
Model-Based Testing

An Evaluation

Johan Nordholm

johan.nordholm24@gmail.com

Model-Based Testing: An
Evaluation

Background and Motivation

� Traditional testing processes
� Common factors:

Manual test design & Manual test coverage analysis

� Model-based testing automates these

Test phases
Testing Process

Test cases Test execution Test coverage Test result analysis
Manual Manual

design
Manual execution Manual analysis Manual analysis

Capture/Replay Manual
design

Automated
execution (records
manual execution)

Manual analysis Automated analysis
(manually written)

Script-based Manual
design

Automated
execution

Manual analysis Automated analysis
(manually written)

Keyword-based Manual
design

Automated
execution

Manual analysis Automated analysis
(manually written)

Model-based Automated
design

(generated
from model)

Automated
execution

Automated
analysis

(generated from
model)

Automated analysis
(generated from

model)

2

Model-Based Testing: An
Evaluation

Model-Based Testing (MBT)

� Black-box testing technique, i.e. functional testing

� Input

� Model of the system under test (SUT)

� Test selection criteria

� Output

� Derives test cases from the model, based on the test selection criteria

� Traceability matrix, test coverage, and other test generation information

� MBT automates:

� Test case design (generated from model)

� Test execution

� Test coverage analysis (generated from model)

� Test result analysis (generated from model)

3

Model-Based Testing: An
Evaluation

MBT Process

1. Model of SUT

2. Test case generation

3. Generate test code (TCL)
and test harness
implementation

4. Test execution

5. Test execution analysis
(verdict and log)

Requirements
and test plan

Model

Test Case
Generator

Test Cases

Test Script
Generator

Test Scripts

Adaptor

Test Execution Tool

System
under Test

Model
Coverage

Requirements
Traceability

matrix

1: Model

2: Generate

3: Concretize

4:Execute

5: Analyze

Test Results

4

Model-Based Testing: An
Evaluation

Thesis Project

� Feasibility study of model-based testing
� Test object: client protocol module of ATM (Automated Teller Machine)

client-server system

� MBT tool: Qtronic

� Evaluation: Qualitative analysis

� 4 experiments: based on incremental development

� Conclusions:
� MBT automates generation of test code, test coverage analysis and test

result analysis

� Increases level of abstraction for testing

� Supports incremental development

5

Model-Based Testing: An
Evaluation

Test Object

� Simplified model for an ATM (Automated Teller Machine)
client-server system

� Test object limited to the protocol module of the client
� Defined by a finite state machine
� Authentication, account balance, withdrawal

Protocol Module
(Client)

Protocol Module
(Server)

ATM User Interface Account database

TSP

6

Model-Based Testing: An
Evaluation

Qtronic

� Tool for automatically designing & generating black-box tests
� Stand-alone version
� Eclipse plugin

� Input: Model of the system under test
� QML: Qtronic Modeling Language used to create models

� Textual notation: Based on Java
� Graphical notation: Based on UML

� Qtronic Modeler
� Separate modeling tool for creating graphical models

� Output: Test cases and test code
� Generates abstract test cases
� Generates test code from the abstract test cases

7

Model-Based Testing: An
Evaluation

Testing with Qtronic

� Working process

� Development of test object

� Model development

� Test generation and test
code (TCL) generation

� Test harness implementation
(glue code) using TCL

� Test execution
Glue code:
Network interface

Glue code:
User application interface

Model
(ATM)

Test object
(ATM)

Qtronic

Test cases

Test cases

8

Experiments

� Experiment 1: Initial specification
� Goal: Apply model-based testing on the test object and execute generated

tests against that test object

� Experiment 2: Extended specification
� Goal: Add requirements to see how the implication of an extended model

propagates through the process

� Experiment 3: Modified specification (authentication)
� Goal: Change the requirements to see how the implication of model

modifications propagates through the process

� Experiment 4: Logic implemented in test harness
� Goal: Evaluate the implications of moving logic from the model to the test

