Model-Based Testing

An Evaluation

Johan Nordholm johan.nordholm24@gmail.com

Background and Motivation

Traditional testing processes

Common factors:

Manual test design & Manual test coverage analysis

Model-based testing automates these

Testing Drocoss	Test phases							
resung rrocess	Test cases	Test execution	Test coverage	Test result analysis				
Manual	Manual design	Manual execution	Manual analysis	Manual analysis				
Capture/Replay	Manual design	Automated execution (records manual execution)	Manual analysis	Automated analysis (manually written)				
Script-based	Manual design	Automated execution	Manual analysis	Automated analysis (manually written)				
Keyword-based	Manual design	Automated execution	Manual analysis	Automated analysis (manually written)				
Model-based	Automated design (generated from model)	Automated execution	Automated analysis (generated from model)	Automated analysis (generated from model)				

Model-Based Testing: An Evaluation

Model-Based Testing (MBT)

- Black-box testing technique, i.e. functional testing
- Input
 - Model of the system under test (SUT)
 - Test selection criteria
- Output
 - Derives test cases from the model, based on the test selection criteria
 - Traceability matrix, test coverage, and other test generation information
- MBT automates:
 - Test case design
 - Test execution
 - Test coverage analysis
 - Test result analysis

- (generated from model)
- (generated from model)
- (generated from model)

MBT Process

- Model of SUT
- Test case generation
- Generate test code (TCL) and test harness implementation
- Test execution
- Test execution analysis (verdict and log)

4

ø

Thesis Project

Feasibility study of model-based testing

- Test object: client protocol module of ATM (Automated Teller Machine) client-server system
- MBT tool: Qtronic
- Evaluation: Qualitative analysis
- 4 experiments: based on incremental development

Conclusions:

- MBT automates generation of test code, test coverage analysis and test result analysis
- Increases level of abstraction for testing
- Supports incremental development

Test Object

- Simplified model for an ATM (Automated Teller Machine) client-server system
- Test object limited to the protocol module of the client
 - Defined by a finite state machine
 - Authentication, account balance, withdrawal

Model-Based Testing: An Evaluation

Qtronic

Tool for automatically designing & generating black-box tests

- Stand-alone version
- Eclipse plugin

Input: Model of the system under test

- QML: Qtronic Modeling Language used to create models
 - Textual notation:
- **Based on Java**
- Graphical notation:

Based on UML

- Qtronic Modeler
 - Separate modeling tool for creating graphical models

Output: Test cases and test code

- Generates abstract test cases
- Generates test code from the abstract test cases

Testing with Qtronic

- Working process
 - Development of test object
 - Model development
 - Test generation and test code (TCL) generation
 - Test harness implementation (glue code) using TCL
 - Test execution

Experiments

Experiment 1: Initial specification

 Goal: Apply model-based testing on the test object and execute generated tests against that test object

Experiment 2: Extended specification

 Goal: Add requirements to see how the implication of an extended model propagates through the process

Experiment 3: Modified specification (authentication)

 Goal: Change the requirements to see how the implication of model modifications propagates through the process

Experiment 4: Logic implemented in test harness

 Goal: Evaluate the implications of moving logic from the model to the test harness

Model-Based Testing: An Evaluation

Ð

Experiment Results

Result table for the 4 experiments

Measures	Exp 1	Exp 2	Exp 3	Exp 4	
Modeling time	2 days	1 day	4 hours	2 hours	
Test generation time	13 s	2 min 34 s	3 min 11 s	3 m 6 s	
Test design configuration coverage	100%	100%	100%	100%	
Number of generated test cases	25	52	56	56	
Time to implement test harness	2 days	1 hour	10 min	2 hours	
LOC: Test suite	2860	6278	7540	7476	
Number of test harness procedures	18	26	28	28	
LOC: Test harness	99	155	165	229	
Average: LOC / Harness procedure	5.5	5.96	5.89	8.18	
LOC: Test execution environment	73	73	73	73	

Conclusions from the Experiments

- Modeling
 - The most time-consuming and challenging task
- Test generation
 - Modeling time, test generation time and generated LOC illustrate its gain
- Test harness
 - Incrementally developed: manually (empty procedures generated)
 - Procedures for sending input and receiving output from the SUT
- Test execution environment
 - Initial effort: required for test harness implementation
- Test execution resulted in:
 - Pass/fail verdict for each test case
 - Deadlocks: model and SUT not consistent
 - Output mismatches: expected and actual output differed

Ð

Final Comments

Conclusions

- MBT automates generation of test code, test coverage analysis and test result analysis
- Increases level of abstraction for testing
- Supports incremental development
- Different skills required compared to traditional testing
- Project a success: evaluated the MBT concept
 - Limitation: Scalability of the project
- Model quality important
 - Model: the key testing artifact
- Recommendation: further evaluation of MBT

Ð

Any Questions?

Contact: johan.nordholm24@gmail.com

Model-Based Testing: An Evaluation

Qtronic

Model-Based Testing: An Evaluation

æ

Qtronic Modeler

Model-Based Testing: An Evaluation

Ð

QML Model

Test Design Configuration

• Example of test selection criteria in Qtronic

Testing Goals	*Test Design Configuration				
표 Control Flow					
표 Conditional Branching	3. 				
🖃 State Chart	- 0				
🗉 States	V 0				
Transitions	12				
2-Transitions	-				
🗄 Implicit Consumption	-				
🗄 Dynamic Coverage	13. 5.1 .				

