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Abstract 

Testing is a critical activity in the software development process in order to obtain systems of 

high quality. Tieto typically develops complex systems, which are currently tested through a 

large number of manually designed test cases. Recent development within software testing 

has resulted in methods and tools that can automate the test case design, the generation of test 

code and the test result evaluation based on a model of the system under test. This testing 

approach is called model-based testing (MBT). 

 

This thesis is a feasibility study of the model-based testing concept and has been performed 

at the Tieto office in Karlstad. The feasibility study included the use and evaluation of the 

model-based testing tool Qtronic, developed by Conformiq, which automatically designs test 

cases given a model of the system under test as input. The experiments for the feasibility 

study were based on the incremental development of a test object, which was the client 

protocol module of a simplified model for an ATM (Automated Teller Machine) client-server 

system. The experiments were evaluated both individually and by comparison with the 

previous experiment since they were based on incremental development. For each experiment 

the different tasks in the process of testing using Qtronic were analyzed to document the 

experience gained as well as to identify strengths and weaknesses. 

 

The project has shown the promise inherent in using a model-based testing approach. The 

application of model-based testing and the project results indicate that the approach should be 

further evaluated since experience will be crucial if the approach is to be adopted within 

Tieto’s organization. 
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1 Introduction 

The purpose of this thesis, and of the project undertaken for Tieto, is to evaluate the concept 

of model-based testing (MBT) and the model-based testing tool Qtronic. This thesis is a 

feasibility study of the MBT approach as well as a study of Qtronic. The feasibility study 

includes the development of a test object, the creation of a model and related tasks necessary 

to test the test object. 

 

  

Figure 1.1: Model-based testing approach 

Figure 1.1 above is an illustration of the thesis work. A test object is tested using a testing 

tool. The testing tool (Qtronic) uses a model, describing the outwardly observable behavior of 

the test object, to generate test cases automatically. To successfully execute the test cases 

against the test object, glue code, or a test harness implementation, is required. The glue code 

defines how the test scripts communicate with the system under test (the test object), i.e. 

sending input to and receiving output from the system under test.  

 

MBT is a black-box testing technique where common testing tasks such as test generation 

and test result evaluation are automated based on a model of the system under test (SUT). 

This approach has recently spread to a variety of software domains but originates from 

hardware testing, most notably from telephone switches, and from the increasing use of object 

orientation and models in software design and software development [12]. When successfully 

deployed, it has been shown to yield economic benefits. Justifications of a software purchase 

or deployment of a change to an existing process include traditional metrics such as cost, 

quality and time to market. The methodology of MBT has proven its ability to provide 

improvements in all three of these areas [2]. 

Model 

(ATM) 

Test object 

(ATM) 

Glue code: 

Network interface 

Glue code: 

User application interface 

Qtronic 

Test cases 
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1.1 Motivation 

The Tieto office in Karlstad develops telecommunication products and provides testing 

services within the same area. Tieto is a supplier, or subcontractor, of telecommunication 

solutions and services for global actors, such as Ericsson. Thus projects at Tieto incorporate 

complex systems and products. In the development process of large and complex systems 

testing is a critical activity in order to obtain a system of high quality. Testing must be done 

continuously during the development of a system, as its functionality is gradually increasing, 

and is necessary on a daily or at least weekly basis. Systems developed at Tieto typically have 

a large number of states as well as a large number of input and output signals. Thus the 

number of test cases is very high. Normally it is not possible to test all combinations of state 

transitions so a representative subset of the important use cases has to be tested.  

 

Currently much of the software testing at Tieto makes use of a script-based testing 

approach, where the test scripts are written manually by testers. For complex systems this 

approach results in a large number of test cases which have to be manually designed and 

maintained as the system evolves. Furthermore, the test scripts are dependent on the tester 

implementing the tests, hence test scripts may be difficult to maintain. Recent development 

within software testing has led to the development of methods and tools that can generate test 

code automatically, based on a model of the system to be tested. This testing approach is 

called MBT.  

 

The MBT approach is a black-box testing technique which automates testing tasks such as 

test generation and test result evaluation [12] and has when deployed shown to yield 

economic benefits [2]. Moreover, reports claim that software defects can be found earlier in 

the development process using a MBT approach compared to the use of manual testing 

practices [5]. The use of models to depict the behavior of a system is a proven and major 

advantage in software development [11] as well as in software testing [2].  Software models 

are now accepted as a part of modern object orientated analysis and design. Modeling is a 

good way of capturing knowledge about a system and then reusing this information as the 

system grows. The model may also be used as a means of communication between different 

teams in an organization during development and the model may be reviewed by new team 

members to quickly come up to speed. For test teams, models provide a useful mechanism for 

structured analysis of the system [2].  

1.2 Goals 

The general goal of this thesis is to evaluate the concept of MBT. This general goal includes a 

pre-study of the concept as well as a feasibility study. The initial goals of the feasibility study 

are to learn the MBT tool Qtronic and to implement a test object. The general goal of the 

feasibility study is to apply and evaluate MBT, to document experiences and to make 

recommendations for future work. To summarize, the purpose of the feasibility study is to 

prove the concept but also to produce guidelines for future reference, as if MBT were to be 

adopted at Tieto.  
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The general goal of the thesis work was further divided into sub-goals.  

 

1. Learn the concepts of model-based testing 

2. Learn to use a tool (Qtronic) for modeling, test code generation and test execution 

3. Develop a framework for a finite state machine and implement a logic on the 

framework (with incrementally increased complexity) to be used as a test object. 

4. Develop a model for the test object in the test tool and try different criteria for 

generation of test code 

5. Establish the test environment including development of “glue” between the test 

code and the test object. 

6. Execute the tests and incrementally make the test object and the model more 

complex. 

7. Evaluate the result, document the experience gained and make recommendations. 

 

The project goals listed above will be performed as they are listed, with the exception that 

all goals except the initial goal, to study the theory behind the MBT concept, will be 

performed in an iterative and incremental fashion.  

1.3 Feasibility study 

The general purpose of the feasibility study is to evaluate the concept of MBT as well as a 

specific MBT tool, namely Qtronic. Specifically, the purpose is to develop a test object and to 

test this test object using Qtronic. The idea is that the test object will be developed 

incrementally while documenting experiences and results from the testing process. The test 

object, and consequently the model, will be extended and modified for different experiments. 

Each experiment will focus on different aspects for evaluation. Since the test object will be 

incrementally developed the results and the experiences of the experiments will be compared. 

  

The test object is a part of a simplified model for an ATM client-server system, using an 

application layer protocol. The complete system specification includes the ATM (the client) 

and the central bank computer (the server), which communicates over a network. Both the 

client and the server are divided into subsystems. The client consists of the user interface, 

where the user can withdraw money and request account balance information, and a protocol 

module. The server has a corresponding structure. The test object in the feasibility study is 

limited to the protocol module of the client, which consists of a finite state machine which 

handles incoming messages from two interfaces and responds with outgoing interfaces for 

both interfaces. Thus the finite state machine describes the state of the protocol module and 

which outgoing message that follows an incoming message. The specifications for the finite 

state machines are defined in Appendix C.1.  

 

Qtronic is the MBT tool that will be used. Qtronic automatically designs test cases given a 

model of the system under test (SUT) as input. The generated test cases are black-box tests, 

which mean that they evaluate the SUT based only on the system’s external behavior. Thus 

the models do not need to reflect the test object implementation structurally given that they 

describe the intended outwardly observable behavior [8]. The design models are expressed in 

the Qtronic Modeling Language (QML), and its graphical notation, which is defined in a 

separate tool, namely Qtronic Modeler. The generated test cases in Qtronic are abstract test 

cases that then are rendered to an executable format. In this thesis the test cases will be 

rendered to TCL scripts. 
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Qtronic renders the test cases to executable test scripts. Glue code, or a test harness, is then 

implemented using a test execution environment, i.e. a means of communicating with the 

SUT. The test harness is necessary to execute the test cases against the SUT.  

 

 

Figure 1.2: Feasibility study 

As Figure 1.2 indicates, this thesis includes four experiments. The approach of the thesis 

work is to incrementally develop the test object and the model for each experiment as if MBT 

were deployed in a new project within the organization. Since the experiments are based on 

incremental development of the test object each experiment is analyzed individually but will 

also be compared to the previous experiment, except for the initial experiment. The purpose 

of the initial experiment is to create a working model of the test object and to successfully 

execute the generated test cases. The purpose of the second experiment is to extend the 

specification, thus also the test object and the model, to evaluate how added requirements 

propagate through the process. The purpose of the third experiment is to change the 

authentication requirements for the protocol module to see how changed requirements 

propagate through the process. The specification of this experiment will require a successful 

biometric authentication to complete account requests against the central bank computer. A 

second goal of the third experiment is to model a reusable structure, i.e. encapsulate logic that 

can be reused in multiple state machines in the model. The purpose of the fourth experiment 

is to extract some logic from the model and implement this logic in the test harness, while 

using the same version of the specification and testing the same version of the SUT as for the 

third experiment. For the specifications see Appendix C.1. 

1.4 Thesis Organization 

This thesis consists of five chapters. In chapter 2 software testing is discussed in general 

before introducing the concept of MBT. Software testing is discussed to place MBT in the 

perspective of traditional testing approaches and its testing scope. Chapter 3 includes a 

description of the whole test system, an introductory example of the testing process in this 

project as well as experiment descriptions and corresponding results. The analysis and the 

discussion of each experiment are provided in chapter 4. Chapter 4 also includes an analysis 

of this project and evaluations of Qtronic and Qtronic Modeler. In chapter 5 the conclusions 

Exp 1 Exp 2 Exp 3 Exp 4 

Initial model Added 

requirements 

Changed 

requirements 
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test harness 

Time 
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from the project are described. The conclusions include the results, a discussion of the project 

and suggestions for future work that may be performed in the context of this project area. 
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2 Background 

2.1 Introduction 

This background chapter includes the pre-study of the project. The chapter starts with section 

2.2 by briefly discussing the process of software development and the roles of requirements 

and specifications in the process. Section 2.3 is an introduction to software testing, including 

characteristics and levels of testing as well as testing techniques. The concept of model-based 

testing (MBT) is introduced in section 2.5 and includes the different approaches, the process 

as well as benefits and limitations. The chapter ends with section 2.6 which briefly describes 

the interfaces used in this project. 

2.2 Software Development 

As an introduction to software testing some basic concepts of software development will be 

discussed. These will be described to place software testing in an overall perspective of the 

software development process as well as to introduce the requirements and basic ideas for 

testing. 

2.2.1 Process 

A software process is a set of activities and associated results which lead to the production of 

a software product. Such activities may include software development from scratch or by 

extending and modifying existing systems [33].  

 

Today there are a number of software development processes deployed in the industry, 

such as Scrum [32], eXtreme Programming [3] and Rational Unified Process [23]. However, 

there is no ideal process and different organizations have developed different approaches to 

software development. Although there are many different software processes used, there are 

fundamental activities which are common to all software processes [33]: 

 

1. Software specification: The functionality of the software and constraints on its 

operation must be defined. 

2. Software design and implementation: The software to meet the specification must 

be produced.  

3. Software validation: The software produced must be validated to ensure that it 

fulfills its purpose.  

4. Software evolution: In many cases the software must evolve to meet the changing 

customer requirements.  

2.2.2 Requirements 

Software engineers often have to solve complex problems. Understanding the nature of the 

problems can be very difficult, especially if the system is new, and hence it is difficult to 

establish exactly what the system should do. The descriptions of the services and the 

constraints are the requirements for the system [33].  
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A software requirement is a property which must be exhibited by software developed or 

adapted to solve a particular problem. The requirements on particular software are typically a 

complex combination of requirements from different people at different levels of an 

organization and from the environment in which the software will operate [1]. 

 

Since requirements may come from different levels of an organization it is useful to 

distinguish between these levels of description. One way to make this distinction is by using 

the terms user requirements and system requirements [33]. Furthermore, system requirements 

are often classified as functional or non-functional requirements [33]. Non-functional 

requirements are also sometimes referred to as constraints or quality requirements [1]. These 

different types of requirements are described in Appendix A.1. 

2.2.3 Specifications 

Specifications take all the information stated in customer requirements as well as any unstated 

but mandatory requirements and define what the product will be, what it will do, and how it 

will look [26] 

 

Software systems typically have a large number of requirements, and the emphasis is 

shared between performing numerical quantification and managing the complexity of 

interaction among the large number of requirements. In software engineering a specification 

typically refers to the production of a document which can be systematically reviewed, 

evaluated, and approved [1]. 

 

Software specifications may be developed at three different levels: user requirements, 

system requirements and a software design specifications. The user requirements specification 

is the most abstract specification and the software design specification the most detailed. The 

added system requirements specification is somewhere in between, since it does not include 

implementation details but is detailed enough to describe system properties and constraints 

precisely [33]. 

 

Different levels of specification are useful because they communicate information about 

the system to different types of readers. User requirements should primarily be written for 

client and contractor managers, while system requirements should target senior technical staff 

and project managers. Finally, software design specifications should be written for the 

software engineers developing the system [33]. 

 

For a more detailed discussion regarding software specifications, see Appendix A.2.   

2.2.4 Testing 

IEEE [18] defines testing as “the process of analyzing a software item to detect differences 

between existing and required conditions (that is, bugs) and to evaluate the features of the 

software items.” 

 

Testing itself is a process related to two other processes called verification and validation 

[6]. IEEE [18] defines the combined concept of verification and validation as “the process of 

determining whether requirements for a system or component are complete and correct, the 

products of each development phase fulfill the requirements or conditions imposed by the 

previous phase, and the final system or component complies with specified requirements.” 
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Thus, referring to section 2.2.1 above, software validation is really a subset of software 

testing. Furthermore, IEEE [18] defines verification and validation separately. Verification is 

defined as “the process of evaluating a system or component to determine whether the 

products of a given development phase satisfy the conditions imposed at the start of that 

phase [18].” Validation is defined as “the process of evaluating a system or component during 

or at the end of the development process to determine whether it satisfies specified 

requirements [18].”  

 

Verification is the process of evaluating whether or not the software being developed 

meets the requirements and the specification. An example of verification is to confirm that a 

model, developed during design, satisfies the requirements specified in an earlier 

development phase. In contrast to verification, customer participation is mandatory for 

validation since the primary focus of validation is customer satisfaction. Customer 

participation may be a useful support in verification as well, but is not required. Validation is 

the process in which customers and developers examine if the development results in the 

product the customer desires. The goal is to ensure and prove that the solution is adequate 

regarding the customer’s requirements [20].  

 

To summarize, verification could be described as the process of confirming that software 

meets its specification, whereas validation could be described as the process of confirming 

that it meets the user’s requirements. One should never assume that the specification is correct 

[26]. 

  

Specifications and requirements are essential for testing. If there is no specification or 

requirements to compare against, there can be no testing. Without a specification it is hard to 

state that a system behavior is invalid, unless one has a convincing argument or a high 

professional credibility. It may be hard to convince developers that the behavior really is 

wrong. Further, it is virtually impossible to automate testing if there is no system specification 

or system requirements for the expected response. An automated test program cannot make 

on-the-fly subjective judgments about the correctness of the outcome [17]. 
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2.3 Software Testing 

There are various different kinds of testing. One way to illustrate and classify these kinds is 

along three dimensions, as in Figure 2.1 below [35]. 

 

Figure 2.1: Different kinds of testing 

 

One axis shows the scale of the system under test (SUT), ranging from units up to the 

whole system. The horizontal axis shows what kind of information is used to design the tests. 

The third axis shows different characteristics that can be tested, including functional 

(behavioral testing), robustness testing, performance testing and usability testing. These 

various kinds of testing are discussed in the remaining of this section.  

2.3.1 Testing levels 

Software can be tested at many different testing levels [6][26][31][33][35], for example at 

levels of units, components, of integration and of the whole system [35]. Testing levels are 

really levels of abstraction in terms of what is to be tested, and in what detail [6]. 

 

Different authors define different levels of testing in different ways and not always 

consistently. Not all terms appear in each collection of definitions. For example integration 

tests may be subdivided into different categories. The testing levels are related to the scale of 

the system under test (SUT), ranging from small components to the entire system. 

Component 
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Unit testing 

Unit testing tests a single unit at a time [35]. A unit is the smallest piece of software subjected 

to testing, typically a class in object-orientated software development, and for example a 

procedure in C [9]. Unit testing is intended for checking the smallest testable parts, is of 

technical nature and require technical knowledge about the programming language. Thus, unit 

testing is often carried out as part of the developers’ coding work. The basis for unit testing is 

software design specifications (see Appendix A.2). Suitable techniques include control flow 

testing and data flow testing [31]. 

Component testing 

Component testing tests each component, or subsystem, separately [35]. Traditionally stubs 

have been used at this testing level as a white-box testing technique to test components. Stubs 

in the context of software testing receive or respond to data that the system under test sends 

[26].  

Sometimes there is confusion regarding the difference between unit and component testing 

[26][31][35]. They may even be regarded as synonymous [31]. However, unit testing is most 

often performed by software developers during coding work [31], and involves demonstrating 

that an individual software unit has been implemented correctly [6]. Ryber [31] defines a 

component as a collection of code which realizes a function.  

However, in this context components are really subsystems which potentially could be of 

significant complexity [35]. Subsystems have the characteristic that they can operate as 

independent systems in their own right [33].  

Inputs to component testing may include a project test plan, system requirements 

(functional requirements), component specifications (see Appendix A.2.4) and the component 

implementation. The latter provides the information necessary to construct white-box and 

interaction test cases [25]. Component testing is performed by the developers since they 

provide the necessary information for testing at this level [33].  

Integration testing 

When individual components have been tested, they are integrated to a subsystem or to a 

complete system. When the system is constructed it is important to test the resulting system 

for problems that arise from component interactions, such as interface misuse of some 

component. Integration of system components may lead to complex interactions between the 

components and when anomalous output is detected it may be difficult to find the source of 

the error. Moreover, integration testing aims to discover a particular type of error namely 

interface errors. These cannot be discovered by testing individual components, since such 

errors are a result of the interaction between components and not the isolated behavior of a 

single component. Implementation of system features may spread across a number of 

components. Repairing errors may be difficult because it affects the whole group of 

components that implement a system feature [33]. 

Integration testing should be based on a written system specification (see Appendix A.2). 

This specification can be a detailed system requirements specification or a user-oriented 

specification of the features that should be implemented in the system. Integration testing is 

usually performed by an independent testing team [33]. 

The difference between component and integration testing is unclear for object-oriented 

systems, since objects are the basic structure used at all stages in the object-oriented 

development process [33]. 
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System testing 

While component testing and integration testing are performed iteratively, system testing aims 

to test the entire product, or at least a major part of it, at once [26]. System testing may be 

defined as the test executed by the developer that should demonstrate that the developed 

system or subsystems meet the functional and quality requirements (see Appendix A.1). That 

is, system testing should verify that all system requirements are met [27]. Both functional and 

non-functional requirements are included, and at this stage tests focus on external 

functionality rather than the internal software structure [31]. System testing focuses on errors 

at the highest level of integration [9] and is usually performed by an independent testing team 

[33].  

2.3.2 Testing characteristics 

As well as breaking down the testing process into test levels the testing process may also be 

divided into different types of characteristics being tested.  

Functional testing 

Functional tests are normally conducted from the user interface [17]. Functional testing (also 

known as behavioral testing) aims to find errors in the functionality of the system, for 

example testing that the correct outputs are produced for given inputs [35]. Functional tests at 

the system level are used to ensure that the behavior corresponds to the software requirements 

specification (see Appendix A.2). Furthermore, functional tests are normally black-box tests 

[6]. 

Robustness testing 

Robustness testing aims to finding errors in the system under invalid conditions, such as 

unexpected inputs, unavailability of dependent applications, and hardware and network 

failures. This testing characteristic is used to verify that the system can cope with 

circumstances that are not expected [35]. Robustness may be defined as the degree to which 

the information system reacts as intended even after an interruption [27]. 

Performance testing 

The goal of performance testing is to verify that the software meets the performance 

requirements specified in terms of functional requirements and quality requirements (see 

Appendix A.1) [6]. Performance testing (sometimes referred to as load testing) is testing the 

load-bearing ability of a system. One example could be to verify that the system can process 

the required number of transactions for a given time period [17], or to try how many 

simultaneous connections an Internet server can handle [26]. This kind of testing tests the 

limits of the system, for example if the software operates on peripherals such as printers or 

communication ports, connect as many as you can [26]. These tests are usually run to 

determine how quickly the system runs, in order to device whether optimization is needed 

[21]. 

Usability testing 

Usability testing concerns user interface problems, that might make the software difficult to 

use or making users misinterpret the system output [35]. “Usability is a quality factor that is 

related to the effort needed to learn, operate, prepare input, and interpret the output of a 

computer program [6].”  
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Usability can be divided into the following quality factors: understandability, learnability, 

operability, attractiveness and usability compliance [27] (see Appendix A.1.4 for description 

of these quality factors).  

2.3.3 Test design techniques 

 

Figure 2.2: Overview of test design techniques [31] 

Static techniques 

A static test design technique does not involve program code being executed. Using a static 

technique involves different types of documentation in the form of text, models or code that 

are analyzed, often by hand. The defects found are often related to requirements and design, 

and typical examples of static techniques are inspections, walkthroughs, technical reviews and 

informal reviews [31] (see Appendix B.2.1 for definitions of these four static techniques).  

Dynamic techniques 

Dynamic testing techniques involve testing code by execution. These techniques can be 

divided into black-box (behavior-based) and white-box (structural) techniques [31], as shown 

in Figure 2.2.  

Black-box testing 

Black-box testing is a classification of test design techniques that derive the test cases from 

the externally visible properties of an object without having knowledge of the internal 

structure of this object. Using these techniques, the system is viewed as it would be in actual 
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[31]. 
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Functional black-box testing 

The description of the behavior and functionality of the system under test comes from 

functional requirements and specifications. The tester provides the specified inputs to the 

system under test, runs the test and then determines whether the output corresponded to those 

in the specification. This is what is typically referred to as black-box testing, and alternative 

methods are equivalence class partitioning, boundary value analysis and state transition 

testing [17]. 

Non-functional black-box testing 

Non-functional black-box testing makes use of quality requirements. These quality 

requirements may further be categorized as functionality, reliability, usability, efficiency, 

maintainability and portability, where each category could be divided into subcategories. 

These characteristics are important to consider when testing software [31] (see Appendix 

A.1.4 for definitions of these quality requirements).  

White-box testing 

White-box testing is a technique that derives test cases from the internal properties of an 

object, with the knowledge of the internal set-up of the object [27]. 

