_type,cluster_size, (of_key,of_param), (rf_key,rf_param)) in format_permute(start):
print [rep,fs_type,cluster_size, (of_key,of _param), (rf_key,rf_param)]

try:
start_time = time()
’Zeroing Disk.’
call(list3cmdline([’dd’, ’if=/dev/zero’,’of=’+fs_params[’dev’],’bs=’+dd_buffer_size]),shell=True)

’Formatting drive’
call(("format.com %s /FS:%s /V:%s /A:%s /X /Q /Y" % (fs_params[’win_path’],fs_type,
fs_params[’name’],cluster_size)),shell=True)

66 APPENDIX A.

’Counting Initial Fragments’
ps = Popen([path_to_exec+’findGenFrag.exe’,’-m’,’-c’,fs_params[’dev’]],stdout=PIPE)

while(ps.poll() == None and time() <= (start_time + max_iter_time)):
sleep(ps_check_int)

if (time() > (start_time + max_iter_time)):
ps.kill()
raise Exception(’timeout’,’initial’)

s = ps.communicate() [0]
(b_nrfrag,b_procbyte,b_slackbKib_compchunk,b_icompchunk) = s.splitlines()[0].split(’;’)

b_nrfrag, ’fragments initially found. Generating Files’
ps = Popen([path_to_exec+’genDistrFile.exe’,’-0’,fs_params[’path’]]+of_param)

while(ps.poll() == None and time() <= (start_time + max_iter_time)):
sleep(ps_check_int)

if (time() > (start_time + max_iter_time)):
ps.kill()
raise Exception(’timeout’,’initial generation’)

’Deleting Generated Files’
call(list3cmdline([’rm’,’-r’,’-s’,fs_params[’path’]+’/genfile_%’]),shell=True)

#print ’Writing Random Content Files’
ps = Popen([path_to_exec+’genDistrFile.exe’,’-q’,’-m’ ,max_genfile_amt,’-o’,fs_params[’path’]]+rf_param)

while(ps.poll() == None and time() <= (start_time + max_iter_time)):
sleep(ps_check_int)

if (time() > (start_time + max_iter_time)):
ps.kill()
raise Exception(’timeout’,’random generation’)

’Counting Fragments’
ps = Popen([path_to_exec+’findGenFrag.exe’,’-m’,’-c’,fs_params[’dev’]],stdout=PIPE)

while(ps.poll() == None and time() <= (start_time + max_iter_time)):
sleep(ps_check_int)

if (time() > (start_time + max_iter_time)):
ps.kill()
raise Exception(’timeout’,’final count’)

s = ps.communicate() [0]
(a_nrfrag,a_procbyte,a_slackbKia_compchunk,a_icompchunk) = s.splitlines() [0].split(’;’)

a_nrfrag, ’fragments found.’

cursor.execute(’insert into ’+table_name+’ values (?,7,7,7,7,7,7,7,7,7,7,7,7,7,7)’, [rep,fs_type,cluster_size,
of _key,rf_key,b_nrfrag,b_procbyte,b_slackbKi
b_compchunk,b_icompchunk,a_nrfrag,a_procbyte,a_slackaia_compchunk,a_icompchunk])

’added record tuple to database’

dbconn. commit ()

except:
print "WARNING: COULD NOT EXECUTE COMMANDS FOR TUPLE", [rep,fs_type,cluster_size,of_key,rf_key,start,end]

A.3. PYTHON SCRIPTS

67

A.3.2 script_rh.py

#!/usr/bin/env python

written for python 2.5 & cygwin compatibility
By Zak Blacher - 2010

from subprocess import Popen, PIPE, list2cmdline, call
from os import fork
from os.path import abspath

from time import time, sleep
import sqlite3

--- EXECUTION PARAMETERS ---

start =0
Where to start in the iteration process (for resuming)

path_to_exec =" /"

Path to C executables
gen_file_dir = ’genfiles/’

Path for stored random files

max_iter_time 60%60 # 1 hour
ps_check_int =5 # check every 5 seconds
parameters for process babysitting

max_genfile_amt = "1Gb"

generate this much data

output_file = "collection.db"

database for storing collected information
table_name = "size_distr_test_hash"

table in database for this test

dd_buffer_size = ’16MB’
dd buffer size

fs_params = {

’name’ : ’haystack’,
‘dev’ : ?/dev/sda2’,
’path’ : ?/cygdrive/d’,
’win_path’ : ’D:’