Qtronic Test Generation

Qtronic console window

🚟 Ste	ps: TC1	Execution Trace	📮 Console 🔅	V Progress	
ATMBala	ance				
Messa	iges				
(j)	Current	ly covered 35% (9/26	5) of target check	points.	
i	Current	ly covered 42% (11/2	26) of target che	:kpoints.	
U)	Current	ly covered 46% (12/2	26) of target che	:kpoints.	
i)	Current	ly covered 54% (14/2	26) of target cheo	:kpoints.	
Ų	Current	ly covered 65% (17/2	26) of target cheo	:kpoints.	
Ų	Current	ly covered 69% (18/2	26) of target cheo	:kpoints.	
į)	Current	ly covered 77% (20/2	26) of target cheo	:kpoints.	
Ų	Current	ly covered 81% (21/2	26) of target cheo	:kpoints.	
Ú.	Current	tly covered 85% (22/2	26) of target cheo	:kpoints,	
i	Current	tly covered 92% (24/2	26) of target cheo	:kpoints.	
Ú.	Current	ly covered 96% (25/2	26) of target cheo	:kpoints.	
Ú.	Finally o	covered 100% (26/26) of target check	points.	
Ŷ	Increme	ental test generation I	ook 3 seconds		
Ų	Checkin	ng for nondeterminism			
ų.	Test De	sign Configuration: G	enerated 13 test	cases and 148 extern	al test steps.

Qtronic Test Case View

Example of the Qtronic test case view

Model-Based Testing: An Evaluation

Traceability Matrix

Traceability matrix of SIP User Agent Client example

Testing Goals		2	3	4	5	6	7	8	9
🚍 Requirements				1 ///					
🗟 13.2.2.4 2xx Responses									
UAC core establishes session with ACK		Х		Х	Х		х		Х
🚍 15.1 Terminating a session									
UAC core terminates a session by sending BYE					Х		Х		X
UAS core sends OK in response to BYE				X					
17.1.1.2 INVITE timers									
Resends INVITE after A timeout	X					Х			
Terminates INVITE cycle after B timeout						Х			
🖃 17.1.2.2 Non-INVITE timers									
Resends BYE after E timeout							х		Х
Resends CANCEL after E timeout			X					Х	
Terminates BYE cycle after F timeout									X
Terminates CANCEL cycle after F timeout								X	

Test Case Example

```
proc "TC1" {} \
```

```
traceprint "Running test case 'TC1'"
  traceprint "Description: This test case covers the following high level requirements:"
  traceprint " - requirement: netIn/Authentication/TConnect Conf-"
  traceprint "Action: Tester sends inbound event CardInserted to port userIn"
  set bankId 1 5500
  set cardNumber_2 100001
  userInCardInserted $bankId_1 $cardNumber_2
  traceprint "Action: SUT is expected to response with outbound event TConnect from port netOut"
  set type 3 "Req"
  netOutTConnect $type_3
  traceprint "Action: Tester sends inbound event TConnect to port netIn"
  set type_4 "Conf-"
  netInTConnect $type_4
  traceprint "Covered requirement: requirement: netIn/Authentication/TConnect Conf-"
  traceprint "Action: SUT is expected to response with outbound event ErrorMsg from port userOut"
  set msg_5 "Error message: Connection not established"
  userOutErrorMsg $msg_5
}
```

æ

Test Harness Example

```
proc userOutDepositInfo { money } { \
    global message expected received
    set expected "Deposit info / $money"
    vwait received
```

}

```
proc userInAmountInput { money } { \
   global sockChan
   set msg "Amount input / $money"
   send $sockChan $msg
```

}

```
proc netInTDisconnect { type } { \
    global sockChan
    set msg "T-Disconnect $type"
    send $sockChan $msg
```

}

Model-Based Testing: An Evaluation

Test Execution

Execution of test cases

// tclsh84						
% tclsh te	est.to					
Test Case	1:	passed				
Test Case	2:	passed				
Test Case	3:	passed				
Test Case	4:	passed				
Test Case	5:	passed				
Test Case	6:	passed				
Test Case	7:	passed				
Test Case	8:	passed				
Test Case	9:	passed				
Test Case	10:	passed				
Test Case	11:	passed				
Test Case	12:	failed				
Test Case	13:	passed				
%						

Model-Based Testing: An Evaluation

Test Execution Log

Running test case 'TC1'

Description: This test case covers the following high level requirements:

- requirement: netIn/Authentication/TConnect Conf-

Action: Tester sends inbound event CardInserted to port userIn +SUT input: Card inserted / 5500 / 100001

Action: SUT is expected to response with outbound event TConnect from port netOut -Expected output: T-Connect Req

-Actual output: T-Connect Req

Action: Tester sends inbound event TConnect to port netIn +SUT input: T-Connect Conf-Covered requirement: requirement: netIn/Authentication/TConnect Conf-

Action: SUT is expected to response with outbound event ErrorMsg from port userOut-Expected output:Error message: Connection not established-Actual output:Error message: Connection not established

Test Case passed