The tester selects test cases to exercise the internal structural elements to determine if they 

behave as they are intended to. Typical methods used for white-box testing are statement 

testing, branch testing, path testing, mutation testing and loop testing [6] (see Appendix B.2.3 

for definitions of these techniques).  

2.3.4 Summary 

This section described different kinds of testing in terms of testing levels, testing 

characteristics and testing techniques.  

The different kinds of testing described in this section are summarized in Figure 2.3.  

 

Figure 2.3: Summary of different kinds of testing 
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The test design techniques are not included since they cannot generally be mapped to 

actors and the specifications described in this thesis.  

 

To summarize, unit and component testing make use of design specifications and code. At 

these levels of testing the abstraction level is relatively low, and white-box testing techniques 

are often used, and testing is performed by the developers. Component testing however may 

also make use of functional requirements and functional testing, typically black-box testing. 

Integration testing is most often performed by an independent test team, even though the 

difference between integration and component testing is not really clear in the object-oriented 

development process. Integration testing is typically based on functional system requirements 

or user-oriented requirements.  

System testing involves testing the whole system, including both functional and quality 

system requirements, as well as higher-level requirements that may have been defined. At the 

system level really all software characteristics are tested. 

2.4 Introduction to model-based testing 

In this section classic testing processes will be described, as a prelude to model-based testing 

(MBT), which is an alternative to these processes. This section also describe how testing is 

exercised at Tieto. 

2.4.1 Testing process 

Functional testing consists of three key issues [35]: 

Designing the test cases  

First, the test cases have to be designed, using system requirements while also considering test 

objectives and policies. Each test case is defined by a test context, a scenario and some 

evaluation criteria [35]. It is also a good idea to perform modeling before actually writing the 

test cases, since tests will primarily be based on the tester’s mental model of the system [21]. 

Executing the tests and analyzing the results  

The test cases then have to be executed on the system under test. Test outputs and results are 

then analyzed to evaluate the system behavior, and possibly to determine the cause of each 

test execution failure [35]. 

Verifying how the tests cover the requirements  

It is vital to measure in which way the requirements are covered by the test suites in order to 

manage the quality of the testing process, and therefore also the quality of the product. One 

common way to do this is to use a traceability matrix (see Appendix B.3 for an example). A 

traceability matrix shows the link between functional requirements and test cases, generally in 

form of a many-to-many relation since one requirement may be covered by several test cases 

[35]. 

2.4.2 Classic testing processes 

As an introduction to MBT some classic testing processes will be briefly described in this 

section. 

 



 15 

A manual testing process 

The test design is performed manually, using informal requirements, and the output is a 

human readable document that describes the desired test cases. However, manual test design 

is time-consuming. Also, manual design does not guarantee systematic coverage of the system 

functionality [35].  

Test execution is also performed manually, by hand. The tester performs the specified 

steps of the test case by manually interacting with the SUT, compares the system output and 

analyzes the results. For some applications it is not possible to interact with the SUT, and in 

those cases a test execution environment may be used to interact with the system. However, 

execution is still performed manually. The manual test execution process is repeated for every 

new release of the SUT that needs to be tested [35]. 

A capture/replay testing process 

This testing process attempts to reduce the cost of test re-execution by capturing the 

interactions with the SUT during one test execution and then replaying those interactions 

during later test execution. To capture and replay the interactions a tool is used. Test cases are 

still performed manually however. When a new release needs to be tested the tool can rerun 

all the tests and report which ones have failed [35]. 

The main problem is that just a small change in the interface may cause a large number of 

tests to fail, due to a lack of abstraction in the recorded tests. Hence, the key issue of 

automating the execution is only partially solved [35].  

A script-based testing process 

This approach solves the test execution problem by automating it, using test scripts. Test 

scripts are executable and run one or more test cases. Initializing the SUT, putting the SUT in 

the required context, creating test input values, passing those values to the SUT, recording the 

responses from the SUT, comparing those against expected outputs, and finally assigning a 

pass/fail verdict to each test, are all typically performed by a test script [35].  

The problem with this approach is the maintenance issue. The test scripts not only have to 

be modified when requirements change, but also when implementation details change (for 

example some parameter). Maintenance for the test scripts can become very costly, and 

abstraction really is the key to reducing those costs [35]. 

A keyword-driven testing process 

The goal of this approach is to overcome the maintenance issues of low-level test scripts by 

raising the abstraction level of test cases. The idea is to express each test case as abstractly as 

possible, but still precise enough to be executed and interpreted by a test execution tool. This 

is done by using action keywords in the test cases, along with data. Each action keyword 

corresponds to a piece of a test script, This allows the test execution tool to translate a 

sequence of keywords and data values into executable tests [35]. 

The higher abstraction level reduces the maintenance problems because test cases can often 

be adapted to a new version of the SUT or its environment easily, by updating the test scripts 

associated with a few keywords. However, test data and oracles are still manually designed 

[35]. A test oracle is a document or piece of software that allows testers to determine whether 

a test has been passed or failed [6]. 

 

Given these four testing processes, it can be concluded that they all share a common 

denominator, namely manual test design [35].  
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2.4.3 Testing at Tieto 

This section will describe the general testing process at Tieto as well as describe the test 

phases in more detail, including actors and resources for each test phase. 

Testing process 

Designing as well as testing is performed incrementally at Tieto. The overall testing process is 

described in Figure 2.4 below.  

 

Figure 2.4: Overview of the testing process at Tieto 

The process described in Figure 2.4 above seems to be linear, but really development and 

testing is carried out in an incremental and iterative fashion at Tieto, meaning that component, 

multi-component, functional testing and system testing are performed iteratively as systems 

are developed incrementally, i.e. the process is repeated for every delivery or shipment. Multi-

component testing may or may not be performed, depending on the system being developed. 

Multi-component testing integrates multiple components to evaluate and verify that they work 

together, and is really integration testing (as described in section 2.3.1).  

 

Software is often released in versions and delivered continuously to the customer. Before a 

delivery Tieto performs system testing (see section 2.3.1) to verify the system. When the 

customer receives a delivery in the development phase they also perform system testing to 

make sure that no major errors are encountered. Deliveries to the customer are more frequent 

than releases to the end user. Deliveries to the end user are called shipments, and are more 

crucial since it is here that the system will be used.  

 

Acceptance testing is performed by the end user, and is the means by which customers 

approve what has been delivered. In simple terms, if the system does not solve the problems it 

was built to solve, development has not been successful [31]. The reason for Tieto’s customer 

not performing acceptance tests is that Tieto is a consultant company and most often works 

together with their customers on projects, in a joint effort. It is then the Tieto’s customer that 

sells and delivers products to their customers (end-users). It is thus the end-user who performs 

the acceptance tests. 

 

Figure 2.4 does not mention unit testing. The reason is that this is really a part of the 

developers’ duties as software units are developed. Furthermore, functional testing is the only 

testing characteristic included in Figure 2.4. Usability testing is not included in the figure of 

the simple reason that it is not performed at Tieto. The reason for this is that usability testing 
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often includes detailed testing of user interfaces, but the systems developed at Tieto are often 

embedded systems and user interface testing is not necessary.  

 

However, robustness, performance and maintainability are all characteristics tested at 

Tieto. These characteristics are included in the system testing activity. Robustness, 

performance and maintainability testing are performed before shipments, that is, deliveries to 

the end-user. This is because shipments are more crucial than deliveries to the customer, since 

the system will be used by the end-user. 

 

Maintainability is a quality characteristic of software and may be described as the ease 

with which the information system can adapt to new demands from the user, to changing 

external environments, or in order to correct errors [27] (see Appendix A.1.4 for a description 

of maintainability). Since many systems developed at Tieto are sophisticated systems that 

may take years to develop, and to do so incrementally, maintainability is valuable software 

characteristic. 

 

Performance and robustness are important characteristics to test because they are often 

specified in terms of quality requirements. Also, testing these characteristics includes 

measurements that are useful to compare the capabilities of the system between different 

shipments.   

 

One more piece is missing in Figure 2.4, namely regression testing. Regression testing is 

not a testing level. It is the retesting of software that occurs when changes are made to ensure 

that the new version of the software has retained the capabilities of the old version and that no 

new errors have been introduced due to the changes. Regression testing may occur at any 

level of test [6]. Since regression testing is meant to test whether the system as a whole still 

functions, it will be executed frequently. New releases of a system often involve minor 

changes and the system functionality remains largely the same. Thus, regression test cases are 

very reusable and require in general only minor adaptations for each new system release [27]. 

 

The testing process at Tieto could be desribed as a script-based testing process (see section 

2.4.2). They use their own automation framework, built by test scripts developed in TCL (see 

section 2.6.4). This framework contains libraries of test scripts. 

Different kinds of testing 

This section relates the previous discussed theory of requirements, specifications and 

different types of testing to the software testing performed at Tieto. Software testing at Tieto 

is really a subset of the general software testing theory. 

This is illustrated in Figure 2.5 below. 
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Figure 2.5: Test phases at Tieto: actors and specifications 

Compared to Figure 2.4 this figure includes the actors and the resources used to perform 

different kinds of testing. Although Tieto uses specific name conventions for different types 

of specifications and documents this is what it translates to, from a higher level of abstraction.  

 

Component and multi-component testing are performed by developers since development 

of new software components often make use of existing ones. Thus it is the developers’ 

responsibility to test that components work as intended. Also, component testing often make 

use of stubs as a white-box testing technique and the primary input is a design specification, 

thus developers are suited to perform these tests. 

Functional testing is performed by testers since the functional testing normally is black-box 

testing. This test phase make use of funtional requirements and do not require knowledge 

about the internal structure of the SUT. Functional requirements often refer to acceptable 

mappings between system input values and the corresponding system output values.  

The third test phase in Figure 2.5 includes testing of software characteristics. This test 

phase could really be considered system testing and is similar to functional testing, but with 

the difference that quality requirements (or non-functional requirements) are used. Hence the 

system is tested under special conditions for performance, robustness and maintainability 

testing. During maintainability testing at Tieto maintenance activities by the end-user are 

simulated, such as adding a new signaling point, thus involving executing the system.   

2.4.4 Summary 

This section gave an introduction to MBT by first describing the general testing process, 

including the creation of test cases, the analysis of the test case execution results and the 

verification of how functional requirements are covered by test cases. 

 

Furthermore, to put MBT in a perspective of the software testing evolution, existing and 

classical testing processes were discussed. The discussions included descriptions of the 

processes, but also brief descriptions of which testing problems they solve and do not solve. 

 

Finally, this section also described the current testing process at Tieto. Since Tieto is 

interested in MBT and would like to evaluate the concept, as well as a specific tool, it is 

important to re-examine the existing testing process and methodology.  
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2.5 Model-based testing 

This section will describe the concept of model-based testing (MBT), starting with a 

background and introduction. The scope of MBT, different approaches, the process as well as 

benefits and limitations will also be presented. 

2.5.1 What is model-based testing? 

During the last decade there has been a growth in black-box testing techniques. These are 

collectively called MBT. MBT is a general term that signifies an approach where common 

testing tasks such as test generation and test result evaluation are based on a model of the 

system under test. This approach has recently spread to a variety of software domains but 

originates from hardware testing; most notably telephone switches [12]. 

 

MBT can be considered the latest generation of test automation. Features of this concept 

include defect prevention (see Appendix B.1.2), early requirement defect detection (see 

Appendix B.1.2) and automated test generation from models, which eliminates manual test 

design and hence reduces cost. The main advantage of this technique is that by automatically 

generating tests using models of system requirements and specified functionality both the test 

design and the test execution process can be automated. By applying MBT, defects can be 

found earlier in the development process compared to the use of manual testing practices [5]. 

From a process perspective it also promotes more continuous testing activities, thus having 

organizational impacts [5] and supporting incremental development [2].   

 

The key concept in this approach is the model, which therefore should be discussed. 

Models are hardly a new concept, but they are used within many disciplines to understand, 

specify and develop systems. Software models are now accepted as part of modern object 

oriented analysis and design. Modeling is a good way of capturing knowledge about a system 

and then reusing this knowledge as the system grows. Moreover it can be used as a means of 

communication between different teams in an organization during development. For test 

teams, models provide a mechanism for structured analysis of the system. However, the 

greatest benefit of models is in reuse since the work done is not lost. The next test cycle can 

start where the current one left off. New product features can be added to the model, tests 

extended and potentially new team members can quickly come up to speed by reviewing the 

model [2]. 

MBT has originated from the increasing use of object orientation and models (including 

UML) in software design and software development [12]. 

 

To summarize, the use of models to depict the behavior of a system is a proven and major 

advantage in software development [11] as well as in software testing [2]. Models can be 

utilized in different ways during the product life-cycle, including: improved quality of 

specifications, code generation, reliability analysis and test generation [2]. 

 

MBT offers many advantages, such as a high degree of automation, ability to generate high 

volumes of non-repetitive (unique) useful tests, means to evaluate regression test suites and 

the possibility of estimating a number of statistical measures of software quality [11]. 

However, not all areas of application have enjoyed successful application of MBT. The 

technique has proven its worth within areas such as embedded systems, user interfaces, and 

state-oriented systems. However, since the approach is new and not widely deployed no 

conclusions can be made that it suits testing of all types of applications [12].  
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Nevertheless, when successfully deployed it has shown economic benefits. Justifications of 

a software purchase or deployment of a change to an existing process include traditional 

metrics: cost, quality and time to market. The methodology of MBT has proven its ability to 

provide improvements in all three of these metrics [2]. 

2.5.2 Scope of MBT 

When is MBT really applicable and how does it relate to the different kinds of testing (see 

section 2.3)?  

 

The scope of MBT in relation to the various kinds of testing may be described as in Figure 

2.6 (extension of Figure 2.1). 

 

 

 

Figure 2.6: Scope of model-based testing [35] 

As the diagram indicates, MBT is a black-box testing technique. In reality MBT is the 

automation of black-box test design [34]. MBT is in theory applicable to all levels of testing 

of the SUT, however for large systems the degree of complexity involved in creating a model 

may be unmanageable. For highly complex systems it may not be feasible to apply this 

methodology because of modeling overhead. Moreover black-box testing is usually used as a 

functional testing technique. The latter is often referred to as behavioral testing and aims at 

finding errors in the functionality of the system, which is specified in the model [35].  
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The main use of MBT is the generation of functional test cases, but it can also be applied 

for some kinds of robustness testing such as testing the system with invalid inputs. It is not yet 

widely applied for performance testing, but this is an area under development [35]. 

2.5.3 Approaches of MBT 

The term MBT is currently used for a wide variety of test generation techniques. The four 

main approaches known as MBT are described by Utting and Legeard [35]: 

 

1. Generation of test input data from a domain model 

2. Generation of test cases from an environment model 

3. Generation of test cases with oracles from a behavior model 

4. Generation of test scripts from abstract tests 

 

These approaches will be addressed briefly below.  

Generation of test input data from a domain model 

In this approach the model provides the information about the domain of the input values. The 

test generation involves clever selection and combinations of a subset of those values to 

produce test input data. This approach is advantageous from a practical point of view, but it 

does not solve the complete test design problem because it cannot provide any test verdict 

[35].  

Generation of test cases from an environment model 

This approach uses a model to describe the environment of the system under test (SUT). 

Sequences of calls to the SUT can be generated from this model, but generated calls do not 

specify the expected output of the SUT. The environment model does not cover the behavior 

of the system, meaning that it is not possible predict the output values. In other words it is 

difficult to determine whether a given test passed or failed [35]. 

Generation of test cases with oracles from a behavioral model 

The third meaning of MBT is the generation of executable test cases which include oracle 

information or some automated check on the actual output values to see if they are correct. 

Oracle information consists of input values associated with operations and the corresponding 

expected output values. This is a more challenging task than the two previously mentioned 

approaches. The test generator must know enough about the expected behavior of the SUT, 

such as the relationship between input and output, in order to generate test cases with oracles. 

Hence, the model must describe the behavior of the SUT. This is the only approach of the 

four that addresses the whole test design problem from choosing input values and generating 

sequence calls to generating executable test cases that include oracle information [35].  

Generation of test scripts from abstract tests 

The final approach assumes an abstract description of a test case, such as a UML sequence 

diagram, and focuses on transforming that abstract test case into a low-level test script that is 

executable. The model is the information about the structure and API (Application 

Programming Interface) of the SUT, and the details of how to transform a high-level call into 

executable test scripts [35].  
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2.5.4 MBT process 

MBT automates the detailed design of test cases and the generation of the traceability matrix, 

which measures the coverage of requirements for each test case. Instead of writing hundreds 

of test cases, the test designer constructs an abstract model of the system under test. The MBT 

tool is used to generate a set of test cases from that model. As well as having the advantage of 

reducing design time, a variety of test suites can also be generated from the same model 

simply by using different test selection criteria [35]. The MBT process can be described as in 

Figure 2.7 below.  

 

 

Figure 2.7: The model-based testing process [35] 
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might be necessary to focus on a particular part of the model or to choose a particular model 

coverage criterion, such as to cover all transitions in a finite state machine [35].  

Since the model is an abstraction of the SUT the abstract test cases are not directly 

executable. A requirements traceability matrix (see Appendix B.3 for an example), which 

links functional requirements with test cases to determine which requirements are covered by 

an individual test case, or various coverage reports are additional outputs of this step for most 

MBT tools. Coverage reports indicate how well the test cases cover the behavior of the 

model, while a requirements traceability matrix traces the link between functional 

requirements and generated test cases [35].  

3: Concretize the abstract tests to make them executable 

When the abstract test cases are generated they need to be transformed into executable 

concrete tests. This may be done by some separate transformation tool or it could be done by 

writing some adaptor code that implements each abstract operation to map against the lower-

level SUT interface. The goal of this step is to connect the abstract test cases with the concrete 

SUT by adding details not included in the abstract model [35].  

This two-layer approach has the advantage of being independent of the language used to 

write tests and of the test environment. Simply by changing the adaptor code, the tests can be 

reused in different test execution environments [35].  

4: Execute the tests on the SUT and assign verdicts 

Given the executable test scripts it is time to execute them against the SUT. Using online 

MBT, the tests will be executed as they are produced. In this case the MBT tool handles 

execution and recording of the results [35].  

With offline MBT, a set of concrete test scripts has been produced. Hence the existing test 

execution tools and practices can be used [35]. 

5: Analyze the test results 

The final step is to analyze the results of the test execution, but also to take the correct action 

given the findings. For each failed test it must be determined what caused the failure. It might 

be due to a fault in the SUT or to a fault in the test case itself. In the latter case this must be 

due to a fault in the adaptor code or in the behavioral model of the system. Hence, feedback 

about the correctness of the model is given in this step [35].  

2.5.5 Benefits 

Model checking can ensure that properties, like consistency, are not violated. Models also 

help refining unclear and poorly defined requirements. In MBT tests are generated to verify 

the SUT behavior as the models are refined. In this way model defects can be eliminated 

before coding begins. Other advantages of a model-based approach include automation of test 

case design, and generation of test scripts resulting in a more efficient testing process, 

significant cost savings, and in the end higher quality code [5].  

 

Some of the benefits of using MBT are discussed briefly below.  

Nature of the Model 

The model used for test generation can either be a functional model of the system under test, 

or of the environment of the system, or a model of both. Models of the system are useful for 

the outputs of a system, which allows test oracles to be generated, and environment models 
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are useful for focusing the test generation on an expected usage of the system [34]. Modeling 

is a precise communication tool among teams in an organization. Certain models are 

sometimes excellent vehicles of presentation to non-technical management [11]. Furthermore, 

most models have a rich theoretical background that makes numerous tasks such as 

generation of large test suites easy to automate [12].  

SUT fault detection 

MBT is more likely to expose failures in the SUT because of the variety of tests that can be 

generated using models. Examples are failures caused by exhaustive combinations of inputs, 

failures that are revealed only over time (memory leaks), and failures that are revealed by 

exercising different combinations of variables (whatever is described in the model) [11]. 

Comparative studies [4][10][13][28] show that MBT is as good as or better at fault detection 

than manually designed tests. However, its fault detection power depends on the skill and 

experience of those writing the model and choosing the test selection criteria [35]. 

Reduced testing cost and time 

If the time needed to write and maintain the model plus the time spent on directing the test 

generation is less than the cost of manually designing and maintaining a test suite, MBT 

practices will lead to less time and effort spent on testing. It might also save time during the 

failure analysis stage after test execution. Firstly, because failures are reported in a consistent 

way and secondly, because some model-based tools are capable of finding the shortest 

possible test sequence that causes the failure. Thirdly, since not only the code can be 

inspected, but also the abstracted test cases which give an overview over the test sequence 

through the model [35].  

Improved test quality 

In manual testing the quality of tests is highly dependent on the engineer and the test design 

may not be reproducible. MBT however uses an automated test generator based on algorithms 

and heuristics to choose the test cases from the model, which makes the design process 

systematic and repeatable. Since the input data and the test oracles are generated from the 

model, the cost of generating more executable test scripts is just the computing time required 

to generate them [35]. 

Coverage 

Coverage is used in various forms to evaluate either test progress or the adequacy of the 

generated tests. Coverage can also be expressed for a model. Model coverage is therefore 

another heuristic that provides insight into the thoroughness and effectiveness of the testing 

effort, especially when testing does not reveal failures [11]. Coverage typically deals with the 

control-flow through the model [35]. 

 

Requirements defect detection 

Writing a model for testing may expose issues and defects in the informal requirements (see 

defect detection in Appendix B.1.2). The first step in MBT is to create an abstract model of 

the SUT, hence this phase typically exposes requirement issues. This is a major benefit of 

MBT because requirement problems are a major source of system problems [35]. 



 25 

Traceability 

Traceability is the ability to relate each test case to the model, to the test selection criteria, and 

even to the informal system requirements. Traceability helps to explain the test case as well as 

why it was generated. Furthermore it can be used to optimize test execution as the model 

evolves, since it enables the possibility to execute just the subset of the tests that are affected 

by the model modifications. From an abstract view traceability is a relation between the 

elements of the model and the test cases [35]. 

Requirements evolution 

In manual testing significant efforts are often required to update the test suite as the 

requirements of the system changes. When using MBT only the model has to be updated and 

the tests regenerated. Since the model is usually much smaller than the test suite, time is saved 

when updating the model compared to updating all tests manually, resulting in faster response 

to evolving requirements [35]. 

2.5.6 Limitations 

No system comes without drawbacks or limitations. MBT is no different. A fundamental 

limitation of MBT is that it cannot guarantee to find all the differences between the model and 

the implementation, even if generate a very large test set. However, this is a limitation for all 

kinds of testing [35]. Limitations of MBT are thus discussed below.  