}

target filesystem parameters

--- TEST PARAMETERS ---

reps = 5

fs_types = [’ntfs’]
cluster_sizes = [74096°]
of _params = [
(71000 files 250 KbKi , [’-s’, ’250KbKi-c’, ’1000°1),
]
rf_params = [
(°Uniform: 2.4-3.6 Mbyte b’ , [’-u’, ’2457KbKi3686KbKi
]

#Here Be Dragons

def list3cmdline(s):
print and flatten command line
s = list2cmdline(s)
print s

68 APPENDIX A.

return s

def format_permute(start=0):
generator for parameter permutations
count = 0
for i in range(reps):
for j in fs_types:
for k in cluster_sizes:
for (1,m) in of_params:
for (n,p) in rf_params:
if (count >= start):
yield (i,j,k,(1,m),(n,p))
count += 1

print "Performing",len(cluster_sizes)*len(fs_types)*len(of_params)*len(rf_params)*reps,"Tests..."

try to create table
dbconn = sqlite3.connect(output_file)
cursor = dbconn.cursor ()

try:

cursor.execute(’create table ’+table_name+’ (rep,fs_type,cluster_size,of_param,rf_param,hashmatch)’)
except:

pass

generate bloom filter

if (start == 0):
new data set. generate known content files
call((’mkdir -p ./’+gen_file_dir),shell=True)
call((’rm ’+gen_file_dir+’/*’),shell=True)
call((’rm bloomfilter.bin metadata.bin’),shell=True)

ps = Popen(list3cmdline([path_to_exec+’genDistrFile.exe’,’-q’,’-0’,gen_file_dir]+of_params[0] [1]),shell=True)

monitor creation process

start_time = time()

while(ps.poll() == None and time() <= (start_time + max_iter_time)):
sleep(ps_check_int)

if (time() > (start_time + max_iter_time)):
ps.kill()
raise Exception(’timeout’,’initial generation’)

generate bloom filter file
call((path_to_exec+’frag _find_v7.exe --create -v O --rolling-hash "’+abspath(gen_file_dir)+’"’),shell=True)

for (rep,fs_type,cluster_size, (of_key,of_param), (rf_key,rf_param)) in format_permute(start):
Each individual test run executes in this loop.

print [rep,fs_type,cluster_size, (of_key,of _param), (rf_key,rf_param)]

try:
each test run is aborted if it takes longer than max_iter_time seconds
start_time = time()
print ’Zeroing Disk.’
call(list3cmdline([’dd’, ’if=/dev/zero’,’of=’+fs_params[’dev’], ’bs=’+dd_buffer_size]),bshell=True)

print ’Formatting drive’
call(("format.com %s /FS:%s /V:%s /A:%s /X /Q /Y" ¥ (fs_params[’win_path’],fs_type,fs_params[’name’],
cluster_size)),shell=True)

print ’Copying known files’
call(’cp ’+gen_file_dir+’/* ’+fs_params[’path’],shell=True)

A4, EXTENSION & MISC FUNCTIONS 69

print ’Deleting Generated Files’
call(list3cmdline([’rm’,’-r’,’-s’,fs_params[’path’]+’/genfile_*’]),shell=True)

print ’Writing over with Structured Content Files’
ps = Popen([path_to_exec+’genDistrFile.exe’,’-m’ ,max_genfile_amt,’-o’,fs_params[’path’]]+rf_param)
while(ps.poll() == None and time() <= (start_time + max_iter_time)):

sleep(ps_check_int)

if (time() > (start_time + max_iter_time)):
ps.kill()

raise Exception(’timeout’,’random generation’)

CYGWIN PROBLEM: cannot call frag_find on a device image. must first copy to .iso file.
call(list3cmdline([’dd’,’if="+fs_params[’dev’], ’of=’+fs_params[’name’],’bs=’+dd_buffer_size]),shell=True)

print ’Counting Hash Matches’

ps = Popen([path_to_exec+’frag_find_v7.exe’, ’--scan’, ’-v’, ’0’, ’--rolling-hash’, ’--sort-by-file’,
’——output-file-coverage’,fs_params[’name’]],stdout=PIPE)
while(ps.poll() == None and time() <= (start_time + max_iter_time)):

sleep(ps_check_int)

if (time() > (start_time + max_iter_time)):
ps.kill()
raise Exception(’timeout’,’final count’)

s = ps.communicate() [0]
hashmatch = s.splitlines() [0].strip()

add test run data to database
cursor.execute(’insert into ’+table_name+’ values (?7,?7,7,7,7,7)’,[rep,fs_type,cluster_size,of _key,rf_key,hashmatch])
dbconn.commit ()

except:
print "WARNING: COULD NOT EXECUTE COMMANDS FOR TUPLE", [rep,fs_type,cluster_size,of_key,rf_key]