harness

Model-Based Testing: An
Evaluation 9

Model-Based Testing: An
Evaluation

Experiment Results

� Result table for the 4 experiments

Measures Exp 1 Exp 2 Exp 3 Exp 4

Modeling time 2 days 1 day 4 hours 2 hours

Test generation time 13 s 2 min 34 s 3 min 11 s 3 m 6 s

Test design configuration coverage 100% 100% 100% 100%

Number of generated test cases 25 52 56 56

Time to implement test harness 2 days 1 hour 10 min 2 hours

LOC: Test suite 2860 6278 7540 7476

Number of test harness procedures 18 26 28 28

LOC: Test harness 99 155 165 229

Average: LOC / Harness procedure 5.5 5.96 5.89 8.18

LOC: Test execution environment 73 73 73 73

10

Model-Based Testing: An
Evaluation

Conclusions from the
Experiments

� Modeling
� The most time-consuming and challenging task

� Test generation
� Modeling time, test generation time and generated LOC illustrate

its gain

� Test harness
� Incrementally developed: manually (empty procedures generated)
� Procedures for sending input and receiving output from the SUT

� Test execution environment
� Initial effort: required for test harness implementation

� Test execution resulted in:
� Pass/fail verdict for each test case
� Deadlocks: model and SUT not consistent
� Output mismatches: expected and actual output differed

11

Model-Based Testing: An
Evaluation

Final Comments

� Conclusions
� MBT automates generation of test code, test coverage

analysis and test result analysis

� Increases level of abstraction for testing

� Supports incremental development

� Different skills required compared to traditional testing

� Project a success: evaluated the MBT concept
� Limitation: Scalability of the project

� Model quality important
� Model: the key testing artifact

� Recommendation: further evaluation of MBT

12

Thank You!

� Any Questions?

� Contact: johan.nordholm24@gmail.com

Model-Based Testing: An
Evaluation 13

Model-Based Testing: An
Evaluation

Qtronic

14

Model-Based Testing: An
Evaluation

Qtronic Modeler

15

Model-Based Testing: An
Evaluation

QML Model

16

Model-Based Testing: An
Evaluation

Test Design Configuration

� Example of test selection criteria in Qtronic

17

Model-Based Testing: An
Evaluation

Qtronic Test Generation

� Qtronic console window

18

Model-Based Testing: An
Evaluation

Qtronic Test Case View

� Example of the Qtronic test case view

19

Model-Based Testing: An
Evaluation

Traceability Matrix

� Traceability matrix of SIP User Agent Client example

20

Test Case Example

proc "TC1" {} \

{

traceprint "Running test case 'TC1'"

traceprint "Description: This test case covers the following high level requirements:"

traceprint " - requirement: netIn/Authentication/TConnect Conf-“

traceprint "Action: Tester sends inbound event CardInserted to port userIn“

set bankId_1 5500

set cardNumber_2 100001

userInCardInserted $bankId_1 $cardNumber_2

traceprint "Action: SUT is expected to response with outbound event TConnect from port netOut“

set type_3 "Req“

netOutTConnect $type_3

traceprint "Action: Tester sends inbound event TConnect to port netIn“

set type_4 "Conf-“

netInTConnect $type_4

traceprint "Covered requirement: requirement: netIn/Authentication/TConnect Conf-"

traceprint "Action: SUT is expected to response with outbound event ErrorMsg from port userOut“

set msg_5 "Error message: Connection not established“

userOutErrorMsg $msg_5

}

Model-Based Testing: An
Evaluation 21

Model-Based Testing: An
Evaluation

Test Harness Example

proc userOutDepositInfo { money } { \

global message expected received

set expected "Deposit info / $money"

vwait received

}

proc userInAmountInput { money } { \

global sockChan

set msg "Amount input / $money"

send $sockChan $msg

}

proc netInTDisconnect { type } { \

global sockChan

set msg "T-Disconnect $type"

send $sockChan $msg

}

22

Model-Based Testing: An
Evaluation

Test Execution

� Execution of test cases

23

Model-Based Testing: An
Evaluation

Test Execution Log

Running test case 'TC1'

Description: This test case covers the following high level requirements:

- requirement: netIn/Authentication/TConnect Conf-

Action: Tester sends inbound event CardInserted to port userIn

+SUT input: Card inserted / 5500 / 100001

Action: SUT is expected to response with outbound event TConnect from port netOut

-Expected output: T-Connect Req

-Actual output: T-Connect Req

Action: Tester sends inbound event TConnect to port netIn

+SUT input: T-Connect Conf-

Covered requirement: requirement: netIn/Authentication/TConnect Conf-

Action: SUT is expected to response with outbound event ErrorMsg from port userOut

-Expected output: Error message: Connection not established

-Actual output: Error message: Connection not established

Test Case passed

24