Tester skills 

A practical limitation of MBT, at least initially, is that different skills are required compared 

to manual test design. The model designers must the able to abstract and design models, in 

addition to being experts in the application area. This requires training costs and an initial 

learning curve when starting to use MBT [35]. 

Sizeable initial effort 

With the exception of the initial effort required when deploying MBT, in terms of the required 

tester skills and other allocations for making preparations, there is a sizeable initial effort for 

each testing process in order to save resources at various stages later in the testing process. 

Selecting the type of model, abstracting system functionality into multiple parts of a model, 

and finally building the model are all labor-intensive tasks (9). 

Testing characteristics 

MBT is usually used for functional testing, which is a limitation. There is little experience 

using MBT for other types of testing, such as performance testing and robustness testing. 

Some types of testing are not easily automated, such as testing the installation process of a 

software package. These are better tested manually [35]. 

State space explosion 

There are drawbacks of models that cannot completely be avoided. For state models (and 

most similar models) the most prominent problem is state space explosion. Models of any 

non-trivial software functionality can grow beyond manageable levels. Almost all other 

model-based tasks, such as model maintenance, checking and reviewing, non-random test 

generation and achieving coverage criteria, are affected in this scenario [12].  
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Time to analyze failed tests 

As a generated test fails, it must be decided whether the failure is caused by the SUT, the 

adaptor code, or an error in the model. This is similar to manual testing, where it has to be 

decided whether the failure was due to a fault in the SUT or in the test script. MBT however 

generates test sequences that might be more complex and less intuitive than manually 

designed test sequences. Thus, it might be more difficult and time-consuming to find the 

cause of the failed test [35].  

Traditional metrics 

In the manual test design process often a number of measures are used to measure the testing 

progress, for example the number of test cases designed. Such measures are not useful when 

applying MBT, since the approach can generate huge numbers of test cases. Measurements of 

test progress should instead move towards other measurements, such as SUT code coverage, 

requirements coverage and model coverage metrics [35]. 

Outdated requirements 

Another consideration when adopting MBT is that requirements tend to be outdated. As 

software project evolves the informal requirements sometimes become out of date. If this 

would apply when using MBT, the wrong model will be built and test case execution will 

yield a significant amount of errors in the SUT [35]. 

Inappropriate use of model-based testing 

Some parts of the SUT may be tested more effectively and quicker by designing a few test 

cases manually. The risk is that it takes some experience of MBT usage to know which 

aspects of the SUT should be modeled and which should be tested manually, but also to know 

which types of applications that conforms well to the model-based approach [35].  

2.5.7 Summary 

This section defined and explained the concept of MBT, starting with a background and an 

introduction.  

 

MBT is really a collection of black-box testing techniques, thus different approaches were 

described. Four different approaches were described and they primarily differ in which phases 

of the testing process they automate. 

 

This section continued by describing the general MBT process, which includes creating a 

model of the SUT, generating abstract test cases, concretizing those abstract test cases, 

execute test cases and finally analyzing the test results. This may be compared against the 

classical testing processes described in section 2.4.2, in terms of which parts of the testing 

process are automated. 
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Table 2.1 below summarizes the different approaches to test automation in terms of 

different testing processes (see section 2.4.2 for discussion of classical testing processes). 

 

Testing 

Process 

Test phases 

Test cases Test execution Test coverage Test result analysis 

Manual Manual design Manual execution Manual analysis Manual analysis 

Capture/Replay Manual design Automated 

execution 

(records manual 

execution) 

Manual analysis Automated analysis 

(manually written) 

Script-based Manual design Automated 

execution 

Manual analysis Automated analysis 

(manually written) 

Keyword-based Manual design Automated 

execution 

Manual analysis Automated analysis 

(manually written) 

Model-based Automated 

design 

(generated from 

model) 

Automated 

execution 

Automated analysis 

(generated from 

model) 

Automated analysis 

(generated from 

mode) 

Table 2.1: Overview of testing processes and approaches to test automation 

As Table 2.1 describes a manual testing process is completely manual.  

 

The capture/replay approach only partially automates the test execution since it captures 

manual operations. This approach is still dependent on manual test execution, but records the 

session which later can be re-run. Small changes in system functionality require the process of 

capturing manual operations to be repeated.  

 

The script-based and the keyword-based approaches are similar. Test case design and 

analysis of test coverage in terms of functional requirements are still manually performed. 

The test execution is automated in both approaches by using scripts which initializes the SUT, 

sets inputs, executes the SUT and captures the output. The test result analysis phase may also 

be automated. However the expected behavior and outputs must be manually specified for the 

initial set of tests. The difference between the two approaches is that a keyword-based testing 

process raises the abstraction level by using keywords for test case design, thus expressing 

each test case as abstractly as possible. The goal of the keyword-based approach is to 

overcome the maintenance issue that comes with a script-based testing process. 

 

The model-based approach solves most of the issues of the other approaches. Test case 

design is automated by generating test cases from a behavioral model. The generation of test 

cases also solves the test execution problem since generated abstract test cases are rendered to 

executable test scripts. Also, both the test coverage analysis and the test result analysis are 

automated because this information is generated from the model. 

 

Sections 2.5.5 and 2.5.6 discussed benefits and limitations of MBT.  

2.6 Interfaces 

This thesis will involve several interfaces. These are described briefly in this section. Qtronic 

(the MBT tool) and the test object used for evaluation will be described in more detail in 

Chapter 3.  
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2.6.1 Test object (ATM) 

The test object that will be used in the thesis is a simplified model of an ATM system, 

modeled as a client-server application.  

 

Wikipedia defines an ATM as [37]:  

“An automated teller machine (ATM) is a computerized telecommunications device that 

provides the clients of a financial institution with access to financial transactions in a public 

space without the need for human clerk or bank teller.“ 

 

The test object will be discussed in greater detail in Chapter 3. See Appendix C.1 for 

specifications. 

2.6.2 Qtronic 

This thesis focuses on evaluating MBT as a concept as well as a tool designed for this 

purpose. The tool used is Qtronic, developed by Conformiq [7].  

 

Qtronic is a tool for automatically designing and creating test cases. The tool uses high-

level system models as its input and calculates a set of test cases mathematically. Test cases 

are then exported in user-definable formats, such as TCL, TTCN-3, Visual Basic, HTML, 

XML, or Python. The tool can be used as an Eclipse plugin or as a stand-alone application, 

and can run on various platforms such as Windows, Linux and other UNIX variants [7].  

 

The main features of the tool are automatic generation of test plans and executable test 

scripts. It also provides traceability matrices, test case dependency information, human-

readable test plans, graphical representation of tests as sequence charts, and a graphical 

mapping between the input models and the generated test cases. Finally, it also supports 

several black-box design techniques, such as boundary value analysis, atomic condition 

coverage, and orthogonal array testing. These are just a few of the features offered [7]. 

 

Qtronic will be described in greater detail in section 3.2.1 and in Appendix C.2. 

2.6.3 Java 

The test object, or the ATM system, is implemented in Java.  

 

Java [24] is an object-oriented programming language which makes use of extra libraries 

of software for developing programs. In the context of this thesis Java is used to implement 

the system under test, or test object, used to evaluate the Qtronic tool and MBT as a concept.  

2.6.4 TCL 

TCL [36] is a string-based command language, or scripting language, that only has a few 

fundamental constructs. TCL is designed to act as the glue that binds software building blocks 

into applications. TCL is interpreted when the application runs. 

 

In this thesis TCL is used for test scripts as well as for executing them. Qtronic renders the 

generated abstract test cases to executable test scripts in TCL. The procedures used in the test 

scripts then have to be defined and implemented in the test harness (or adaptor code), using 

TCL. Also, TCL is used for executing these test scripts and for retrieving output from the 

SUT (via a socket channel) to a log file.   
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2.6.5 UML 

UML [29], or the Unified Modeling Language, is a modeling language for expressing object-

oriented design models. It is really a unification of a number of earlier object-oriented 

modeling languages. UML describes a system from a set of views, which represent properties 

of the system from various perspectives and relative to various purposes. Views are presented 

in models, which define a set of model elements, their properties and the relationships 

between them. The model contains information which is communicated in graphical form, 

using various types of diagrams.  

 

UML is used in this thesis to create state charts, or state machines, in the Qtronic Modeler 

[8] (a separate tool of Qtronic used to create graphical models which then are imported into 

Qtronic). The state machine logic of the SUT will hence be modeled graphically using UML. 

2.7 Summary 

In this chapter the concept of MBT was introduced. Since MBT is a new testing methodology 

a general description of software testing was presented as a background. 

 

The chapter started by discussing requirements and specifications. Requirements and 

specifications are necessary for testing since they specify describe how a system should work. 

Thus they are crucial for software testing since specified and actual system behavior can be 

compared. 

 

The next section of this chapter discussed software testing in more detail. There are 

different kinds of testing as well as many different testing techniques. This section was 

divided into testing levels, testing characteristics and testing techniques.  

 

Testing levels are really levels of abstraction in terms of what is to be tested, and in what 

detail. The testing levels described include unit testing, component testing, integration testing 

and system testing, ranging from the smallest to the largest scope. Testing characteristics 

describe different types of characteristics subjected to testing. These include functional 

testing, performance testing, robustness testing and usability testing. Testing techniques 

describe different types of high-level test design techniques and describes the relationship 

between them. Test design techniques can be divided into static and dynamic testing at the 

highest level. Furthermore, dynamic testing can be divided into black-box and white-box 

techniques, where black-box techniques can be further divided into functional and non-

functional testing.  

 

Before MBT was introduced, a prelude was given in section 2.4. This section included a 

description of the general testing process as well as classical testing processes used in 

industry. This section also included a description of the testing process used at Tieto.  

 

Section 2.5 described MBT. The description of MBT started with a background and an 

introduction to the concept. This section also described the scope of MBT. Since MBT is 

really a collection of black-box techniques, different approaches of MBT are described. 

Furthermore the MBT process was described as a sequence of phases. Finally, benefits and 

limitations of MBT were discussed in this section. 
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The last section of this chapter described different interfaces that will be used in this thesis. 

These interfaces include the MBT tool to be used (Qtronic), the test object to be used, Java 

(used to implement the test object), TCL (used for test scripts) as well as UML (used for 

modeling the SUT).   
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3 Experiment 

This chapter describes the experiments performed in this thesis. The chapter starts by 

describing the purpose of the thesis experiments as a background to the work. The test 

system, including Qtronic (the model-based testing tool used), the test object, the test scripts 

and the test execution environment, is then described as an introduction to the different 

artifacts and interfaces used in the work.  

 

In section 3.3 an introductory example using model-based testing (MBT) is given to define 

and describe the work process and the different tasks when applying MBT with Qtronic. This 

example includes further details compared to the description of the test system. Design factors 

related to model quality are discussed in section 3.4 as an introduction to the feasibility study. 

Section 3.5 includes the three experiments performed in this thesis.  

3.1 Purpose 

The general purpose of the thesis experiments was to evaluate MBT as a concept as well as a 

specific MBT tool, namely Qtronic. Specifically, the purpose was to develop a test object and 

to test this test object using Qtronic. The idea was that the test object would be extended and 

modified for different experiments while documenting results and experiences. Thus results 

and experiences could also be compared between for the different experiments.  

3.2 Test System 

This section describes and defines the test system, which includes the artifacts and the 

interfaces used in the thesis work. 

3.2.1 Test tool: Qtronic 

The MBT tool used in this thesis is Conformiq Qtronic 2 [8]. Qtronic automatically designs 

test cases given a model of the system under test as input. The generated test cases are black-

box tests, which mean that they evaluate the system under test based only on the system’s 

external behavior [8]. 

 

Before starting experimenting using Qtronic, a course on the tool was attended. The course 

was held by Conformiq in the Tieto test lab at Sätterstrand, Hammarö. The course included 

two instructors and lasted for three days. Furthermore, one of the instructors stayed for two 

additional days to assist in the initial phase of the thesis work. The instructor helped modeling 

the test object and provided valuable insight into the functionality of the tool (Qtronic) as well 

as for the modeling language (QML).  
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Figure 3.1: Qtronic stand-alone client 

Figure 3.1 shows a print-screen of the Qtronic tool, specifically the stand-alone version. 

Qtronic can also be run as an Eclipse-plugin.  

Model as input 

The input to Qtronic is a model of the SUT. The model is a description of the intended 

behavior of the system. This model can be expressed as a collection of [8]: 

1. Textual source files, which describe data types, constants, classes and their 

methods.  

2. Graphical notation in form of state-chart diagrams with methods and procedures 

representing behavioral logic. 

3. Class diagrams as a graphical alternative to declaring classes and describing class 

relationships using textual notation. 

 

These models may be seen as behavioral or functional requirements. They describe the 

external characteristics of the system, thus the models do not need to reflect the actual 

implementation structurally given that they describe the intended outwardly observable 

behavior [8].  

 

Qtronic supports multiple types of models, created and modified using different tools. Such 

tools include Qtronic Modeler (which is a separate tool shipped with Qtronic) as well as third-

party modeling tools, such as Enterprise Architect and Rhapsody System Designer [8].  

 

 

 

 



 33 

Qtronic Modeling Language (QML) 

One way to express design models is the Qtronic Modeling Language (QML). Design models 

in QML can be expressed entirely in textual notation or together with graphical notation.  

 

QML is an object-oriented language, which is based on Java, although it includes some 

ideas from C#. Compared to standard Java, the QML language is restricted or enhanced in a 

few ways. Examples of enhancements are support for global variables and global methods, 

structured value type records and operator overloading. Examples of restrictions are no 

support for enumerators, no support for packages and no support for annotations. In addition, 

the standard library of QML is very limited compared to the standard library of Java [8]. 

Qtronic Modeler 

In addition to the textual notation, QML also includes graphical notation which can be used to 

create design models. A separate tool, Qtronic Modeler, is used to create these models in the 

QML graphical notation. The Qtronic Modeler is a simple tool for drawing UML state 

machine diagrams.  

 

Creating state machines in the graphical notation defines the state machine execution logic, 

which otherwise has to be defined in the textual notation. The graphical state machines 

consist of states and transitions, as well as initial and final states. A state may also include an 

internal state machine. The transitions of a state machine are described using transition 

strings, consisting of three parts: 

• Trigger 

• Guard 

• Action 

A trigger is used to model the reception of an event and a guard is a Boolean condition for 

the transition to be executed. An action is executed on receipt of an event where a guard 

yields true. However, these three parts are not obligatory and an empty transition string is also 

valid. These three parts are all defined in the QML textual notation. 

 

The graphical notation is always used with the textual notation. The very minimum textual 

notation is a class corresponding to the state machine defined in graphical notation and a 

system block describing the interfaces and the possible messages of each interface is required. 

Such messages have to be defined as value record types.  

Qtronic Projects 

Qtronic projects contain three types of information: model files, test design configurations, 

and test generation options. The model files can either be textual files defined in QML or 

graphical state diagrams, as described above.  

 

The test design configurations may be used by the user to create different profiles with 

different coverage settings and different scripter plugins for different purposes. For example, 

the user may in one case want to create a test suite for basic requirements of the system, and 

in another case create a test suite for testing more detailed aspects, such as parameters by 

using boundary value analysis. The user can in this case create two distinct test design 

configurations for the project. The test design configurations contain a set of coverage 

settings. See Appendix C.2.1 for a description of these different coverage settings. 
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 Test design configurations may include one or more scripter plugins for rendering the 

generated abstract test cases to an executable format. Scripter plugins for rendering test scripts 

in TCL, TTCN-3 and Perl are included in Qtronic. Test cases may also be rendered in HTML 

as test case documentation using the HTML scripter plugin.  

 

The third project information in Qtronic is test generation options. These options are global 

across different test design configurations and apply to the project in general. Such test 

generation options include lookahead depth, maximum delay, only finalized runs, require 

conversion for interoperability testing, OSI methodology support and test case name prefix. 

These options are defined in Appendix C.2.2.  

Test Case Generation 

Qtronic uses a client-server architecture, where the client user interface is an Eclipse-plugin or 

a stand-alone version. The server component, Qtronic Computation Server, may run locally or 

remotely. The Qtronic Computation Server is used for test generation, which is a 

computationally intensive task. Therefore it is recommended running the server remotely [8]. 

However, in this thesis the computation server is run locally.  

 

The first step in the test generation process is to load the model files to the computation 

server. Once the coverage settings for the test design configuration have been defined, the test 

generation may be started. When the test generation is started by the user in the client user 

interface, the test generation is triggered on the computation server. As the test generation 

progresses the console window in Qtronic, or in the Eclipse console window, will display the 

status of the test generation. Figure 3.2 below illustrates the test generation progress in 

Qtronic. 

 

 

Figure 3.2: Status of the generation shown in Qtronic console 

When the test generation is completed, and if successful, a set of test cases will be 

displayed in the tool. The test cases only exist within the tool and the project, and must be 

exported using a scripting back-end to be executable. The test case generations can be 
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inspected in a number of ways in Qtronic. See Appendix C.2.3 for brief descriptions of the 

available views.  

 

Figure 3.3 shows an example of an interaction description for a test case. 

 

 

Figure 3.3: Test case interaction 

The model used for test generation in Figure 3.3 describes partial functionality of a SIP 

User Agent Client, and includes call setup, call termination by caller or callee and call 

cancellation during call setup 

 

Each Qtronic project may include several test design configurations. Hence, the generated 

test cases are grouped by the test design configuration used for test generation. For example, 

suppose that one test design configuration aims to cover all the states in the model, and the 

another test design configuration aims to cover all the transitions of the same model. When 

generating tests using these configurations two sets of test cases will be generated, one for 

each test design configuration. These two sets are hence independent of each other.   

Script Generation 

When abstract test cases have been generated in the tool, they may be rendered into an 

executable format using one or more scripting back-ends, or scripter plugins. Each test design 

configuration may contain more than one scripting back-end. Qtronic is shipped with 

scripting back-ends supporting test script generation for TCL, TTCN-3 and Perl. A scripting 

back-end for rendering test case documentation in HTML is also provided. Moreover, 

scripting back-ends may be defined by the user, using a plugin API (Application 

Programming Interface) defined in the Qtronic User Manual [8].  

3.2.2 Test object 

The test object model used in this thesis is a part of a simplified model for an ATM client-

server system, using an application-layer protocol. The system includes the ATM (the client) 

and the central bank computer (the server), which communicates over a network.  
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Overview 

Both the client and the server are divided into subsystems. The client consists of the user 

interface, where the user can withdraw money and request account balance information, and 

the protocol module. The server consists of the account database application and the protocol 

module. The client and server communicate over a fifth subsystem, the transport service 

provider (TSP).  

 

 

Figure 3.4: ATM system overview 

As Figure 3.4 indicates the test object is limited to the protocol module of the client side. 

The client protocol module has two interfaces: one towards the user interface and one towards 

the network.  

Protocol Module (Client) 

The test object in this thesis was chosen to be the protocol module of the client since data 

communication protocol includes the most complexity. The scope is limited to the protocol 

module of the client. The reason is that also modeling and implementing the communication 

protocol of the server would be similar to the communication protocol of the client and not 

really make any further contribution. Also, if both protocol modules were to be implemented 

only really the user application interface of the client and the database application interface of 

the server would be tested. The generated test cases are black-box tests, thus the black box 

would be the client and the server. The generated test cases would only include input and 

output for those application interfaces and not for the network interfaces. Moreover, if the two 

protocol modules were implemented but not communicating they would only really be two 

separate components, of similar complexity, being tested.  

 

The protocol module is a state machine that handles incoming messages (events) and 

responds with outgoing messages (actions) for both interfaces. Messages either come from the 

user interface or from the network, and the corresponding actions are sent to the user or to the 

network.  

 

See Appendix C.1.1 for the state transition diagram and further details of the client 

protocol module.  

 

 

 

Protocol Module 

(Client) 

Protocol Module 

(Server) 

ATM User Interface Account database 

TSP 
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Implementation 

The protocol module is implemented in Java, according to the state design pattern [15]. The 

state design pattern uses a class Context which defines the user interface and a base class State 

which defines the interface for encapsulating the behavior associated with a particular state of 

the Context. Subclasses of State implement a particular behavior associated with a state of the 

Context. Also, the Context maintains an instance of a subclass that defines the current state 

[15].  

 

The implementation of the test object follows this pattern and makes use of inheritance and 

polymorphism. The Context class maintains one instance of State and uses polymorphism to 

access the instances of the subclasses (i.e. the current state). Instances of the subclasses are 

also maintained in the Context. Each state described in the state transition diagram (see 

Appendix C.1.1) is implemented as a subclass. 

3.2.3 Test scripts 

In this thesis the abstract test cases generated in Qtronic are rendered to executable test scripts 

in TCL (see section 2.6.4). Qtronic generates the following TCL files when rendering test 

scripts in TCL: 

• Test case template  (Template.TCL) 

• Test harness   (TestHarness.TCL) 

• Test suite   (TestSuite.TCL) 

 

The test case template file is empty when generated. According to the Qtronic user manual 

[8] extra code, such as initialization and de-initialization of the test harness, may be inserted. 

However, in this thesis this file has not been used. 

 

The test harness file is the library file which contains the implementation of the procedures 

that the scripter generates. The generated file contains empty procedures, which must be 

implemented. Each procedure corresponds to input or expected output from the SUT, as 

modeled. Thus, procedures corresponding to modeled input send data to the SUT. Procedures 

corresponding to modeled output receive SUT output and compare the actual output to the 

expected output. Hence, procedures corresponding to SUT output implement verdict 

functionality, i.e. compare expected and actual output.  

 

The test suite file contains all the test cases. Each test case is defined as a procedure and 

the generated code uses the procedures generated in the test harness file to define each test 

case. Each test case procedure is a sequence of parameter initializations and procedure calls 

(to procedures defined in the test harness). The test suite file is completely generated by 

Qtronic, meaning that it requires no implementation or modification.  

 

The procedures in the test harness may be considered as keywords used to define the test 

cases (compare to the keyword-based testing process in section 2.4.2). Each procedure has 

zero or more parameters, depending on the design model used for generating the test cases. 

The number of generated procedures depends on the system block, which is an obligatory part 

of the model in QML. For example, if four different types of messages have been defined as 

incoming messages of the network; four procedures are generated, where the procedure name 

is a concatenation of the interface name and the message name, as specified in the system 

block.   
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These test harness procedures are implemented after the test generation. The 

implementation of each procedure includes handling potential parameters as well as sending 

input to the SUT or retrieving output from the SUT. For the retrieved SUT output 

comparisons can be made to the expected output. This expected output is defined in the test 

case and consists of the test harness procedure name (each procedure corresponds to a specific 

message type) and the procedure parameters. All procedures generated from an outbound 

interface, either outgoing messages to the user interface or to the network, will be retrieving 

output from the SUT and comparing against expected values. Correspondingly, all procedures 

generated from an inbound interface, i.e. incoming messages, will be sending input to the 

SUT.  