A.4 Extension & Misc Functions

A.4.1 OpenOffice Graph Export Macro

’ Export all charts from a Calc spreadsheet -- Jose Fonseca
> Updated as standalone by Zak Blacher 2010

Sub ExportGraphs
Dim oDoc, oDocCtrl, oDocFrame, oDispatchHelper
oDoc = ThisComponent
oDocCtrl = oDoc.getCurrentController()
oDocFrame = oDocCtrl.getFrame()
oDispatchHelper = createUnoService("com.sun.star.frame.DispatchHelper")

Dim storeUrl
storeUrl = oDoc.getURL()
storeUrl = Left(storeUrl, Len(storeUrl) - 4)

nCharts = 0
’ Search the draw page for the chart.

Dim oSheets, oSheet, oDrawPage, oShape
oSheets = oDoc.getSheets()

70 APPENDIX A.

For i = 0 to oSheets.getCount() - 1
oSheet = oSheets.getByIndex(i)
oDrawPage = oSheet.getDrawPage ()
For j = 0 to oDrawPage.getCount() - 1
oShape = oDrawPage.getByIndex(j)
> Can’t call supportsService unless the com.sun.star.lang.XServicelnfo is present.
If HasUnoInterfaces(oShape, "com.sun.star.lang.XServiceInfo") Then
If oShape.supportsService("com.sun.star.drawing.0LE2Shape") Then
> Is it a Chart?
If oShape.CLSID = "12DCAE26-281F-416F-a234-c3086127382e" Then
> Select the chart shape.
oDocCtrl.select(oShape)
oDispatchHelper.executeDispatch(oDocFrame, ".uno:Copy", "", 0, Array())
> export the chart
nCharts = nCharts + 1

ExportSelection(storeUrl + "_chart" + nCharts + ".eps", "image/x-eps")
EndIf
EndIf
EndIf
Next
Next
End Sub

Sub ExportSelection(url As String, mediaType As String)
> Create a new Draw document
Dim aArgs(1) As New com.sun.star.beans.PropertyValue
aArgs(0) .Name = "Hidden"
aArgs(0) .Value = True
oDrawDoc = StarDesktop.loadComponentFromURL("private:factory/sdraw", "_blank", 0, aArgs())

’ Past current selection

Dim oDrawDocCtrl, oDrawDocFrame, oDispatchHelper

oDrawDocCtrl = oDrawDoc.getCurrentController()

oDrawDocFrame = oDrawDocCtrl.getFrame ()

oDispatchHelper = createUnoService("com.sun.star.frame.DispatchHelper")
oDispatchHelper.executeDispatch(oDrawDocFrame, ".uno:Paste", "", 0, Array())

’ Get an export filter object
Dim exportFilter
exportFilter = createUnoService("com.sun.star.drawing.GraphicExportFilter")

’ get first draw page

Dim oDrawPages, oDrawPage, oShape
oDrawPages = oDrawDoc.getDrawPages()
oDrawPage = oDrawPages.getByIndex(0)
oShape = oDrawPage.getByIndex(0)
exportFilter.setSourceDocument (oShape)

’ Set the filter data

Dim aFilterData(5) As New com.sun.star.beans.PropertyValue
aFilterData(0) .Name = "Level" ’1=PS level 1, 2=PS level 2
aFilterData(0).Value = 2

aFilterData(1).Name = "ColorFormat" ’1=color, 2=grayscale
aFilterData(1l) .Value = 1

aFilterData(2).Name = "TextMode" ’0=glyph outlines, 1=no glyph outlines, see ooo bug 7918
aFilterData(2).Value = 1

aFilterData(3).Name = "Preview" ’O=none, 1=TIFF, 2=EPSI, 3=TIFF+EPSI
aFilterData(3).Value = 0

aFilterData(4) .Name = "CompressionMode" ’1=LZW, 2=none
aFilterData(4).Value = 2

Dim aProps(2) As New com.sun.star.beans.PropertyValue
aProps(0) .Name = "MediaType"

aProps(0) .Value = mediaType

aProps(1) .Name = "URL"

A4, EXTENSION & MISC FUNCTIONS 71

aProps(1) .Value = url
aProps(2) .Name = "FilterData"
aProps(2) .Value = aFilterData()

exportFilter.filter(aProps())
End Sub

A.4.2 extension-functions.c

(This file was obtained from ’http://www.sqglite.org/contrib/download/extension-functions.c?get=25’, and has not been
printed.)