 

The implementation of the test harness procedures depends on the test execution 

environment, i.e. how to communicate with the SUT. When the procedures in the test harness 

have been implemented the test cases can be executed independently. The test harness defines 

only the individual procedures used for defining the test cases, and not the test execution 

environment. However, the implementation of these procedures makes use of the test 

execution environment.  

3.2.4 Test execution environment 

The test execution environment consists of socket communication between the test scripts and 

the SUT, running on the same machine. The test scripts use socket procedures implemented in 

TCL and the test object uses socket procedures defined in Java. The socket defined in Java is 

a server socket, whereas the socket used by the test scripts is a client socket.  

Test Scripts 

The procedures implemented in the test harness make use of socket procedures, defined in a 

separate TCL file. This file includes procedures for initializing the socket channel, sending 

data and receiving data over the socket, as well as closing the socket. As described in section 

3.2.3, the sending procedure and receiving procedure are used to implement the test harness. 

All procedures generated from the inbound interfaces are defined using the sending socket 

procedure. Correspondingly all procedures generated from the outbound interfaces are defined 

using the receiving socket procedure.  

 

The test execution environment also executes the test cases, which are defined as TCL 

procedures, using a test execution script. This script also assigns a pass/fail verdict to each 

test case. The verdict of each test case is determined by the comparisons between expected 

and actual output (see a more detailed discussion below). Furthermore, this test execution 

script sets up the socket communication by initializing a client socket. The test execution 

environment as implemented in the test scripts also include log functionality, in terms of a 

TCL procedure that writes relevant information to a text file. The resulting log file includes 

input sent to the SUT as well as actual and expected output from the SUT. The log file also 

includes a verdict for each test case and hence also indicates mismatches between expected 

and actual SUT output. Thus this log file may be used to analyze the test execution. 

 

To summarize, the test execution environment implemented in TCL consists of procedures 

for socket communication with the SUT, including procedures for sending and receiving data, 

initialization the socket channel and closing the socket. Furthermore the test execution 

environment includes TCL procedures for log and verdict functionality.  
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Verdict functionality 

The basis for assigning pass/fail verdicts to the test cases is the expected and the actual SUT 

output. The generated test cases are black-box tests and are defined by sequences of SUT 

input and expected output. A certain SUT output is expected given a particular SUT input, 

according to the model. For example, each test case of the test suite file starts with a 

procedure call to a test harness procedure corresponding to a message type for SUT input, as 

modeled. The next procedure call of the test case is always to a test harness procedure 

corresponding to an expected SUT output. Thus the success of an executed test case is 

dependent on the comparison between expected and actual SUT output.  

 

The verdict functionality of the test execution environment implemented in TCL consists 

of a procedure that compares the expected and actual SUT output, which are strings. Thus the 

comparison is a string comparison. The actual output is retrieved on the socket channel 

whereas the expected output is set in each test harness procedure corresponding to modeled 

SUT output. The names of the generated test harness procedures are based on the interface 

and the message type, as modeled, on the form <interface><message type>. Hence the 

expected output is defined by the message type and the procedure parameters and set to a 

string, on the same form as the output strings of the SUT. The retrieved output string (from 

the socket channel) and the defined string for expected output are sent as parameters to the 

verdict procedure, which performs the string comparison. If the two strings do not match the 

test case fails. The string containing the expected output may be considered the oracle 

information (see section 2.5.3). 

Log functionality  

The log functionality of the test execution environment consists of a TCL procedure. The 

procedure is used in all test harness procedures and creates a log file during test execution. 

This log file contains all the input sent to the SUT as well as all expected and actual SUT 

output. Since the test suite contains one or more test cases the start and end of each test case is 

indicated in the log file, as well as the name of each test case. Furthermore, the log 

functionality indicates mismatches between actual and expected output strings by writing 

“Output mismatch” to the file. Finally, a pass/fail verdict is included in the end of each test 

case in the log file. 

Test Object 

The test object is executed using a driver class. This driver executes the test object and uses a 

separate class, Socket, for receiving input and sending output to the test scripts. The driver 

class uses a server socket, which waits for requests to come from the network. These requests 

come from the test scripts. 

 

The received input is forwarded to the test object, which triggers events within the state 

machine. Every triggered event results in at least one action, which is returned to the driver. 

The driver then sends the resulting actions, really the output of the SUT, back to the test 

scripts. Hence expected and actual output can be compared in the test scripts.  
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3.3 Introductory example 

As an introduction to Qtronic and the different tasks involved in the process of using Qtronic, 

an example is given. In this example a subset of the protocol module is used, namely the 

account balance functionality of the ATM. Since the model used in this example is a subset of 

the complete model the test cases will still be valid for one of the SUT versions used in this 

thesis.  

 

The process described in this example applies to the thesis work in general. This example 

is given to aid the understanding of the thesis work and to describe the way of working.  

3.3.1 Modeling 

This example models the functionality of the client protocol module (as described in section 

3.2.2) for requiring the account balance through an ATM. The example is a subset of the 

complete model used in experiment 2 (see section 3.5.2) of this thesis. The specification used 

for modeling this functionality is specified in Appendix C.1.2.  

 

The first step when testing with Qtronic is to create the model. An obligatory part of the 

model is the system block. The system block defines the interfaces, or the ports, of the model. 

This includes specifying what types of messages than can be sent and received. Ports are 

classified as inbound or outbound. The system block used in this example is defined below. 

 
system { 

Inbound userIn: CardInserted, PinInput, BalanceQuery, Interrupt; 

Outbound userOut: RequestPin, RequestCmd, BalanceInfo, ErrorMsg; 

Inbound netIn: TConnect, TData, TDisconnect; 

Outbound netOut: TConnect, TData, TDisconnect; 

} 

 

The above specified messages are defined as value type records (structs in C). Defining the 

types of messages is really a design issue. Messages may carry additional information or 

simply be a named value type record without any data members. An example of a value type 

record definition for an incoming message from the user application (the ATM machine) is 

given below. 

 
record CardInserted { 

int bankId; 

int cardNumber; 

} 

 

The other records defined for userIn and userOut follow the same pattern, although some 

do not contain any data members. However, the records defined for the network interface are 

more generic. An example is given below.  

 
record TData { 

String type; 

String header; 

int[] payload; 

} 
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The other records for the network interface, TConnect and TDisconnect, only specify the 

type. In this model the type is always Ind, denoting an indication, for incoming messages and 

Req, denoting request, for outgoing messages. Correspondingly, the header for TData is 

always an acknowledgement for incoming messages and a command for outgoing messages. 

 

The next step is to model the behavior of the system under test. To be able to do so, a 

specification is required. The behavioral model is specified in QML and may be described 

using only the textual notation. However, in this example the Qtronic Modeler and the 

graphical notation (really UML) are used to create this model. This graphical model also 

includes blocks of QML textual notation, describing the logic of the transitions. Furthermore, 

textual notation other than in the graphical model is required. This includes a class 

corresponding to the top-level state machine of the graphical model, a system block and value 

type record definitions. The system block definition and an example of a record definition of 

this model are given above. Sample code of the QML state machine class is given below. 

 
class ATMBalance extends StateMachine { 

public ATMBalance(){} 

 

public void sendTData(String type, String header, int[] payload){ 

TData r; 

r.type = type; 

r.header = header; 

r.payload = payload; 

netOut.send(r); 

} 

//... 

} 

 

This QML class corresponding to the top-level state machine of the graphical model 

includes class methods and data members. The methods and the data members are in this 

model used to describe the transition logic in the graphical model, where they have global 

visibility.  

 

Figure 3.5 below defines the top-level state machine for the model of the protocol module. 

The model in this example is limited to functionality for requiring the account balance (see 

Appendix C.1.2 for the specification).  
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Figure 3.5: Qtronic example: Top-level state machine 

 

The transition logic consists of three parts and is described as following: <trigger> 

[<guard>] / <action> (see section 3.2.1 and the Qtronic Modeler paragraph for a description 

of these). All three parts are optional, but a guard, if used, has to be placed within square 

brackets and actions, if used, has to be subsequent to a “/”. The trigger is defined by 

specifying the port and the message type on the form: <port> : <message type>. 

 

The QML model in Figure 3.5 includes error handling which is not specified in the UML 

diagrams (see Appendix C.1.3). This error handling include user entered interrupts, 

unexpected disconnect indications from the network, negative acknowledgements and other 

unexpected events, such as inserting the card again before the ATM has output the account 

balance receipt. Acknowledgements from the server are only expected following a request 

from the client to the server. Such a request could be “BRCmd”, which stands for Balance 

Request Command, and is replied to with “BRAck+” if the request is successful. The model 

also includes an internal state machine for the state Authentication, which is defined in Figure 

3.6 below (compare this with the specification in Appendix C.1.2).  
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Figure 3.6: Qtronic example: Authentication state machine 

The internal state machine of the Authentication state does not include error handling for 

user interruptions and network disconnections. Such events are handled at the higher level, for 

the Authentication state (see Figure 3.5), thus implicitly also for the internal state machine. 

This internal state machine is started when the Authentication state is entered in the top-level 

state machine.  

3.3.2 Test generation 

The first step in test generation is to load the model files to the computation server, which 

parses and type checks the model. This may either be done in a separate step or automatically 

by the tool before generating test cases.  

 

Before generating test cases, a test design configuration needs to be specified (see section 

3.2.1 and Qtronic Projects). This configuration specifies the coverage goals for the test 

generation. The different coverage settings and parameters are described in Appendix C.2.1. 

Figure 3.7 shows the test design configuration used in this example.  

 

 

Figure 3.7: Qtronic example: Test Design Configuration 

For simplicity, the test coverage is in this example set to cover all states in the model, 

including all final states. Furthermore, in the properties of the Qtronic project different 

algorithmic options are specified. These options are described in Appendix C.2.2. The 

algorithmic options are set to use a lookahead depth of 1 (the lowest possible value) and to 

only allow finalized runs. The lookahead depth corresponds to the number of external input 

events to the system or timeouts [8]. The only finalized runs option specifies that test cases 
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have to end in a final state of the top-level state machine [8] (see Appendix C.2.2 for further 

details).  

 

During test generation the progress is displayed in the Qtronic Console. The test generation 

progress of this example is shown in Figure 3.8 below.  

 

 

Figure 3.8: Qtronic example: Test generation progress 

As illustrated in Figure 3.8, all states were covered in the test generation. Qtronic 

generated 13 test cases in 3 seconds. The test generation time depends on the complexity of 

the model, the test design configuration and the Qtronic algorithmic settings. An example of 

the results of the test generation, i.e. the test cases, is shown in Figure 3.9. 

 

 

Figure 3.9: Qtronic example: Generated test cases 

The left-most view in Figure 3.9 is a list of the generated test cases. The view in the middle 

describes the communication between the tester and the system under test as a form of 
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sequence diagram for a particular test case. The right-most view describes the same test case 

in further detail, including parameter values and which port the message was sent to or from. 

Qtronic also generates a traceability matrix, which in this example shows which states the 

different test cases cover (see Appendix B.3 for an example of a Qtronic traceability matrix). 

3.3.3 Script rendering and test harness implementation 

At this point test cases have been generated in Qtronic. However, the test cases are abstract 

and not executable. A scripting back-end is added to the test design configuration to render 

the test cases to test scripts. The scripting back-end is essentially a plugin written in Java that 

renders the abstract test cases to executable test scripts. In this example a TCL scripting back-

end is used, which generates two files of interest: the test suite and the test harness (see 

section 3.2.3 for further details about these files).  

 
proc "TC1" {} \ 

{ 

set bankId_1 0 

set cardNumber_2 0 

userInCardInserted $bankId_1 $cardNumber_2 

//... 

} 

 

The code above is a sample from the generated test suite file. Each test case is defined as a 

procedure in TCL. The remaining definition of each test case follows the same pattern as 

illustrated in the code, as a sequence of procedure calls and necessary parameter 

initializations. The test case definitions uses the procedures generated in the test harness file. 

However, when generated, the procedures in the test harness file are empty and need to be 

defined manually. Examples of these procedure definitions are given below. 

 
proc userInCardInserted { bankId cardNumber } { \ 

global socketChannel 

set msg "Card inserted / $bankId / $cardNumber" 

send $socketChannel $msg 

} 

 

proc netOutTData { type header payload } { \ 

global socketChannel received expected 

set expected "T-Data $type $header" 

if { $payload != "{}" } { 

set l [split $payload ,] 

for {set i 0} {$i < [llength $l]} {incr i} { 

set expected "$expected / [lindex $l $i]" 

} 

} 

vwait received 

} 

 

These two procedures are chosen for a reason, since the first procedure sends a message to 

the SUT, and the second receives output from the SUT. The test harness procedures either 

send input or receive output from the SUT. These procedures are really generated from the 

system block, as defined in section 3.3.1. For each defined port every specified message type 

will generate a procedure in the test harness file on the form <port name><message type>. 

The procedures generated for an inbound port will send input to the SUT. Correspondingly all 
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procedures generated from an outbound port will receive output from the SUT, and also be 

able to compare the output with the expected output generated from the model. This 

comparison is done in a separate procedure when receiving output on the socket channel, 

simply by comparing the two strings (the received string with the expected string defined in 

the code above). If a mismatch occurs this is written to a log file. A test case passes given that 

no mismatches occur.  

3.3.4 Test execution 

The next step is the test execution. The procedure for executing the test cases is to first start 

the SUT in Eclipse. The SUT will then wait for a socket request, which is sent by the test 

scripts (as described in section 3.2.4). The procedures defined in the test harness file uses 

other TCL procedures, namely procedures for socket communication. The test suite is 

executed in a separate script by a sequence of procedure calls for all the test case procedures. 

The result of this test execution is shown in Figure 3.10 below.  

 

 

Figure 3.10: Qtronic example: Test execution 

The test case that failed was due to an error in a receiving test harness procedure, in form 

of an extra character. Hence the expected output differed from the actual output. A log file, 

containing a sequence of all SUT inputs as well as expected and actual output of the SUT, is 

generated during test execution. As mentioned, if a mismatch between the expected and actual 

SUT output this is indicated in the log file (see the log and verdict functionality described in 

section 3.2.4).  
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3.4 Design Factors in Modeling 

As discussed in section 2.5.1 and as stated by Apfelbaum and Doyle [2], modeling is a good 

practice for capturing knowledge about a system and then reusing this knowledge as the 

system grows. Models may be used as a means of communication between different teams in 

an organization during development. For test teams, models provide a mechanism for 

structured analysis of the system. The greatest benefit of models is in reuse since the work 

done is not lost [2]. 

 

Models of complex systems may also be complex and hard to read since they may consist 

of a very large number of artifacts. Analysis of such models may be very difficult. Applying 

design guidelines when modeling makes this process easier. These design guidelines consist 

of rules, constraints and considerations for model construction. Such guidelines increase 

readability of models. Design conventions and guidelines have a positive impact on the model 

quality. Awareness of such modeling aspects has reported to result in increased readability, 

maintainability and understandability of models in the software development process. Well 

designed models have also been reported to aid and improve the communication between 

team members [16]. 

 

Design factors, or quality requirements of the model, are important considerations when 

modeling since models are reused, modified, maintained and extended. It is desirable that 

modifications and extensions to a model require as small changes as possible. That is, large 

modifications may be inevitable but the goal should be to create a model with a good structure 

that supports extensions and modifications. Since systems often are developed incrementally 

and may have a long lifetime, quality requirements such as extendibility and maintainability 

should be considered when creating models.  Furthermore, as stated above, models may be 

used as a means of communication. Thus considerations and quality requirements such as 

readability are important.  Since the model is the most important artifact of MBT, design 

factors should be considered and applied from the start when modeling a system. Readability 

will be considered since it is the quality requirement that is most closely related to the use of 

the model as a means of communication. Extendibility will be considered during the 

feasibility study since incremental development of complex systems often includes extending 

the system. Maintainability will be considered since maintenance often is a large factor in 

projects including complex systems. 

 

Readability is defined as “the ease of understanding or comprehension due to the style of 

writing [22].” Extendibility is defined as “the ease of which a system or component may be 

modified to increase its storage or functional capacity [18]”. Maintainability is a quality factor 

which describes whether and how easily developers and users can upgrade the system, [19]. 

Furthermore, maintainability is defined as an attribute that relates the amount of effort 

required to make changes to artifacts [19].  
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3.5 Experiments 

The methodology and procedure described in the introduction example (section 3.3) applies to 

the thesis work in general and gives an overview of the steps necessary and tasks involved in 

performing MBT with Qtronic. In the remaining parts of this chapter, the descriptions of the 

different experiments will not be discussed at the same level of detail.  

 

In this thesis four experiments were performed. The approach of the thesis work was to 

incrementally develop the model and the test object for each experiment as if MBT were to be 

deployed in a new project within the organization. Since the experiments involved 

incremental development the first experiment was compared to the second experiment, the 

second to the third and finally the third was compared to the fourth.  

 

The first experiment was to create a test object from the initial specification and then test 

the implementation using Qtronic. The second experiment used the resulting artifacts of the 

first experiment, both in terms of the Qtronic model, the test harness and the test object. New 

requirements were introduced and implemented without changing the existing functionality, 

and then tested. The third experiment was to change the general requirements for the 

authentication process, using the model, the test harness and test object resulting from the 

second experiment. The fourth experiment may be viewed as a second version of the third 

experiment since the specification was not modified for the fourth experiment. In that 

experiment logic were removed from the model of the third experiment and instead 

implemented in the test harness. 

 

The descriptions of the experiments will primarily focus on the modeling because that is 

the most important task of the process. The test generation, the test harness implementation 

and the test execution follows the same pattern for all experiments and are not significantly 

changed between experiments, except for the fourth experiment. 
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3.5.1 Experiment 1 

The initial experiment used the original specification (as defined in Appendix C.1.1).  The 

experiment may be divided into sub-tasks. The first was to implement the test object 

according to the specification. The second task was to create a QML model describing the 

functionality of the client protocol module according to the specification. The remaining sub-

tasks were to generate test cases from that model, render executable test scripts in TCL, 

implement the test harness procedures and finally execute the test scripts against the test 

object (the SUT). The tasks follow the way of working as described in the introductory 

example (see section 3.3). 

Goal 

The goal of this initial experiment was to apply MBT (Qtronic) to an existing test object and 

to execute the generated test scripts against that test object (the SUT). 

Implementation 

When starting this experiment the test object was implemented according to the initial 

specification (see Appendix C.1.1). The test object was implemented in Java and the 

implementation was based on the state design pattern [15] as described in section 3.2.2. The 

implementation also included error handling for negative acknowledgements, user entered 

interruptions and network failures.  

Modeling 

The modeling for this experiment was started immediately following the Qtronic course 

(mentioned in section 3.2.1). One of the course instructors stayed for two additional days 

following the course and assisted with the modeling to get the thesis work started. The 

instructor gave advice on which practices to apply when modeling in QML as well as about 

tool specific features. The QML model was completed during these two days and tested in the 

tool, i.e. loaded to the computation server and parsed. The model was also evaluated in a 

sense within the tool as a form of informal review (see Appendix B.2.1) against the 

specification.  

 

The QML model included a top-level state machine called PMC (Protocol Module Client). 

This state machine made use of two internal state machines; Authentication and Withdrawal, 

as described in the specification (see Appendix C.1.1). The account balance functionality only 

included one state. Consequently no state machine was created for this functionality. Each 

state machine of the model had its own execution thread. The internal state machines are 

internal logic of a state of the higher-level state machine. The execution thread of an internal 

state machine is started when the state of the higher-level state machine is entered. The 

implication of the designed internal state machines is that they must be completed, i.e. reach a 

final state, before the top-level state machine can continue its execution. In this model a 

minimal number of final states were used, meaning that each state machine only included one 

final state (compare with Figure 3.5). Therefore all possible paths through the model ended in 

the same final state of the top-level state machine. Final states are not required in the model 

but they are necessary to ensure that the generated test cases are complete paths through the 

model, i.e. not ending in any state of the model.  
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The model made use of a number of QML procedures, defined within the class 

corresponding to the top-level state machine. These class methods were used to encapsulate 

action logic for the transitions, where the methods corresponded to the message types defined 

as outbound events in the system block for the model (see section 3.3.1). Thus some class 

methods, as in the example code below, were generic and often reused.  

 
record TData { 

String type; 

String header; 

} 

 

class PMC extends StateMachine { 

public PMC(){} 

public void sendTData(String type, String header){ 

TData r; 

r.type = type; 

r.header = header; 

netOut.send(r); 

} 

//.. 

} 

 

The sample procedure and the message definition above illustrate a design choice for this 

experiment. Comparing this example with the TData structure and class method as defined in 

section 3.3.1, the payload field is not included in the record or the procedure. The focus of 

this experiment was to complete a working model using the UML diagrams in the 

specification and not the experiment with details such as parameter values. Hence most data 

members were omitted in the message definitions, such as card number and withdrawal 

amount. The only message records containing data members were the ones including a type or 

a header necessary to describe the message type as defined in the specification (see Appendix 

C.1.1). Consequently the test object used for this experiment did not handle data values but 

only the different message types. Figure 3.11 below include transitions of the model used in 

this experiment. 

 

 

Figure 3.11: Experiment 1: Authentication state machine  
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One transition of the figure illustrates the use of the class method defined above and the 

type parameter of the message as discussed. The received message (the event) is bound to the 

local variable msg and is only visible inside the transition string (defined in section 3.2.1 

under the Qtronic Modeler paragraph). The type of the transition event is in this case 

necessary for the flow of the model, since a connection attempt may be successful or 

unsuccessful and thus affects the path through the model. Such data members, or parameters, 

of messages were therefore not omitted.  

 

Figure 3.11 also illustrates another important aspect of the model, namely error handling. 

One transition in the figure handles a negative acknowledgement indicating failure to 

establish a connection. The third transition in the figure illustrates a design choice for 

handling both user-entered interruptions and network failures, which were general events for 

most states in the model.  

 

The solution for handling errors was to add internal transitions or self-transitions for such 

events in the top-level state machine. Self-transitions for user interruptions and network 

failures were added to the Authentication state (which included an internal state machine), as 

illustrated in Figure 3.12.  

 

 

Figure 3.12: Experiment 1: Authentication in top-level state machine 

These transitions restarted the internal state machine, while including appropriate actions. 

The defined self-transitions also set Boolean data members that were used to terminate the 

internal state machine, as illustrated by the Boolean data members in Figure 3.11. Since the 

internal state machine was restarted the solution required two transitions (illustrated by the 

transitions using Boolean data members in Figure 3.11 and Figure 3.12) to terminate 

execution thread of the complete model.  

 

However, this solution using self-transitions only applied to the Authentication state and its 

internal state machine because in that case all states required the same error handling. For the 

Withdrawal state machine not all states required the same error handling, therefore internal 

transitions for each state was applied. Furthermore, the top-level state machine also included 

states not regarded with internal state machines, to which the same solution using internal 

transitions applied. This is illustrated in Figure 3.13 below. 
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Figure 3.13: Experiment 1: State of top-level state machine 

The use of internal transitions is illustrated in Figure 3.15. The transition for terminating 

the execution thread only used a guard (see section 3.2.1) including Boolean data members. 

The solution of internal transitions decreased the number of transition lines in the graphical 

notation by only using one transition for error handling from each state. Since all transitions 

of the top-level state machine ended in the same final state this was a desired outcome.  

Test generation 

Figure 3.11 also includes the requirement keyword (see Appendix C.2.1). This is a QML 

statement which also may be specified in the textual notation. This statement marks a point in 

the model that can be used as a testing goal for Qtronic, and the string specified is the name of 

the requirement and has to be unique. The specified string was named according to the input, 

and grouped as network input or user input using the “/”-character (Qtronic creates a tree 

structure for the requirements in the test design configuration based on this character). The 

test design configuration (see Appendix C.2.1) of this experiment was set to cover these 

requirement statements, which covered all the possible inputs for both interfaces.  

 

The test generation options (see Appendix C.2.2) were set to only finalized runs and a 

lookahead depth of 2. The implication of the only finalized runs option is that Qtronic only 

produces test cases ending in a final state of the top-level state machine. The lookahead depth 

was set to the lowest possible value resulting in complete coverage, i.e. that all requirement 

statements were covered. The minimal lookahead value for this model resulting in full 

coverage was 2, the second lowest value possible. 

Test harness and test execution environment implementation 

The abstract test cases generated in Qtronic were then rendered to executable test scripts in 

TCL. The test cases included in the test suite file were as previously mentioned (see section 

3.3.3) complete, but the test harness needed to be implemented. Since this was the first 

experiment, the test execution environment had to be implemented in TCL as well. The test 

harness and the test execution were implemented in parallel. The test execution environment 
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was implemented as described in section 3.2.4 using socket communication to interact with 

the test object. The test harness procedures used to define the test cases were implemented to 

either send or receive data on the socket channel, as described and exemplified in section 

3.3.3.  
 

proc netInTData { type header } { \ 

global sockChan 

set msg "T-Data $type $header" 

send $sockChan $msg 

} 

 

This is a sample procedure of the test harness implemented for this experiment. This 

particular procedure sends a string of a certain structure to the SUT over the socket channel.  

Test execution 

After implementing the test harness procedures and the test execution environment the test 

scripts were executed against the SUT (see section 3.3.4). The initial test execution resulted in 

a number of failures. The failures were both due to errors in the model and in the test object. 

The failures were either due to mismatches in the comparison between the expected and the 

actual output, or due to deadlocks, i.e. the sequence of ingoing and outgoing messages was 

not consistent for the model and the SUT. The latter resulted in that the test execution halted 

when both the test script and the SUT expected to receive data on the socket channel. This 

scenario occurred when the number of actions for a given transition differed between the test 

object and the model. The errors were analyzed using the generated test execution log file, 

which indicated where errors first occurred. The errors were then corrected by manually 

inspecting the model, the test harness and the test object. 

Results 

Table 3.1 below includes the results of this initial experiment. Some results are derived from 

Qtronic and some are indications on the work effort required to for certain tasks in the Qtronic 

testing process. 

 

Modeling time 2 days 

Test generation time 13 seconds 

Test design configuration coverage 100% 

Number of generated test cases 25 

Time to implement test harness 2 days 

Lines of code: Test suite 2860 

Number of test harness procedures 18 

Lines of code: Test harness 99 

Average: LOC / Harness procedure 5.5 

Lines of code: Test execution environment 73 

Table 3.1: Results experiment 1 

The modeling time was estimated to be two full working days, where one working day was 

approximately 8 hours. For this experiment one of the Conformiq instructors assisted with 

modeling of the system and the model was completed during the two days he stayed.  
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The test generation time, the test design configuration coverage and the number of test 

cases are derived from Qtronic. The test coverage was inspected by analyzing the generated 

test cases and confirming the coverage reported by Qtronic. 

 

The time to implement the test harness procedures is an indication of the work effort 

required to successfully test and communicate with the SUT. However, the time to implement 

the test harness for this experiment also included the time to implement the test execution 

environment in TCL. The two were implemented in parallel, thus the estimated time includes 

both tasks. The lines of code metric for the test suite is provided as an indication of the size of 

the test script generated and defined by Qtronic. The lines of code measures for the test 

harness are provided as an indication of the work effort required for the script implementation 

that has to be done by the tester. Furthermore, the average of lines of code for each test 

harness procedure gives an indication of the work effort required for each procedure to be 

able to test against the SUT. 

 

The experiment and the results are analyzed and evaluated in section 4.2.  
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3.5.2 Experiment 2 

The second experiment used an extended specification (see Appendix C.1.2) compared to the 

initial specification (see Appendix C.1.1). This experiment followed the same methodology 

and process as the first experiment and the introductory example (see section 3.3). However, 

compared to the initial experiment, this experiment made use of existing artifacts: the test 

object, the QML model and the test harness from the first experiment. Furthermore, when 

starting this experiment the test execution environment was implemented (see Experiment 1 

in section 3.5.1).  

Goal 

The goal of this experiment was to add requirements and to extend the specification to see 

how the implication of an extended model propagates through the different tasks involved in 

the Qtronic testing process compared to the initial model.  

Implementation 

When starting this experiment the test object from the first experiment was reused. The 

existing test object was extended according to the added requirements and the new 

specification (see Appendix C.1.2), using the same design pattern as for the initial version. 

Furthermore, the test object in this experiment was extended to handle parameter logic for 

different messages. The parameter logic is described in more detail for the modeling of this 

experiment. 

Modeling 

The QML model of the first experiment was extended according to the new specification (see 

Appendix C.1.2). The PMC top-level state machine was extended with two new states 

(Deposit and Transfer), symbolizing two added functions for the user interface, namely 

account transactions and account deposits. These two states included internal state logic in 

terms of internal state machine, which were defined separately according to the specification 

(see Appendix C.1.2).  

 

When extending the graphical QML model, the top-level state machine was difficult to 

extend, since the state machine only used one final state. All paths, including error handling 

for all states, ended in that final state. Thus, to simplify the top-level state machine more final 

states were introduced. This simplified the drawing within Qtronic Modeler and made the 

model more readable. Final states were introduced for all error handling transitions, both in 

the top-level state machine as well as in the internal state machines. This practice was 

implemented in the internal state machines, although not really necessary, to use the same 

methodology for all state machines. For each state of the model one final state was added to 

handle unexpected errors, such as user entered interruptions and network failures, as well as a 

transition from the state to the final state. Furthermore, for states expecting to receive 

acknowledgements one additional final state was added along with a transition for handling a 

negative acknowledgement. The error handling as modeled in this experiment is illustrated in 

Figure 3.14 below. 
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Figure 3.14: Experiment 2: Error handling 

Figure 3.14 illustrates the introduction of final states for the error handling of each state. In 

this particular state a user entered interruption was not a valid since the deposit already had 

been made and the protocol module was waiting for the server to confirm the deposit.  

 

All state machines except the Authentication state machine required different error 

handling for the states contained in a particular state machine. Since the Authentication state 

machine was the only exception the same error handling methodology (as described and 

exemplified above) was applied to that state machine (compare to initial experiment as 

described in section 3.5.1). Hence the self-transitions used in the initial experiment were 

removed. Instead internal transitions were applied for unexpected events, such as user entered 

interruptions and network failures, as illustrated in Figure 3.14.   

 

Since the model was extended new message types were defined and the system block was 

updated accordingly. All new message types were messages of the user application interface 

of the model since generic network message types already were defined. New class methods 

for the top-level state machine were also defined for the new message types, as discussed in 

Experiment 1 (see section 3.5.1). 

 

Compared to the first experiment, the model of this experiment included message 

parameters, or record data members, such as payload for network messages, card number and 

pin code for messages sent of the user application interface. This is exemplified in the code 

below in the TData record. 
 

record TData { 

public String type; 

public String header; 

public int[] payload; 

} 

 

Compared to the first experiment (see section 3.5.1) the network messages may include 

any number of integer values. This particular message type is defined in this way since it is a 

generic construct that is reused for a significant number of transitions. Hence, the number of 



 57 

data values included in a message varies depending on the header, i.e. what command (for 

outgoing actions) or acknowledgement (incoming events) the message includes. 
 

class PMC extends StateMachine { 

// ... 

public void sendTData(String type, String header, int[] payload){ 

TData r; 

r.type = type; 

r.header = header; 

r.payload = payload; 

netOut.send(r); 

} 

// ... 

} 

 

The QML procedure defined above was used in the graphical notation to send network 

data. The payload, which is an integer array, is initialized in the graphical notation. The 

reason for this design is that the scope of an incoming event in QML only encompasses that 

particular transition string (see Qtronic Modeler in section 3.2.1). In many cases parameters of 

events are passed on to a following action message of that transition.  

 

 

Figure 3.15: Experiment 2: QML transition example 

Figure 3.15 illustrates this logic. In this particular case the event is that the user has 

provided the deposit amount. The provided deposit amount is then included in the network 

request sent to the server, which processes this request. The action uses the class method 

sendTData as defined in the sample code above. The initialization of the payload array could 

have been specified in a class method of the state machine. However, that would have 

resulted in a class method for each transition including payload data since the number of 

event parameters varies. Furthermore, the payload is not set for all transitions and in the case 

when it is not, the payload is initialized to the value null by providing the null value as the 

third parameter to the class method. If the array was not initialized to null in such cases 

Qtronic would still automatically do this during test generation. The reason for the null 

initializations in the model is to use one generic class method, regardless of the payload is 

used or not.  

 

The model of this experiment used transition guards (see section) to control values for 

message parameters during test generation. The transition guard in Figure 3.15 describes that 

the deposit amount has to be equal to or greater than hundred (according to the Swedish 

ATMs and currency) and that the amount has to be of even hundreds. Furthermore, require 

statements in the code were also used to control test generation data, as illustrated in the 

sample code below. 
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public void sendTransactionInfo(int[] payload){ 

require payload!=null; 

require payload.length==2; 

require payload[0]==enteredAccount; 

require payload[1]==enteredAmount; 

 

TransactionInfo r; 

r.account = account; 

r.amount = amount; 

userOut.send(r); 

} 

 

The require statements were used to control the size of the generic payload array and to 

control the value generations for the array. In this particular case a transaction request has 

been acknowledged by the server and the require statements are necessary to ensure that the 

acknowledged transaction information corresponds to the account and amount entered by the 

user. These statements are used to model dependencies between different incoming messages 

(entered account, entered amount and acknowledged transaction).  

Test generation 

As for the first experiment, the test design configuration (see Appendix C.2.1) was set to 

cover requirement statements in the model. In this experiment the requirements were further 

grouped, as specified in Figure 3.15. The requirements, corresponding to events, were now 

not only grouped by which interface the input originated from. At the highest level they were 

still grouped according to which interface they originated from. However, the second level of 

grouping was in which state machine they were specified. In this way it was easier to track the 

requirements and control the test generation for particular parts of the model. 

 

The test generation options used (described in Appendix C.2.2) were set to use only 

finalized runs and a lookahead depth of 2. This value, as in Experiment 1, was set to the 

minimal value which resulting in full coverage i.e. covered all requirement statements in the 

model. 

Test harness implementation 

The test harness implemented for the first experiment was reused initially. However, this 

model included message parameters and payload data. Therefore the signatures for a number 

of harness procedures were different, since data members were added to the appropriate 

message types. Since the test harness procedures are generated from the system block and the 

message definitions, as described in the introductory example (see section 3.3.3), several of 

the procedures generated included additional parameters compared to the test harness of the 

first experiment. Nevertheless, most of the existing test harness procedures were reused with 

small extensions. However, a small number of procedures required more implementation. 
 

proc netInTData { type header payload } { \ 

global sockChan 

set msg "T-Data $type $header" 

if { $payload != "{}" } { 

set l [split $payload ,] 

for {set i 0} {$i < [llength $l]} {incr i} { 

set msg "$msg / [lindex $l $i]" 
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} 

} 

send $sockChan $msg 

} 

 

The sample procedure above is one of the procedures that required more implementation 

compared to the equivalent procedure in the initial experiment (see test harness 

implementation of Experiment 1 in section 3.5.1). The payload array used in the QML model 

was not rendered to a TCL array but to a TCL string. This string had to be parsed to construct 

the format of the data to be sent on the socket channel. The pipe character was used as a 

convention to indicate that data parameters were provided. 

 

Moreover, a few new procedures were generated from this model according to the new 

message types defined in the model. As discussed for the modeling of this experiment, the 

new message types were all defined for the user application interface. 

Test execution 

The initial test execution resulted in a number of failures. As for Experiment 1, the failures 

were either due to mismatches in the comparison between the expected and the actual output 

or to inconsistencies between the model and the test object. The latter failures occurred when 

the number of actions for a given event differed between the test object and the model. This 

resulted in that both the test script and the test object expected to receive messages on the 

socket channel. The errors were corrected with the help of the log file and manual inspection 

of both the model and the code. The log file indicated the last successful execution. Thus it 

indicated where to inspect the model, the test harness and the code of the test object. 

Results 

Table 3.1 below includes the results of this initial experiment. Some results are derived from 

Qtronic and some are indications on the work effort required to for certain tasks in the Qtronic 

testing process. 

 

Modeling time 1 day 

Test generation time 2 min 34 sec 

Test design configuration coverage 100% 

Number of generated test cases 52 

Time to implement test harness 1 hour 

Lines of code: Test suite 6278 

Number of test harness procedures 26 

Lines of code: Test harness 155 

Average: LOC / Harness procedure ~5.96 

Lines of code: Test execution environment 73 

Table 3.2: Results experiment 2 

The modeling time was estimated to be one working day, or 8 hours. The modeling may 

have been performed in a shorter period of time since the model of the first experiment was 

reused. However, while creating the model different design choices within QML were 

evaluated before completing the model. Hence the modeling task required more time.  
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The test generation time, the test design configuration coverage and the number of test 

cases are derived from Qtronic.  

 

The implementation the test harness procedures required about 4 hours of work. Most of 

the time was spent initially before figuring out exactly what the TCL scripting backend 

actually rendered. An example of this is that the scripting backend rendered the QML integer 

array as a string and not as a TCL array.  

 

The experiment and the results are analyzed and evaluated in section 4.3.  
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3.5.3 Experiment 3 

The third experiment used a changed and modified specification (see Appendix C.1.3) 

compared to the specification used in the second experiment (see Appendix C.1.2). This 

experiment followed the same methodology and process as the first two experiments and the 

introductory example (see section 3.3). However, in this experiment the existing specification 

was modified by adding a general biometric authentication, required to complete any account 

requests, which meant that the internal state machines had to be modified. This resulted in the 

desire to apply a QML structure that could be reused in several state machines. 

Goal 

The goal of this experiment was to change the requirements and to modify the specification to 

see how the implication of modifications in the existing model propagates through the 

different tasks involved in the Qtronic testing process compared to the model of the second 

experiment.  

Implementation 

In this experiment the test object from the second experiment was reused. The existing test 

object was modified according to the added requirements and the new specification (see 

Appendix C.1.3), using the same design pattern as for the other two versions of the test object. 

The test object in this experiment required a successful biometric authentication before 

completing account requests.  

Modeling 

The QML model of the second experiment was reused and modified according to the new 

specification (see Appendix C.1.3) to require a successful biometric authentication to 

complete account requests.  

 

This model followed the same design as the model of the second experiment. The top-level 

QML state machine was not modified in either model. However, the internal state machines 

needed to be modified to support the biometric authentication. Since the same logic was used 

for all account requests, namely withdrawal, transactions, deposits and balance requests, the 

aim was to design a reusable structure and not to repeat the same logic in all internal state 

machines.  

 

This was achieved by creating a new and separate QML model, including the biometric 

authentication logic. This model was a simple state machine including only three states (as 

specified in Appendix C.1.3). This state machine was then used in the internal state machines. 

Furthermore, an internal state machine was created for the state Balance (as described in 

Appendix C.1.3) to keep the top-level state machine simple and instead encapsulate the 

biometric authentication in that internal state machine. Thus all main functions of the protocol 

module, namely authentication, withdrawal, transfer, deposit, balance requests and biometric 

authentication, were modeled as internal state machines.  
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Figure 3.16: Experiment 3: Biometric authentication 

Figure 3.16 illustrates the use of the biometric authentication state machine. This figure is a 

screenshot from the internal state machine for balance requests. The procedure in Figure 3.16, 

BiometricAuthentication, starts a new thread of the biometric authentication state machine, 

which is a separate QML model. The procedure, which is defined for the main QML model, 

then waits to receive an internal message from the biometric authentication thread. Thus two 

threads within Qtronic project, namely the instance of the protocol module model and the 

instance of the biometric authentication model, communicate internally. If the received 

internal message indicates successful authentication the execution continues. In the other case 

the balance state machine will go to a final state and then the top-level state machine will 

terminate in the same manner. The same logic applies for the internal state machines for 

withdrawal, transfer and deposit. This is described in more detail in the specification (see 

Appendix C.1.3).  

 

The QML model was designed as the model of the second experiment, including logic 

specified as in the specification, with the modifications as described in this section. A typical 

transition of this model is illustrated in Figure 3.15 (see section 3.5.2), where the payload is 

initialized. Thus this model and the model of the second experiment were largely similar, with 

the exception of the biometric authentication process modeled in this experiment.  

Test generation 

As for the first two experiments, the test design configuration (see Appendix C.2.1) was set to 

cover requirement statements in the model. The requirements in this experiment were grouped 

as described for the second experiment (see section 3.5.2). Since the requirement statements 

were specified based on incoming messages, or events, the requirements were exactly the 

same for the two versions of the model.  

 

The test generation options (described in Appendix C.2.2) were set to use only finalized 

runs and a lookahead depth of 2. This value, as in the first and second experiments, was set to 

the minimal value which resulted in full coverage. 

Test harness implementation 

The test harness reused the entire test harness of the second experiment. However, the 

biometric authentication model rendered two additional procedures corresponding to 

messages for the user application interface (userIn and userOut in the model), which required 

implementation. The messages were request and input of biometric information. 
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Test execution and analysis 

The test execution of this experiment resulted in a small number of failures. These failures 

were caused by errors in the test object and were deadlocks (as discussed for the initial 

experiment). Deadlocks in this context means that the QML model and the test object were 

inconsistent which resulted in an asynchronous communication between the test scripts and 

the test object over the socket channel. The implementation of the test object was missing 

some error handling for the biometric authentication functionality. The errors were detected 

while comparing the QML model and test object implementation. The test harness contained 

no errors since the greater part of the procedures were reused from experiment 2 and hence 

tested in that experiment.  

Results 

Table 3.3 below includes the results of this experiment. Some results are derived from Qtronic 

and some are indications on the work effort required to for certain tasks in the Qtronic testing 

process. 

 

Modeling time 4 hours 

Test generation time 3 min 11 sec 

Test design configuration coverage 100% 

Number of generated test cases 56 

Time to implement test harness 10 min 

Lines of code: Test suite 7540 

Number of test harness procedures 28 

Lines of code: Test harness 165 

Average: LOC / Harness procedure ~5.89 

Lines of code: Test execution environment 73 

Table 3.3: Results experiment 3  

The modeling time of this experiment was estimated to one working day, or about 8 hours. 

The changed requirements (as specified in Appendix C.1.3) did not require much time in 

terms of implementation. However, more time was spent figuring out how to model this 

general functionality (the biometric authentication) that was added to several internal state 

machines (as discussed in the modeling paragraph of this experiment). Hence, most of the 

modeling time was spent on exploring constructs and therefore possibilities of QML.  

 

The time to implement the test harness is estimated to only 10 minutes. All test harness 

procedures of this experiment except two were reused from experiment 2.  

 

The experiment and the results are analyzed and evaluated in section 4.4. 
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3.5.4 Experiment 4 

The fourth and final experiment modified the model of the third experiment, still using the 

same specification (see Appendix C.1.3). This experiment did not follow the same 

methodology as the second and third experiment, in which the specification was extended. 

This experiment used the same specification and the same version of the SUT as the third 

experiment but involved the evaluation of testing the SUT by extracting some logic from the 

QML model and implementing that logic in the test harness. 

Model Development 

The model of this experiment was created using the model of the third experiment (see 

section 3.5.1). The model of the third experiment was modified by removing dependencies 

between parameters of different messages in the model.  

 

In the model of the third experiment parameters of an outgoing message (action) were in a 

number of cases dependent on parameters of the incoming message (event). For example, 

given an incoming message to the protocol module from the user application interface 

indicating an entered withdrawal amount the protocol module sends a network message to the 

server. The parameter of the network message sent to the server is the payload, which in this 

particular scenario includes the withdrawal amount as provided by the parameter for the 

event. These modeled dependencies between incoming messages and outgoing messages were 

removed from the action part of transitions in the model.  

 

Furthermore, the models of the second and third experiments included require statements 

(see section 3.5.2) that were used to describe the dependencies between parameters of 

different incoming messages. An example is the dependency between an incoming message 

on the user application interface indicating an entered withdrawal amount and an incoming 

message on the network interface indicating the acknowledgement of a withdrawal. In this 

case require statements were used for the incoming network message to describe that the 

acknowledged withdrawal amount (included in the payload) had to be the same as the 

withdrawal amount entered by the user. Require statements describing such dependencies 

were also removed from the model. 

 

 

Figure 3.17: Experiment 4: QML model transition 

Comparing Figure 3.17 to Figure 3.15 illustrates the difference between models of this 

experiment and the third experiment. Although removing logic from the model in this 

experiment, the intention was that Qtronic would fulfill the same purposes as for the third 

experiment and generate the same test cases.  The removed logic describing message 

dependencies is further illustrated in the sample code below. 
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public void sendTransactionInfo(){ 

TransactionInfo r; 

userOut.send(r); 

} 

 

This sample code may be compared to the sample code of the second experiment (see 

section 3.5.2). In this model the require statements describing dependencies between user 

entered input and network messages from the server were removed. In this experiment the 

message parameters were still included, but the logic describing the dependencies between 

parameters of different messages was removed. However, the overall logic is the same for 

both models. 

Test generation 

As for the first two experiments, the test design configuration (see Appendix C.2.1) was set to 

cover requirement statements in the model. The requirements in this experiment were grouped 

as described for the third experiment (see section 3.5.3), which is illustrated in Figure 3.17. 

Since the requirement statements were specified based on incoming messages, or events, the 

requirements were exactly the same for the model of this experiment as for the model of the 

third experiment.  

 

The test generation options (described in Appendix C.2.2) were set to use only finalized 

runs and a lookahead depth of 2. This value, as for the previous experiments, was set to the 

minimal value which resulting in full coverage. 

Test harness implementation 

The test harness corresponding to modified QML model required more implementation. Most 

of the procedures were similar to previous implementations, following the same pattern as 

receiving or sending procedures. However, especially generic message types and the 

corresponding test harness procedure required more implementation to describe the logic and 

dependencies between parameters of different messages. The most generic message type was 

TData, which was the message primarily used for the network interface. The two test harness 

procedures, one corresponding receipt of network data and one for sending network data, 

required the most implementation.  
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proc netInTData { type header payload } { \ 

global sockChan 

global amount 

global account 

global balance 

global seed 

 

set data "" 

 

if { $header == "DRAck+" || $header == "DRAck-" } { 

set data "$amount" 

} elseif { $header == "TRAck+" } { 

set data "$account | $amount" 

} elseif { $header == "WRAck+" } { 

set data "$amount" 

} elseif { $header == "Seed" } { 

set data "$seed" 

} 

 

if { $data != "" } { 

set msg "T-Data $type $header / $data " 

} else { 

set msg "T-Data $type $header" 

} 

send $sockChan $msg 

} 

 

This is a sample procedure of test harness in this experiment. This sample procedure may 

be compared to the test harness sample code for the corresponding procedure of the second 

experiment, which was reused in the third experiment (see section 3.5.2). 

Test execution and analysis 

The test execution of this experiment resulted in a small number of failures. The test object 

had been updated in the test execution of the third experiment, thus not containing errors in 

this test execution. The QML model was also not containing any errors. Hence, the errors 

were found in the implementation of the test harness. The failures of this test execution were 

output mismatches, and not deadlocks as for the test execution of the third experiment. The 

output mismatches were indicated in the generated log file and due to differences between the 

expected and actual output format of the SUT. Since the log file indicated that the data values 

of messages and not the message types differed for the expected and the actual output, 

conclusions were made that the test harness contained errors. The errors were then removed 

by inspecting the test harness implementation. 
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Results 

The results of the fourth experiment are summarized in Table 3.4 below. 

 

Modeling time 2 hours 

Test generation time 3 min 6 sec 

Test design configuration coverage 100% 

Number of generated test cases 56 

Time to implement test harness 2 hours 

Lines of code: Test suite 7476 

Number of test harness procedures 28 

Lines of code: Test harness 229 

Average: LOC / Harness procedure ~8.18 

Lines of code: Test execution environment 73 

Table 3.4: Results experiment 4 

When creating the model for this experiment the model of the third experiment was reused 

and slightly simplified. Since the model included a number of state machines it still required 

some time to verify that the changes were correct and still included the same overall 

functionality as the model of the third experiment.  

 

As discussed in the test harness implementation paragraph of this experiment description, 

test harness implementation required significantly more time compared to the third 

experiment. However, many of the procedures were still very similar to the test harness of the 

third experiment and were quickly implemented. A few procedures, corresponding to generic 

message types, required more implementation.  

 

The test generation times, the test design configuration coverage and the number of 

generated test cases for the experiment are all derived from Qtronic. 

 

The experiment and the results are analyzed and evaluated in section 4.5. 
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3.6 Summary 

In this chapter the project work was described. The chapter started by briefly describing the 

purpose of the thesis work, which was to evaluate the concept of MBT by using the MBT tool 

Qtronic and incrementally develop the test object.  

 

Section 3.2 defined and described the test system of the project, including Qtronic, the test 

object (the SUT), the generated and implemented test scripts involved in the test execution as 

well as the test execution environment. The description of Qtronic gave an introduction to the 

tool. This introduction included the fundamental tasks (modeling, test generation, script 

generation) and features (QML, Qtronic Modeler, Qtronic projects) of Qtronic. The test object 

description addressed the SUT of the project, which was a simplified model of the client-side 

protocol module of an ATM client-server system. The test object was implemented according 

to the specifications (see Appendix C.1) and the state design pattern [15] in Java. Qtronic 

generated two TCL scripts of interest: the test suite file and the test harness file. The test suite 

script included all test cases and was completely generated by Qtronic. The test harness 

included procedure declarations in TCL but required implementation by the tester. Finally, 

section 3.2 described the implemented test execution environment, i.e. how the test scripts 

and the SUT communicated. The test execution environment involved both TCL and Java 

socket implementation.   

 

In section 3.3 an introductory example to the project work was given. This example was 

given to describe the way of working and the process involved when testing with Qtronic. 

This example also described how the different tasks were related. The model used in the 

example was a subset of the complete model; hence the generated test cases were still valid 

for the SUT. The example only modeled the functionality for requesting account balance 

information of an ATM. 

 

The last section of the chapter included the four experiments of the thesis. These 

experiments were performed in chronological order, that is, they were based on the 

incremental development of the test object. The initial experiment was to create a simple 

model of the SUT according to the initial specification (see Appendix C.1.1), to successfully 

execute test cases and to verify that the test execution environment worked as intended. The 

goal of the second experiment was to investigate how added requirements and functionality 

propagated through the different tasks of the Qtronic testing process. The goal of the third 

experiment was to investigate the implication of changed requirements in the specification 

and how they propagated through the model. The goal of the fourth and final experiment was 

to investigate the implications of moving logic from the QML model to the test harness. The 

first experiment was compared to the second experiment, the second experiment was 

compared to the third experiment and the third experiment was compared to the fourth 

experiment.  
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4 Results and Evaluation 

This chapter includes the analysis of the four experiments performed as well as the evaluation 

of the project as a whole. The analysis of the project work is a qualitative analysis, including 

each individual experiment as well as the project at large, Qtronic and Qtronic Modeler.  

 

Referring to the discussion of design factors in modelling included in chapter 3, these 

aspects are briefly repeated. Since modelling is the most important and the crucial task of the 

MBT approach the design aspects needs to be emphasized. The design aspects will be a point 

of discussion in the analysis of the experiments. 

 

The chapter includes analysis of each experiment performed in this project. The 

experiments are analyzed individually but also compared to the previous experiment since the 

project was based on incremental development of the test object. The general structure of the 

analysis is based on the working process of the project, thus including model development, 

test generation, test harness implementation, test execution and finally results. This structure 

applies to the analysis of each experiment. The last part of the chapter is a project analysis. 

This analysis is more general compared to the experiment analysis and focuses on the project 

at a higher level. Furthermore, the project analysis includes evaluations of the MBT tool 

Qtronic and the modelling tool Qtronic Modeler. 

4.1 Design Factors in Modeling 

As discussed in section 3.4, design factors are important when modeling and impact on the 

quality of the model. Since the model is the most important artifact in the model-based testing 

(MBT) approach such aspects need to emphasized and discussed. Thus design factors will be 

included in the analysis of the experiments of this project.  

 

The particular design factors that will be discussed in this analysis are readability, 

extendibility and maintainability. The reason for considering readability is the nature of the 

model, meaning that the model has the potential to serve as an effective means of 

communications. This readability is an important design consideration so that testers can 

understand the model and for ensuring that models should be constructed according to 

established design guidelines.  

 

Extendibility is an important design factor since systems often are developed 

incrementally. For complex systems this design factor may be more important than for 

systems resulting in smaller models, but the models should support incremental development. 

Hence it is important to considering the extendibility of the model, since it is very likely that 

the system and consequently the model will be extended.  

 

The third design factor, maintainability is also an important design factor. As systems are 

developed incrementally and evolved through time, maintenance is often an important and 

obligatory part of projects. Complex systems often include a great deal of maintenance, thus 

maintainability is an important consideration when designing models for testing.  
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4.2 Experiment 1 

As described in section 3.5.1, the goal of the initial experiment was to apply MBT to an 

existing test object and to execute the rendered and implemented test scripts against that test 

object (the SUT). To achieve this goal the different tasks in the Qtronic testing process needed 

to be successfully completed. The main tasks included the creation of a QML model, the test 

harness implementation and the test execution environment implementation. The 

implementation of the test execution environment was only a task of this initial experiment. 

When analyzing this experiment it is important to consider the learning phase of applying 

Qtronic for performing MBT, primarily including creation of the QML model and the test 

harness implementation.  

 

Measures Experiment 1 

Modeling time 2 days 

Test generation time 13 seconds 

Test design configuration coverage 100% 

Number of generated test cases 25 

Time to implement test harness 2 days 

Lines of code: Test suite 2860 

Number of test harness procedures 18 

Lines of code: Test harness 99 

Average: LOC / Harness procedure 5.5 

Lines of code: Test execution environment 73 

Table 4.1: Results experiment 1 

The analysis in this experiment focuses on the learning phase (“Modeling time” + “Time to 

implement test harness”) when applying MBT using Qtronic.  

4.2.1 Model Development 

The first testing phase of the thesis work was to create a QML model corresponding to the 

initial test object (implemented using the specification in Appendix C.1.1). The creation of the 

first Qtronic project and the first QML model implied a learning phase in terms of the QML 

textual notation, the QML graphical notation, design practices as well as tool specific 

features.  

Basic system 

The QML model of this experiment was created using the initial specification (see Appendix 

C.1.1), as described in the experiment description (see section 3.5.1). The specification was a 

UML diagram (see Appendix C.1.1) and did not include error handling. Hence the first 

version of the model depicted the basic system without error handling. The modeling of the 

basic system was a straightforward task since the specification was a UML diagram and the 

Qtronic Modeler made use of UML notation. Hence, the UML diagrams and the QML model 

were initially very similar, although the transition logic of the QML model was defined using 

a greater level of detail. One state in the UML diagram resulted in one state in the QML 

model. The modeling of the basic system was therefore completed in a relatively short period 

of time (about 2 hours - a part of the time given under “Modeling time” above i.e. 2 days). 
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At this point design factors such as readability, extendibility and maintainability were 

considered when modeling. The functionality of the protocol module was encapsulated and 

grouped (using internal state machines as described in section 3.5.1). The goal was to group 

states, or functionality, to create two hierarchies of the model to simplify the top-level state 

machine and increase the level of abstraction. For example, all states in the authentication 

process of an ATM request were grouped in a separate state machine. The model consisted of 

the top-level state machine and two internal state machines, namely Authentication and 

Withdrawal. The reason for introducing these internal state machines was different design 

factors, namely readability, extendibility and maintainability of the model. By encapsulating 

logic within separate state machines, bound to states of the top-level state machine (i.e. 

internal state machines), readability was enhanced since the model at this point included 

several smaller state machines instead of one state machine containing all the logic. For 

example, when inspecting the withdrawal process there was no need to know specific details 

of the authentication process, just that authentication was required for a withdrawal request. 

However, the balance functionality was not encapsulated in a state machine since it only 

included one state specific for that request. 

 

Moreover, the encapsulation had implications for extendibility of the model since one 

added function (user entered ATM request) to the protocol module would require only one 

additional state in the top-level state machine as well as a new distinct state machine bound to 

the new state (internal logic of the new state). Hence, extended or changed requirements 

would require small adjustments in the top-level state machine of the model. The focus in 

such cases would be on the design of the state machine describing the internal state logic (i.e. 

internal state machines), thus yielding a higher level of abstraction. The task of creating the 

basic system was straightforward since only basic structures of the QML textual notation 

(procedures) and the graphical notation (transitions and states) were used.   

Error handling 

The next step of the modeling task was to add error handling for the protocol module. The 

encapsulation of logic described for the basic system had implications for the error handling 

in the model. The error handling in terms of negative acknowledgements had to be modeled at 

a state-level since they were specific for particular states. However, other error messages were 

general for most states. When the error handling first was added to the model the number of 

transitions from each state increased significantly, having an impact on readability and 

expandability. This was partially an issue with the drawing tool (Qtronic Modeler) but also 

with the design in general. The issues and experiences of Qtronic Modeler are discussed in the 

project analysis (see section 4.7.3). 

 

The model of this experiment included two primary encapsulations of functionality, 

namely for withdrawal and authentication (as described in section 3.5.1). The states of the 

authentication process required the same error handling. Thus, the error handling for the 

authentication process was applied at a higher level and in a uniform way, which simplified 

the authentication state machine. However, the states encapsulated within the withdrawal state 

machine required different error handling. Hence the error handling had to be handled at a 

state-level within that particular state machine. The encapsulation for withdrawal could have 

omitted some states to achieve the same solution as for the authentication process. However, 

this would have been done in contrast to the design factors as previously discussed and only 

in an effort to simplify error handling and only to decrease the number of transitions 

connected with error handling (see section 3.5.1 for a detailed discussion regarding the error 
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handling solution). Hence the error handling was handled at a state-level within the 

withdrawal state machine. 

 

The modeling of the error handling required more time than the creation of the basic 

system. When error handling was added to the basic system the number of transitions 

increased significantly. Therefore the Qtronic User Manual [8] was consulted to find a 

suitable solution for decreasing the number of transitions, thus impacting readability and 

extendibility. Investigating the QML structures, thereby applying and test them, required 

more time.  

4.2.2 Test generation 

The test generation was based on the requirement statements, as stated in section 3.5.1. The 

requirements were stated for all incoming messages, both from the user application interface 

and the network interface. In this way they were grouped by interface which became a useful 

property for test generation and test execution when errors were analyzed.  

 

The other test design configuration parameters (see Appendix C.2.1) were not tested 

systematically. The reason for this was that a systematic approach of evaluating test 

generation times and the test design configuration parameters were not the purpose and goal 

of the experiment or the project. However, when exploring the options and features in Qtronic 

the different parameters were used for test generation to see how they worked. Requirements 

were chosen for simplicity as well as for tracking the relationship between the generated test 

cases and the events of the system.  

 

A particular difficulty was encountered during the test generation. The error handling for 

the authentication state machine was handled in a uniform way. However, the test generation 

only included one test case for each error (user entered interruption and network failure) of 

this state machine. For example, interruption was only tested for one of the states (the initial 

state) within the internal state machine. This was not an important issue, but it was desired to 

generate all possible inputs for every state of the SUT.  

 

It was later learned that this could have been achieved by using a different test design 

configuration, namely dynamic coverage and all paths-states (see Appendix C.2.1), which 

aims at covering every sequence of states. The result was that the errors mentioned were not 

tested for all states within the authentication process but only for one state. Specifically, user 

entered interruption and network failure were only tested for the initial state of the 

Authentication state machine Using the alternative test generation parameter resulted in six 

additional test cases since the Authentication state machine included four states and each state 

included two possible errors, while one state already was covered in the initial test generation.  

4.2.3 Test harness and test execution environment implementation 

When the QML model was completed the next task was to execute the test cases against the 

SUT. The test harness implementation however required a test execution environment, i.e. a 

means of sending input and retrieving output from the SUT. After discussions with the 

Conformiq instructor it was decided to use a socket channel to achieve this, where the SUT 

acted as a socket server. General procedures for sending and receiving data over the socket 

were implemented both for the SUT and for the test scripts in TCL. The most important 

consideration was to ensure that the communication was synchronized (assuming a correct 
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model and SUT). The sending procedures simply sent data to the socket channel while the 

receiving procedures waited until something was written to the socket channel.  

 

When the test execution environment was implemented and tested, the test harness 

implementation was straight-forward. All messages modeled as incoming in the model 

became sending test harness procedures and correspondingly all messages modeled as 

outgoing messages became receiving test harness procedures. The test harness procedures 

only included implementation for the socket communication. This is illustrated in the sample 

code below.  

 
proc userInAmountInput { } { \ 

global sockChan 

set msg "Amount input" 

send $sockChan $msg 

}  

 

The log functionality and the verdict functionality (see section 3.2.4), i.e. comparing 

expected and actual output, were implemented for the general sending and receiving 

procedures. Thus the challenge of this task was to define and implement the test execution 

environment. If such an execution environment had been in place and defined from the start 

the task of implementing the test harness would have been a small and straightforward task.  

 

The initial expectation was that the test harness would be a reflection of the system block 

(section 3.3.1) and the message definitions of the model as well as the test execution 

environment. After selecting the test execution environment the expectation was that the test 

harness procedures would simply send or expecting to receive strings on the socket channel 

based on the procedure name (as illustrated in the sample code above). The expectations about 

the test harness implementation were fulfilled, and all the test harness procedures either sent 

or received data on the socket channel.   

4.2.4 Test execution 

Given the implemented log functionality, where all input, expected output and actual output 

was written to a log file, the test execution analysis was not a challenging task. Depending on 

the error indicated in the log file different measures were taken. In the simple case the failures 

were due to errors in terms of string mismatches. In the worst case the errors were due to 

deadlocks, i.e. the model and the SUT were not consistent which resulted in both the SUT and 

the test script expecting to receive data on the socket channel. A common error at first was 

that a transition was missing in the test object. However, the log file indicated the failing 

events and thus indicating where to inspect both in the model and the SUT implementation.  

 

The test execution and the generated log file were what would be expected when 

performing black-box testing, including input, expected output and actual output. The 

expected output was not explicitly generated, as may have been expected, but was implicitly 

known within each receiving test harness procedure along with potential parameters of that 

procedure. The expectation from reading about MBT was that this was completely automated 

from the model. However, the solution, or implicit generation, of expected output from using 

Qtronic was sufficient. In this way it is up to the tester to handle this information. The 

implication is that the implementation of the expected output in the test harness depends on 

the abstraction level of the model.  
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4.2.5 Results and conclusions: experiment 1 

The results of this experiment are given in Table 4.1 (see section 4.2). 

 

The initial expectation for this experiment was that the modeling would be the most time-

consuming task. However, since no test execution environment was in place this was an 

equally time-consuming task. The modeling of this experiment was the first time the theory 

from the Qtronic course was applied to this project. Hence completing the model required 

more time than expected. This was due to the learning phase and the time required for 

investigating the structures and possibilities within QML. Primarily, modeling the error 

handling required the most time and included considerations regarding design factors (as 

discussed in section 4.2.1). 

 

The expectation for the test generation was that full test design configuration coverage 

would be reached since the model was fairly small and this expectation was fulfilled. With 

regard to the test generation time and the number of generated test cases there was no 

expectation. However, the test generation time (13 seconds) and the lines of code for the test 

suite (2860) illustrate the advantage of MBT, even though approximately one working week 

in total was required to successfully execute the test cases. Considering one estimated 

working week, or five working days, to complete this experiment the learning time is 

estimated as four days. The reason for the estimation of the learning time is that both the main 

part of the modeling time (two working days) and the main part of the test harness 

implementation time (two working days) were required for learning.  

 

The test harness and the test execution environment implementation required more thought 

and reading than actual implementation. The thinking required was primarily to define the test 

execution environment and how the SUT and the test scripts would communicate. This is 

indicated by the test harness implementation time (two working days), which included the 

design of the test execution environment, along with the lines of code for the test harness (99 

lines of code) and the test execution environment (73 lines of code). Prior knowledge and 

experience of socket communication within TCL would have resulted in a significantly 

shorter period of time for implementing the test harness.  

 

The test scripts generated from Qtronic fulfilled the expectations in terms of the test suite 

(including the test cases), which was completely rendered and defined by Qtronic. For the test 

harness implementation it was hard to have any expectations. Nevertheless, the test harness 

implicitly included oracle information, which was the expected output generated from the 

model. This was expected as a feature of MBT, even though when using Qtronic it is up to the 

tester to make use of this information. The oracle information is implicit in the regard that it is 

known within receiving test harness procedures, which are generated from messages on 

outgoing (outbound) interfaces as modeled in the QML model. The message structure as such, 

which is the base of the test harness procedure name, and the message record data members 

(parameters of the generated test harness procedure) constitute the oracle information. How 

this information is used is a task of the tester. The reason for this being a task of the tester is 

flexibility considerations and to support of existing test execution environments within 

organizations using Qtronic.  

 

The goal of the experiment was achieved since test cases were successfully executed on the 

SUT while assigning a pass/fail verdict for each test case. To summarize, the initial 

experiment included a learning phase since this was the first experiment where Qtronic and 

MBT were applied. This experiment also included defining the test execution environment. 
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Hence this experiment required more time to complete (approximately one working week), 

compared to the subsequent experiments. The conclusions of the initial experiment are listed 

below: 

 

• Design factors are to be considered when creating QML models. 

• Modeling the basic system was straightforward while modeling the error handling 

required more time in terms of evaluating structures and possibilities within QML. 

• Most of the test harness implementation time was spent on defining the test 

execution environment. 

• Given a test execution environment the test harness implementation was 

straightforward, where all procedures either are sending input or retrieving output 

from the SUT. 

• The tester is responsible for implementing oracle functionality in the test harness 

(i.e. to compare expected and actual SUT output) and thereby also assigning 

pass/fail verdicts to each test case. 

• The initial experiment required approximately one working week and resulted in 25 

test cases (defined by 2860 lines of code). 

• Most of the time for the initial experiment was learning time (estimated as four 

working days), primarily required for the creating the QML model and for 

implementing the test execution environment. 

• Encountered test execution failures were either string mismatches (for expected and 

actual output) or deadlocks (model and SUT not consistent). 

 

The goal of the experiment was reached since generated test cases were successfully 

executed against the SUT and each test case was assigned a pass/fail verdict. 
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4.3 Experiment 2 

The second experiment included added requirements and an extended specification. The goal 

of this experiment was to see how the implication of an extended model propagated through 

the different tasks involved in the Qtronic testing process. The test execution environment 

was not an issue in this experiment since it was defined and implemented in the initial 

experiment. The primary focus of the analysis of this experiment was on the model 

development and the test harness development, and to compare the work of this experiment to 

the work of the initial experiment.  

 

Measures Experiment 1 Experiment 2 

Modeling time 2 days 1 day 

Test generation time 13 seconds 2 min 34 sec 

Test design configuration coverage 100% 100% 

Number of generated test cases 25 52 

Time to implement test harness 2 days 1 hour 

Lines of code: Test suite 2860 6278 

Number of test harness procedures 18 26 

Lines of code: Test harness 99 155 

Average: LOC / Harness procedure 5.5 ~5.96 

Lines of code: Test execution environment 73 73 

Table 4.2: Results experiment 1 and experiment 2 

The primary focus of the analysis of this experiment is on the modeling and the test 

harness implementation. Furthermore, the work of this experiment is compared to the work of 

the initial experiment since the model used in this experiment was based on the one of the 

initial experiment.  

4.3.1 Model Development 

The model development of this experiment (described in section 3.5.2) reused the resulting 

model of the initial experiment. The modeling task included the design of new features, 

extending the specification (see Appendix C.1.2) and to extend the QML model. Two new 

features were designed, namely account deposit and account transaction, while considering 

design factors as discussed in the analysis of the initial experiment. The deposit feature 

involved the user depositing money into the account associated with the card. The transaction 

feature involved the transfer of money from the card holder’s account to another account 

(entered by the card holder). The analysis of this experiment primarily focuses on the model 

development and the test harness development, including comparisons with the initial 

experiment.  

Basic system 

The model of this experiment was created using the model of the initial experiment and the 

second version of the specification (see Appendix C.1.2). The second version of the 

specification was defined prior to the creation of the QML model. The details of the modeling 

task are described and discussed in the experiment description (see section 3.5.2). The 

existing model (from the initial experiment) was structured to encapsulate functionality of the 

protocol module, namely for the authentication process and the withdrawal process. That is, 
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functionality as described in the initial specification (see Appendix C.1.1) was encapsulated 

and described as internal state logic of the top-level state machine (using internal state 

machines for the Authentication and Withdrawal states).  

 

Using the extended specification (see Appendix C.1.2) the existing QML model was 

extended to support the new basic functionality (as described in the specification), excluding 

error handling. The extension included two added states (Deposit and Transfer) to the top-

level state machine as well as defining internal state machines associated with these two 

states. As discussed in the analysis of the initial experiment (see section 4.1), design factors 

(readability, extendibility and maintainability) were considered when modeling. The 

modeling practices were outlined in the initial experiment and the QML model of this 

experiment followed the same practices. Given the experiences and the knowledge gained 

during the first experiment this extension was completed in a short period of time, now being 

familiar with Qtronic Modeler and QML. 

 

The modeling of the basic functionality added in this experiment was straight-forward. The 

design of the model was outlined in the first experiment, thus the extensions modeled in this 

experiment followed the same structure. The goal of the modeling task was still to create a 

module structure and to encapsulate behavior of the model to aid readability, extendibility and 

maintainability. This experiment did not require the same learning phase as the first 

experiment. Although knowledge about features and structures of QML still required to be 

learned when modeling the existing model was well-structured and sufficient. The same 

modeling methodology would have been applied given the new experiences and lessons 

learned.   

 

The extension of the QML model also included the introduction of data members for 

message types, such as card number for the message of an inserted card, as described in the 

experiment description (see section 3.5.2). Adding the data members to the record definitions 

was completed quickly. However, modeling the dependencies between the parameters of 

incoming messages and the parameters of the outgoing messages in the graphical notation 

required more time. For example, the action following the event of entering a withdrawal 

amount is a network message sent to the server. This network message includes the 

withdrawal amount as a part of the withdrawal process. This was not a challenging modeling 

task but it required some time to inspect the model to verify that the dependencies were 

correctly depicted.  

 

The expectations regarding modeling the basic system of this experiment was that it would 

require small changes to the existing model. It was expected that the transition definitions 

needed to be modified to support message parameters as well as extending the message 

definitions. Furthermore, it was expected that most of the modeling time would be spent on 

defining the new state machines for account deposits and account transactions.  

 

These expectations were met. The design of the model was outlined in the initial 

experiment, thus it was a straight-forward task to extend the QML model according to the 

new requirements. The extension of the top-level state machine required small changes since 

only two states were added. The creation of the two new state machines was straight-forward 

since they were constructed using the same structure and methodology as the existing state 

machines. Creating these two state machines required approximately two hours, including 

time to inspect and time to test the model. Extending the model to support message 

parameters required some time, primarily to inspect and verify the dependencies between 
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messages. This part of the modeling task was completed approximately within one hour 

(compared to the total modeling time of approximately one working day), since this extension 

applied to the complete model (i.e. all state machines).  

Error handling 

The extended model at this point included error handling for the functionality modeled in the 

initial experiment. Error handling for the new features of the protocol module needed to be 

added. As discussed in the experiment description (see section 3.5.2), more final states were 

added for the error handling in this experiment. For each state of the model one final state was 

added, with a transition from the state to the corresponding new final state. These transitions, 

for the new final states, handled unexpected events, such as user entered interruptions and 

network failures. For each state expecting acknowledgements from the server one additional 

final state was added, with a transition describing the receipt and actions in the event of a 

negative acknowledgement. This methodology was first applied to the top-level state machine 

but later also for the state machines bound to states in the top-level state machine to use the 

same methodology in all state machines. This included modifying the error handling of the 

authentication state and its internal state machine, which was handled in a uniform way in the 

initial experiment.  

 

This modeling practice solved the problem of having many transitions ending in the same 

final state, as discussed in the experiment description (see section 3.5.2). The solution 

enhanced the readability of the model, both in the top-level state machine and in the state 

machines used to describe internal state logic, since the basic system and the error handling 

were separated. The path through the basic system ended in one final state whereas the error 

handling used separate final states, in contrast to the methodology used in the initial 

experiment (where all transitions, including the basic system and the error handling, ended in 

the same final state).  

 

The initial expectation was that the error handling would use the methodology of the initial 

experiment and not be a time-consuming task. However, issues regarding the readability of 

the top-level state machine were quickly encountered. The idea of introducing more final 

states in the model was then adopted and was applied to all state machines. The restructuring 

of the error handling for all state machines required approximately the same time as the 

modeling of the basic system. The time to modify the model for this purpose was estimated to 

about half a working day, or about four hours.  

4.3.2 Test generation 

The test generation of this experiment was based on requirement statements, as stated in the 

experiment description (see section 3.5.2). As discussed for the test generation analysis of the 

initial experiment (see section 4.2.2), the purpose of the project work was not to evaluate test 

design configuration parameters systematically. Thus requirements were chosen for 

simplicity. Moreover, since the requirement statements were structured and grouped as 

described in the experiment description (see section 3.5.2), this made it easier to track the 

relationship between the generated test cases and the requirements in the model. These 

relationships were summarized in the traceability matrix (see Appendix B.3 for an example). 

The requirements were stated in the model based on events (incoming messages to the 

system) of the model. Thus, all requirements corresponded to system input, as modeled. 
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Compared to the initial experiment, the requirements were further grouped. At the highest 

level they were grouped by which interface they originated from (user application interface or 

network interface). At the next level they were grouped according to which state machine (i.e. 

authentication, withdrawal, balance, deposit, transaction or top-level) they were used in. This 

second level of grouping was useful for only generating test cases for a particular 

functionality of the model, since the test design configuration could be set to cover all 

requirements, groups of requirements or individual requirements.  

 

The problem of not generating test cases for error events of all states within the 

authentication state machine, as described in the test generation analysis of the initial 

experiment (see section 4.2.2), did not apply to this experiment. The error handling of that 

state machine was restructured to use the same methodology for error handling as the other 

state machines in this experiment (stated in the model development analysis, see section 

4.3.1).  

4.3.3 Test harness implementation 

In this section the test harness implementation of this experiment is compared to that of the 

initial experiment. The test harness implementation of this experiment made use of the 

existing implementation from the initial experiment. An important consideration for the 

comparison between the test harness of this experiment and the initial experiment was that 

message parameters were added in this experiment. Consequently such parameters had to be 

handled in the test harness. For most of the procedures the implementation only required 

small modifications. This is illustrated in the sample code below.  

 
proc userInAmountInput { money } { \ 

global sockChan 

set msg "Amount input / $money" 

send $sockChan $msg 

}  

 

This sample code may be compared to sample code included in the test harness analysis of 

the initial experiment (see section 4.2.3). The difference in this experiment is that procedure 

includes the money parameter. That was the only modification to the procedure as defined for 

the initial experiment. The other test harness procedures common for the two experiments 

were modified in the same way. 

 

The script rendering of this experiment resulted in a test harness file including 8 additional 

TCL procedures compared to the initial experiment. These 8 procedures were rendered 

according to new message types defined in the system block of the extended model and all 8 

procedures corresponded to modeled messages of the user application interface. The new test 

harness procedures followed the same structure as illustrated for the modified existing 

procedures.  

 

However, the procedures corresponding to network messages that carried data required 

more modification. The sample procedure below is the procedure used for sending network 

data to the SUT of the initial experiment.  

 

 

 

 



 80 

proc netInTData { type header } { \ 

global sockChan 

set msg "T-Data $type $header" 

send $sockChan $msg 

} 

 

In the initial experiment message parameters, other than for describing the message type, 

were omitted. The corresponding procedure of this experiment is illustrated in the sample 

code below. 

 
proc netInTData { type header payload } { \ 

global sockChan 

set msg "T-Data $type $header" 

if { $payload != "{}" } { 

set l [split $payload ,] 

for {set i 0} {$i < [llength $l]} {incr i} { 

set msg "$msg / [lindex $l $i]" 

} 

} 

send $sockChan $msg 

} 

 

Since message parameters were added to the model in this experiment this affected the test 

harness implementation, which required modifications for this purpose. The expectation was 

that the existing test harness procedures (from the initial experiment) would not require any 

modification other than for the added message parameters. Furthermore, a second expectation 

was that the new procedures of this experiment, corresponding to the new message types of 

the extended model, would need to be implemented following the same structure as the reused 

procedures.  

 

The expectations on the test harness of this experiment were fulfilled. The extended model 

comprised new functionality, including account deposits and account transactions. The model 

was also extended to include message parameters, such as the entered integer withdrawal 

amount. Taking only the new functionality of the protocol module into account, and not the 

introduction of the message parameters, no modifications were required to the test harness of 

the initial experiment and hence the original test harness could be reused. All test harness 

procedures implemented in the initial experiment were reused, although a few new procedures 

corresponding to the new functionality of this experiment required implementation. However, 

the message parameters added to the model in this experiment required small modifications to 

use the procedure parameters. The test harness of this experiment required the implementation 

of the 8 new procedures generated from the new message types, as expected. However that 

implementation was straightforward since the new procedures followed the same structure as 

the existing ones.   

4.3.4 Test execution 

Specific for the test execution of this experiment compared to the initial experiment was that 

the SUT input and the SUT output, as well as the expected output, included message 

parameters. Thus a new type of failure occurred, caused by errors in the SUT implementation 

for parameter dependencies between messages, namely for the parameters of SUT input and 

the parameters of the following SUT output. Ultimately these failures were detected as string 

mismatches between actual and expected output in the log file. 
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As discussed in the in the test execution analysis of the initial experiment (see section 

4.2.4), the test execution what was could be expected when performing black-box testing. The 

generated log file included all input, expected output and actual output of the SUT. This 

information was sufficient for evaluating the test cases, and the comparison between expected 

and actual output was performed in the test scripts and mismatches were indicated in the log 

file. Thus pass/fail verdicts was applied to all test cases in the test suite, indicating which test 

case to inspect if failures occurred.  

4.3.5 Results and conclusions: experiment 2 

The results of this experiment and the results of the initial experiment are given in Table 4.2 

(see section 4.3). 

 

The expectation for the modeling task of this experiment was that the extended model, 

according to the added requirements, would use the design and structure of the existing 

model. Furthermore, the expectation was that the focus of the modeling task would be on 

creating the two new state machines for the new functionality of the protocol module.  

 

The modeling of the basic system (system behavior excluding error handling) was as 

expected a straightforward task, given the design outlined in the initial experiment. However, 

considering design factors when modeling the error handling for the extended basic system 

issues were encountered, primarily regarding readability (see the experiment description in 

section 3.5.2 and model development analysis in section 4.3.1). Thus the error handling of the 

complete model (i.e. all state machines) was restructured to separate the error handling from 

the basic system. Since the error handling was restructured the modeling task of this 

experiment was more time-consuming than expected. 

 

The modeling time was estimated to one working day. A significant amount of this time 

was used for restructuring the error handling of the model, which was not expected before 

starting this experiment. However, the modeling time of this experiment was still significantly 

less than for the initial experiment, which required approximately two working days. Hence 

the expectation that the modeling of this experiment would require less time than the 

modeling of the first experiment was fulfilled.  

 

The test generation resulted in full test design configuration coverage, as was expected 

since the model still was fairly small although the number of possible paths through the model 

was increased. The test generation time differed significantly for this experiment compared to 

the initial experiment, increasing from 13 seconds to 2 minutes and 34 seconds (see Table 

4.2). The test generation time was expected to increase since the model was extended, but 

there were no expectations regarding as to what extent. The number of test cases increased 

from 25 of the initial experiment to 52 test cases for this experiment. This was a consequence 

of the extended model, including the basic system and the error handling for the added 

functionality.  

 

Since the number of test cases was roughly twice as many for this experiment compared to 

the initial experiment, the lines of code for the test suite was expected to increase by a similar 

factor. The test suite file of this experiment included 6278 lines of code, which was relatively 

close to a factor of two (the test suite of the initial experiment resulted in 2860 lines of code). 

The lines of code were also affected by the introduced message parameters since they 

required initializations in each test case of the test suite.  
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The number of test harness procedures and the lines of code of the test harness are 

provided as indications of the work effort and implementation required to successfully 

execute test cases on the SUT. However, most of the procedures implemented in the first 

experiment were reused. All the 99 lines of code from the initial experiment were reused, 

although roughly one line of code per reused test harness procedure was slightly modified to 

support message parameters. Other than the small modifications, the test harness only 

required implementation for the 8 new procedures corresponding to the extended system 

block of the model. Moreover, the test execution environment implemented in the initial 

experiment did not require any further implementation and was completely reused. The total 

time of the test harness modifications and implementation was estimated to be one hour.  

 

The goal of this experiment was to add requirements and extend to specification compared 

to the initial experiment to evaluate how the implications of an extended model propagates 

through the different tasks involved in the Qtronic testing process. This goal was achieved 

since the implications of the extended model were shown in the test generation, the test 

harness implementation and ultimately in the test execution. Hence, the relationship between 

added behavior in the model and required test harness implementation could be evaluated and 

discussed. 

 

To summarize, the second experiment reused the artifacts of the initial experiment and 

extended the specification. This experiment still included a learning phase, although not as 

significant as for the initial experiment. The conclusions of the second experiment are listed 

below: 

 

• Extending QML model, given design including internal state machines, 

straightforward since no existing behavior modified. 

• Error handling restructured to separate basic system and error handling. 

• Modeling required more time than expected to restructure error handling. 

• Extended model resulted in a significantly increased number of generated test cases 

compared to the initial experiment. 

• Extended specification and QML model resulted in implementation of 8 new test 

harness procedures, corresponding to the extended functionality. All procedures 

from the initial experiment were reused. 

• Modified QML model (supporting message parameters) resulted in that roughly 

one line of code per test harness procedure was slightly modified. 

• Test harness implementation required little time (one hour) since most of the test 

harness implementation of the initial experiment was reused. 

• Implementation of the test harness confirmed that the procedures are only 

dependent on the system block of the model and the defined message types 

(records). 

• Test execution resulted in the same type of failures as the test execution of the first 

experiment (output mismatches or deadlocks). 

 

The goal of the experiment was reached since the relationship between the extended QML 

model, the generated test cases and the test harness implementation could be evaluated 

compared to the corresponding artifacts of the initial experiment. 
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4.4 Experiment 3 

The third experiment included changed requirements and a modified specification (defined in 

Appendix C.1.3) compared with the specification of the second experiment (defined in 

Appendix C.1.3). The goal of this experiment was to introduce new requirements for the 

authentication and to modify the specification to see how the implication of modifications in 

the existing model propagated through the different tasks in the Qtronic testing process. The 

new requirements were that a biometric authentication was obligatory for carrying out 

account requests (account withdrawal, account balance, account deposit and account 

transaction). These new requirements also resulted in the goal to create a reusable QML 

structure that could be applied to all these different account request processes. The focus of 

the analysis of this experiment is on the model development and the test harness 

implementation, and to compare the work of this experiment to the work of the second 

experiment. Furthermore, the analysis also focuses on the goal of creating a reusable QML 

structure that could be applied and used in several state machines. 

 

Measures Experiment 2 Experiment 3 

Modeling time 1 day 4 hours 

Test generation time 2 min 34 sec 3 min 11 sec 

Test design configuration coverage 100% 100% 

Number of generated test cases 52 56 

Time to implement test harness 1 hour 10 min 

Lines of code: Test suite 6278 7540 

Number of test harness procedures 26 28 

Lines of code: Test harness 155 165 

Average: LOC / Harness procedure ~5.96 ~5.89 

Lines of code: Test execution environment 73 73 

Table 4.3: Results experiment 2 and experiment 3 

The primary focus of the analysis of this experiment is on the model development and the 

test harness development, and to compare the work of this experiment to the work of the 

second experiment. 

4.4.1 Model Development 

The QML model of this experiment was created using the QML model of the second 

experiment and the modified specification (defined in Appendix C.1.3). The new 

requirements for authentication did not apply to the general authentication process already 

modeled (using an internal state machine). The new requirement was a biometric 

authentication for completing account requests and was defined to be performed before an 

account request was carried out by the server. For example, the biometric authentication was 

defined to be performed after entering a withdrawal amount but before the withdrawal was 

performed. Thus the biometric authentication needed to be modeled inside the state machines 

describing account request logic (i.e. internal state machines for withdrawal, balance, deposit 

and transfer). Hence the goal was to apply a reusable QML structure, i.e. to define the 

biometric authentication state machine and to reuse it within the four state machines instead 

of repeating the same logic for all state machines.  
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Basic system 

The primary goal of the modeling task was to apply a reusable QML structure so that modeled 

behavior could be used in several QML state machines. The solution was to create a new and 

separate QML model, including a state machine for the biometric authentication logic. This 

model was a simple state machine including only three states (defined according to the 

specification in Appendix C.1.3). The biometric authentication state machine was then used in 

the state machines for withdrawal, balance, deposit and transaction requests, as illustrated in 

the experiment description (see section 3.5.3). The balance functionality of the protocol 

module, only including one state, was in this experiment modeled as an internal state machine 

to apply the same methodology for all account requests.  

 

The use of the biometric authentication state machine was synchronized so that it had to be 

completed for the state machines to continue their execution (see details of the 

synchronization in section 3.5.3).  Through this solution the top-level state machine required 

no modification. The internal state machines only required one added QML code block as an 

entry action of one state for each state machine. Thus the existing logic within the internal 

state machines was not altered.  

 

The solution was a good way of using general logic in different state machines instead of 

repeating this logic, only requiring simple synchronization in the existing state machines. 

Before starting to extend the QML model for this experiment the expectation was that QML 

would support the reuse of general logic, although not knowing how to achieve this. Most of 

the modeling time of this experiment was spent on reading the Qtronic User Manual to find a 

solution. However, the solution was outlined through email conversation with the Conformiq 

instructor that helped creating the initial QML model. Once knowing that a separate QML 

model could be used in the existing QML model the modeling task was fairly straightforward 

and not time-consuming. Most of the modeling time was spent on synchronizing the use of 

the new QML model (including the biometric authentication state machine).  

 

The structuring of biometric authentication process was a result of considering design 

factors, primarily extendibility. The new QML model, including a state machine, could be 

reused in any state machine thus illustrating an advantage in terms of extendibility. Moreover, 

the solution was also an advantaged in terms of readability and maintainability since the 

abstraction level of the new requirements in the model was increased and would only required 

modification of that particular state machine. Thus the expectation that QML would support a 

structure for the reuse of behavior was fulfilled. 

Error handling 

As stated for the basic system, the existing logic in the QML model, as defined in the second 

experiment (see experiment description in section 3.5.2 and model development analysis in 

section 4.3.1), required no modification. This applied to the error handling as well. However, 

error handling for the acknowledgement of the biometric authentication was required for each 

state machine using the biometric authentication state machine. This error handling was added 

for the state including the code block starting the biometric authentication state machine. 

Hence, a total of four error handling transitions were added to the model compared to the 

second experiment. The only other error handling modeled for this experiment was within the 

new biometric authentication state machine, using the same methodology as described for the 

second experiment.   

 



 85 

The expectation for the error handling, given the solution using a separate QML model and 

only considering the QML model of the second experiment, was that only error handling for 

the synchronization of the new state machine was required. This expectation was fulfilled and 

the modeling of the error handling of this experiment was straightforward given the structure 

outlined for the existing state machines.  

4.4.2 Test generation 

The test generation of this experiment was, as for the previous experiments (see sections 3.5.1 

and 3.5.2), based on requirements stated in the model. As discussed in the test generation of 

the experiment description and as in the test generation analysis of the second experiment, 

requirements were grouped by interface at the highest level and by state machine at the 

second level. A new group of requirements were added at the second level in this experiment, 

namely for the biometric authentication state machine, and these requirements were stated in 

that state machine.  

 

The test generation of this experiment resulted in 56 generated tests. That was only 4 

additional test cases compared the second experiment. The reason for this was that the 

biometric authentication process was obligatory for all account requests. Thus only adding the 

basic system for this state machine would have resulted in the same number of generated test 

cases for this experiment as for the second experiment. The reason for the 4 additional test 

cases was that the biometric authentication process only could fail in particular scenario 

(mismatching biometric information in server comparison). Since the biometric authentication 

process was applied for the four possible account requests (i.e. internal state machines) this 

error could occur for each of these four state machines, thus resulting in four additional test 

cases.  

 

However, the amount of interaction (i.e. number of incoming and outgoing messages) 

increased for each test case including the biometric authentication. The additional sequences 

of messages were a result of the incoming and outgoing messages of the biometric 

authentication state machine.  

4.4.3 Test harness implementation 

The fact that the QML model of this experiment used a separate QML model for the biometric 

authentication process was not visible at the test harness level, as expected. The script 

rendering resulted in a test harness that included two new procedures compared to the test 

harness of the second experiment (compare experiment results in Table 4.3). These two 

procedures were rendered as a result of the extended system block in the model of this 

experiment. The procedures corresponded to messages for the user application interface used 

in the biometric authentication state machine.  

 

Since this experiment only modified the internal state machines to use the QML model for 

the biometric authentication and to handle the negative acknowledgement of the biometric 

authentication, the existing test harness implementation from the second experiment (see 

section 3.5.2) was reused completely. The only test harness implementation required in this 

experiment was for the two new procedures, which followed the same structure as the existing 

procedures. Thus the test harness implementation task of this experiment was trivial task and 

was completed in 10 minutes. 
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4.4.4 Test execution 

The test execution of this experiment did not result in any new experiences and conclusions 

compared to the test execution task of the second experiment. The difference was that the test 

cases of the test suite in general included more interactions between the SUT and the test 

scripts. This was a consequence of the biometric authentication added to the model in this 

experiment.  

 

The test execution resulted in pass/fail verdicts for each test case. The generated test 

execution log file, as in the second experiment, included message parameters for the SUT 

input, the SUT output and the expected output. The initial test execution of this experiment 

resulted in failures for all test cases including the biometric authentication. This was due to 

that the use of the biometric authentication (included in the new QML model) was not 

synchronized for the state machines defining account requests (i.e. withdrawal, balance, 

deposit and transfer). Hence, the model was inspected and the error was found. The error in 

the model was a misuse of a Boolean data member used for the synchronization. The error 

was corrected and no further failures were detected during test execution. 

4.4.5 Results and conclusions: experiment 3 

The results of this experiment are given in Table 4.3 (see section 4.4).  

 

The expectation of the modeling task in this experiment was that QML would support a 

structure for reusing general logic in several state machines. When starting the modeling task 

of this experiment, the Qtronic User Manual was read to find a suitable solution for this 

purpose. Hence, there was initially no expectation regarding the modeling time. However, 

when the solution was found, through email conversation with the Conformiq instructor, the 

expectation was that the modeling of this structure and the small modifications to the existing 

model would be completed in a short period. The solution only regarded one simple QML 

model (including a state machine) and the use of this new QML model in the existing model.  

 

The modeling time of this experiment was estimated to a total of 4 hours, including the 

time reading the Qtronic User Manual in the search for a solution. The modeling time of this 

experiment was hence significantly less than the modeling task for the second experiment, 

which required approximately one working day. The resulting model of this experiment was a 

good solution considering design factors. By using a separate QML model for the added 

general functionality the abstraction level of the complete model was increased. The 

readability model was intact since the existing state machines only required small and specific 

modifications in order to use the new QML model. The solution was also good practice for 

extendibility and maintainability since behavior could be encapsulated in separate QML 

models and reused in several state machines.  

  

As for the previous experiments the test generation resulted in full test design 

configuration coverage. This was expected since the model still was fairly small. The test 

generation time was increased since the model was extended. The test generation of this 

experiment was completed in 3 minutes and 11 seconds, compared to 2 minutes and 34 

seconds for the second experiment. The number of test cases increased from 52 for the second 

experiment to 56 of this experiment. These 4 additional test cases included the error handling 

for the use of biometric authentication state machine. The other 52 test cases were similar to 

the test cases generated in the second experiment, with the difference that most of the test 

cases of this experiment included biometric authentication.  
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The rendered test suite file included 7540 lines of code, compared to 6278 for the second 

experiment. The reason for the increased number of lines of code was that the test cases of 

this test generation generally included more interaction (i.e. SUT input and expected output) 

as a result of the biometric authentication.  

 

The number of test harness procedures and the lines of code for the test harness are 

provided as indications of the work effort required to successfully execute test cases on the 

SUT. The test harness of the second experiment was reused without modifications in this 

experiment. Only two test harness procedures required implementation (as discussed in 

section 4.4.3). This is illustrated by the test harness implementation time, which was 

estimated to 10 minutes for this experiment. The lines of code for the test suite (7540) 

considering the modeling time (estimated to 4 hours) and the test harness implementation 

time (estimated to 10 minutes) illustrates the gain of MBT. 

 

The goal of this experiment was to change the authentication requirements and to modify 

the specification to evaluate how the implication of how modified requirements in the model 

propagated through the task involved in the Qtronic testing process. Furthermore, the goal of 

this experiment was to model a structure that could be reused in any number of state 

machines. Both these goals were achieved, although related, since the changed requirements 

of this experiment were encapsulated in a reusable structure.  

 

To summarize, the third experiment reused the artifacts of the second experiment and 

modified the specification. The modification of the specification included a required 

biometric authentication for all account requests. The conclusions of the third experiment are 

listed below: 

 

• Discovered a reusable structure within QML where a separate QML model was 

used within the existing QML model, thus encapsulating logic which could be 

reused in any number of state machines. 

• Result of the solution using a separate QML model was that the existing model 

only required little new logic to support the new general logic. 

• Most of the modeling was spent on finding a solution within QML to reuse logic in 

several state machines. 

• The modeling solution was good considering design factors (extendibility and 

maintainability), where logic is encapsulated in different QML models and hence 

may be tested separately. Thus also supported reusability.  

• Modeling solution resulted in increased level of abstraction. 

• Small increase for number of test cases and test generation time. 

• Complete test harness of the second experiment reused. 

• Test harness implementation only included two new procedures corresponding to 

messages within the biometric authentication process. 

• Test harness only dependent on system block and message types, hence not 

affected by changes of the behavior (i.e. transitions). 

• Test execution resulted in the same type of failures as the first two experiments, 

namely output mismatches and deadlocks. 

 

The goal of the experiment was reached since the relationship between the modified QML 

model, the generated test cases and the test harness implementation could be evaluated 

compared to the corresponding artifacts of the second experiment. 
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4.5 Experiment 4 

The fourth and final experiment included the new requirements (biometric authentication) and 

was based on the same specification (see Appendix C.1.3) as defined in the third experiment 

(see section 3.5.3). The goal of this experiment was to evaluate the implications of moving 

logic from the model to the test harness, while still testing the same version of the SUT as in 

the third experiment.  

 

Measures Experiment 3 Experiment 4 

Modeling time 4 hours 2 hours 

Test generation time 3 min 11 sec 3 min 6 sec 

Test design configuration coverage 100% 100% 

Number of generated test cases 56 56 

Time to implement test harness 10 min 2 hours 

Lines of code: Test suite 7540 7476 

Number of test harness procedures 28 28 

Lines of code: Test harness 165 229 

Average: LOC / Harness procedure ~5.89 ~8.18 

Lines of code: Test execution environment 73 73 

Table 4.4: Results experiment 3 and experiment 4 

The primary focus of the analysis of this experiment is on the abstraction level of the 

model and consequently on the test harness implementation. Furthermore, the analysis will 

compare the work of this experiment to the work of the third experiment since they were 

based on the same specification and used the same version of the SUT. 

4.5.1 Model Development 

The QML model of this experiment was created using the QML model of the third 

experiment. Since the goal was to evaluate the implications of moving logic from the model 

to the test harness the model development of this experiment included removing logic from 

the model of the third experiment.  

 

The testing goal of the experiment was still to achieve the same amount of testing as in the 

third experiment, since the same version of the SUT was used, but in a different way. An 

important consideration for this experiment was also that the test generation should include 

the same message sequences (of incoming and outgoing messages) and the corresponding 

parameter values as generated by Qtronic for the third experiment. Hence no significant 

modifications to the structure of the model could be made, such as modifying event and action 

messages or modifying message types. Thus a part of the experiment was to evaluate what 

logic of the existing model that could be removed and implemented in the test harness.  

 

The only logic that could be removed from the model was the dependencies between 

message parameters. That is, in the model of the third experiment parameters of an outgoing 

message (action) are in a number of cases dependent on parameters of the incoming message 

(event). For example, given an incoming message to the protocol module from the user 

application interface indicating an entered withdrawal amount the protocol module sends a 

network message to the server. The parameter of the network message sent to the server is the 
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payload, which in this particular scenario includes the withdrawal amount as provided by the 

parameter for the event. These modeled dependencies between events and actions were 

removed from the action part of transitions in the model.  

 

Furthermore, the model of the second and third experiment included code blocks (require 

statements) that were used to describe the dependencies between parameters of different 

incoming messages (see section 3.5.4). An example is the dependency between an incoming 

message on the user application interface indicating an entered withdrawal amount and an 

incoming message on the network interface indicating the acknowledgement of a withdrawal. 

In this case a transition guard was used for the incoming network message to describe that the 

acknowledged withdrawal amount had to be the same as the withdrawal amount entered by 

the user. Require statements describing such dependencies were also removed from the 

model. 

 

To summarize, the basic system and the error handling as defined in the third experiment 

were intact and not modified in this experiment. The logic removed from the model described 

dependencies between parameters of an incoming message and the parameters of the 

following outgoing message as well as dependencies between parameters of different 

incoming messages.  

 

The expectation regarding the modeling time required to remove the modeled 

dependencies was that this would be an easy task to complete and require little time. This was 

true but the modeling task required time to inspect the new model for verifying that all 

modeled dependencies were removed and to verify that no other logic was removed.  

4.5.2 Test generation 

The model modified in this experiment was very similar to the model of the third experiment 

since only specific action logic for a number of transitions were removed. Hence the test 

generation was very similar to the test generation of the third experiment (see section 4.4.2).  

 

The test generation was based on requirements stated in the model, as for the previous 

experiments. The requirements of this model were exactly the same as for the model of the 

third experiment. Thus experiments were grouped by interface at the highest level and by 

state machine at the second level.  

 

The test generation of this experiment resulted in 56 generated test cases, as expected. The 

number of test cases was expected since the same amount of test cases was generated in the 

third experiment. The modifications of the model in this experiment did not include any 

modifications for the requirement statements. Hence the same amount of test cases was 

expected.  

4.5.3 Test harness implementation 

The test harness of the third experiment was reused in the test harness implementation of this 

experiment. Since logic describing dependencies between message parameters was removed 

from the model this logic had to be implemented in the test harness. 

 

As illustrated in the experiment description (see section 3.5.4) this logic was implemented 

by using global variables in the TCL implementation of the test harness. These global 

variables were always set in test harness procedures sending input to the SUT (corresponding 
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to incoming message in the model). The reason for this was that the model only included 

transition guards (see Qtronic Modeler in section 3.2.1) for incoming messages to control 

parameter values in the test generation. Most of the test harness procedures receiving SUT 

output and defining expected SUT output (corresponding to outgoing messages in the model) 

used global variables in their definitions. The reason for this was that the parameters of the 

outgoing messages often were dependent on the parameters of the incoming messages, as 

discussed in the model development analysis of this experiment. However, one test harness 

procedure sending input to the SUT also used the global variables in its definition. This was 

the procedure for sending network data to the SUT (illustrated in the test harness sample code 

in the experiment description). The reason for this procedure using a number of global 

variables was to implement the logic for dependencies between parameters of different 

incoming messages to the SUT, as discussed in the model development analysis. 

 

The expectation for the test harness implementation of this experiment was that it would 

require some implementation for describing the dependencies between message parameters. 

Since these dependencies were implemented using global variables the task was expected to 

require a significant amount of time. However, the test harness implementation was 

completed within two hours, including time to correct errors discovered during test execution. 

The completed test harness included 229 lines of code, compared to the 165 lines of code 

reused from the third experiment. Some procedures required almost no modifications whereas 

others were required to be completely re-implemented. An example of the latter is the test 

harness sample code in the experiment description (see section 3.5.4).  

4.5.4 Test execution 

As for the third experiment, the test execution of this experiment did not result in any new 

experiences and conclusions compared to the test execution task of the second experiment.  

 

Compared to the third experiment, the test execution task of this experiment was very 

similar since the same version of the SUT was tested. The difference was that failures due to 

errors in the dependencies between parameters of different messages were more difficult to 

detect by inspection. The reason for this being difficult to detect by inspection was that those 

dependencies were defined in the test harness in this experiment, and not in the model as in 

the third experiment. The log file was particularly useful for the analysis of this experiment 

since the errors could be traced back to the first occurrence of particular parameter value. 

4.5.5 Results and conclusions: experiment 4 

The results of this experiment are given in Table 4.4 (see section 4.5).  

 

The model development of this experiment used the model of the third experiment. The 

goal was to remove logic from the model and to implement this logic in the test harness, while 

still testing the same SUT version as in the third experiment. The conclusion from analyzing 

the model of the third experiment was that the only logic that could be removed was the 

dependencies between parameters of different messages in model (see section 4.5.1 for a more 

detailed discussion regarding the removal of logic).  

 

The expectation on the modeling task in this experiment was that it would be an easy task 

to remove the modeled dependencies between parameters of different messages. Thus the 

modeling task was expected to be completed within an hour. However, time was required to 

inspect the new model to verify that all modeled dependencies were removed and that no 
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transition guards used to manipulate the parameter values in the test generation was removed. 

The modeling time, including this inspection, was estimated to a total of two hours.  

 

The test generation resulted in full test design configuration coverage and the generated 

test cases were almost identical to the test cases of the third experiment. The difference was 

that the test cases of the third experiment included and described the parameter dependencies 

between different messages. The test generation time of this experiment was 3 minutes and 7 

seconds, compared to 3 minutes and 11 seconds for the third experiment.  

 

The rendered test suite file included 7476 lines of code, compared to 7540 for the third 

experiment. There was no significant difference in the lines of code for these two 

experiments, as expected. The few additional lines of code in the test suite of the third 

experiment defined the parameter dependencies. The difference of 64 lines of code spread 

across 56 test cases.  

 

The test harness implementation time was expected in the region between two and four 

hours. This task was estimated to have been completed in two hours. The numbers of test 

harness procedures are the same for this experiment as for the third experiment since they 

both model the same system behavior. However, since parameter dependencies were 

implemented in the test harness of this experiment the lines of code for the test harness 

increased significantly compared to the third experiment. The test harness of this experiment 

included 229 lines of code, whereas the test harness of the third experiment included 165 lines 

of code. The test execution resulted in a number of failures due to errors in implementation 

for the parameter dependencies, as expected. However, using the log file these errors were 

corrected. 

 

The conclusion of this experiment is that logic may be removed from the model and 

implemented in the test harness, while still successfully testing the SUT. Hence the goal of 

this experiment was achieved. However, implementing system behavior in the logic is not a 

good practice. The model used for MBT should, if possible, depict the complete system 

behavior required to test the SUT. This only illustrated that it is possible to successfully test 

the SUT by implementing system behavior in the test harness. 

 

To summarize, the fourth and final experiment reused the artifacts of the third experiment, 

including the specification and the SUT. Logic from the QML model of the third experiment 

was removed and instead implemented in the test harness. The conclusions of the fourth 

experiment are listed below: 

 

• Only logic describing dependencies between parameters of different messages 

could be removed from the QML model, given that the same features of Qtronic 

would be used and that this experiment would test the same SUT version as in the 

third experiment. 

• The same number of test cases was generated as for the third experiment, with the 

difference that the test cases did not include mentioned dependencies. 

• There was no significant difference between the generated test suites compared to 

the test suite of the third experiment.  

• The test harness primarily required more implementation (compared to the test 

harness of the third experiment) for the procedures corresponding to the generic 

network messages. 
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• The test harness required global data members to implement the parameter 

dependencies.  

• The test execution of this experiment resulted in significantly more failures that 

were due to errors in the test harness, compared to the previous experiments. 

• The errors resulting in test execution failures were more difficult to detect in this 

experiment since the errors occurred in the test harness implementation. 

• The goal of this experiment was reached since it was shown that logic removed 

from the QML model could be implemented in the test harness while still 

successfully testing the same version of the SUT (as in the third experiment). 

• Implementing logic in the test harness deviates from the purpose of MBT, which 

aims at including all logic in the model and to generate test cases from that model. 
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4.6 Summary of Experiment Results 

This project comprised four experiments. The first, the second and the third experiment 

involved incremental development of the SUT and modifications to the specification. The 

initial experiment was based on the initial specification, which included withdrawal and 

balance requests. In the second experiment the specification was extended to include deposit 

requests and transaction requests. The third experiment included a modified specification to 

require a successful biometric authentication to complete all account requests. The fourth 

experiment evaluated the possibility of moving logic from the QML model to the test harness 

implementation, while using the same version of the specification and the same version of the 

SUT as for the third experiment. The results of the experiments are given in Table 4.5 below. 

 

Table 4.5: Results summary 

Table 4.5 includes the results of the four experiments. Test generation time, test design 

configuration coverage and the number of generated test cases are derived from Qtronic. 

Modeling time and test harness implementation time were estimated during the work. 

Measures of the test scripts were taken after completing the experiments.  

Measures Exp 1 Exp 2 Exp 3 Exp 4 

Modeling time 2 days 1 day 4 hours 2 hours 

Test generation time 13 seconds 2 min 34 s 3 min 11 s 3 min 6 s 

Test design configuration coverage 100% 100% 100% 100% 

Number of generated test cases 25 52 56 56 

Time to implement test harness 2 days 1 hour 10 min 2 hours 

LOC: Test suite 2860 6278 7540 7476 

Number of test harness procedures 18 26 28 28 

LOC: Test harness 99 155 165 229 

Average: LOC / Harness procedure 5.5 ~5.96 ~5.89 ~8.18 

LOC: Test execution environment 73 73 73 73 
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4.7 Project Analysis 

In this section the general project work will be analyzed as well as the MBT tool Qtronic and 

its separate modeling tool, Qtronic Modeler.  

4.7.1 Project work 

The general goal of this project was to evaluate the concept of MBT. This goal included a 

theoretical part, including a pre-study, and an experimental part. The experimental part of the 

project was a feasibility study of MBT. The goal of the feasibility study was to apply the 

concept of MBT by using a specific tool (Qtronic) to successfully execute tests on an existing 

test object.  

 

The pre-study of the project initially included a study of the MBT concept, which was an 

important task to understand its background and its scope. Furthermore, it was important to 

review reported results and findings from the testing community since MBT is a new concept 

within software testing. The pre-study resulted in basic knowledge about the process, the 

benefits and the limitations of the MBT approach. A second part of the pre-study included the 

goal to learn a MBT tool to be used in the feasibility study, namely Qtronic. Before having 

access to Qtronic its user manual [8] was used to gain basic knowledge about the features and 

settings. The learning phase of applying Qtronic started with an introductory course, held by 

instructors from Conformiq, the company developing the tool. When the course was finished 

two goals of the project were fulfilled, namely to learn the concept of MBT and to learn to use 

a MBT tool. After the course the feasibility study of the project begun.    

 

The feasibility study of the project included four experiments. Furthermore, the study 

included a number of general goals, which applied to each of the experiments. The first goal 

was to implement a test object according to the specification. The next goal, after 

implementing the test object, was to develop a model of the test object according to the 

specification and subsequently generate test cases from that model. The generated test cases 

were then rendered to an executable format. The next goal of the process was to develop the 

test execution environment between the test scripts and the test object in order to execute the 

test cases. The implementation of the test execution environment was an initial effort and the 

implementation was reused throughout the project. Another goal was to implement the glue 

code, or the test harness. The test harness implementation used the defined test execution 

environment and this implementation task was repeated for each version of the model. The 

last two goals of the process were to execute the tests and to evaluate the results.  

 

The goals of the feasibility study were repeated for each experiment, since the study 

included incremental development. All four experiments were successfully completed, i.e. all 

versions of the test object were successfully tested. Thus the general goals of the feasibility 

study of the project were fulfilled since all sub-goals were necessary to successfully execute 

the generated test cases. Although the complexity of the test object was fairly small the 

incremental development throughout the experiments resulted in different experiences and 

findings for each experiment. By incrementally developing the test object the relationship 

between the model and the test harness could be investigated, which resulted in a better 

understanding of how the different tasks in the Qtronic testing process were related.  
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The main problem of the feasibility study was that the Qtronic course was held fairly late 

in the project. However, the Qtronic license was received a week in advance so there was 

some time to get familiar with the tool prior to the course. The fact that the course was held 

fairly late in the project resulted in a limited time for the experiments of the feasibility study. 

Thus the feasibility study did not cover all planned goals regarding Qtronic, such as to 

evaluate all different types of test generation criteria in the tool. Instead one particular test 

generation criteria was used in all four experiments. An early problem in the feasibility study 

was that since the project included development of the test object, no test execution 

environment was in place when the first model was completed. This required some time to 

define and would not have been a problem if one had existed at the start of the project. The 

particular problem regarded synchronization of the communication between the test scripts 

and the test object when executing test cases. However, when the problem was solved the 

solution was reused throughout the project and did not cause any further problems. The 

largest problem throughout the project work was the learning phase of the modeling task. 

Throughout the project work new modeling features were encountered. Thus it was a tradeoff 

between reconstructing the model, which implicated more of the already limited time, or to 

proceed with the existing model although better solutions were discovered. Due to the limited 

time frame the model was only reconstructed when necessary. However, newly discovered 

modeling features were applied if the model was extended. The modeling problem of the 

feasibility study was hence primarily due to the learning phase, as may have been expected. 

Therefore an important conclusion of this project is that modeling experience is crucial when 

adopting MBT in projects involving complex systems. In this project, the modeling task was 

the most challenging task whereas the test harness implementation was very similar for each 

experiment and followed the same pattern.  

 

As mentioned, the modeling task is the most crucial part in the MBT process. If adopting 

MBT in the organization at Tieto, experience will be important. Furthermore, the design of 

the model will be important. Since the model is the most important artifact of the MBT 

approach the quality of the model will be important, especially for larger and more complex 

systems. The model increases the abstraction level of the testing process and may thus be used 

as a more effective means of communications between testers, compared to the now used, and 

manually written, test scripts. The model may be reused for any number of test generations 

and may possibly be valid for a long time. Moreover, a model of a complex system may 

involve a large number of testers, or even system developers. Thus a good design of the 

model is important. The design of the model may also affect test generation times for complex 

systems, which may be an important factor. However, this thesis has shown that parts of a 

system may be modeled and consequently tested. Hence, if systems tend to be too large and 

complex to model parts of the system may be modeled and tested.  

 

A test object of small complexity was a benefit in some aspects. The relationship between 

the different tasks in the Qtronic testing process was easier to track than what would have 

been the case for a significantly more complex system. Hence a change in the model, which 

propagated to the test harness level, was easier to track and thus aided the understanding of 

the Qtronic testing process. Furthermore, if a significantly more complex system had been 

used the modeling time would have increased significantly. The goal and purpose of this 

project was a feasibility study, i.e. to prove the concept and to document experiences. A more 

complex system would have required a lot more time to create a working model and less time 

to experiment with the model and the test object. Much of the effort in that case would have 

been required only to successfully test the test object and it would have been hard to find time 

to manipulate the test object and the model due to the limited time frame. A project including 
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a more complex system would have produced results more applicable to projects within 

Tieto’s organization, in terms of modeling time, test generation time and test harness 

implementation time. However, in such a project much of the time would have been spent on 

the initial model since the project included a learning phase. Nevertheless, the experiments of 

this project gave indications of what tasks that are time consuming and indications of the gain 

when adopting MBT.  

 

The scalability of this project is difficult to approximate. Regarding the two perhaps most 

important results, the modeling time and the test generation time, the results of this project are 

not applicable to projects at Tieto. Such results and indications must come from the 

experience of adopting MBT in the projects. Adopting MBT in such projects would also 

include a learning phase, thus the complete potential gain is unlikely to be seen immediately. 

The experience of this project showed that a complete system may be modeled and tested, but 

also that parts of a system may be modeled, depending on the testing goals. A significantly 

more complex system, compared to the test object in this project, may result in significantly 

larger test generation times. One of Tieto’s customers has reported test generation times of 

approximately two days. Such test generation times may be inevitable, but an experience of 

this project is that parts of the system may be modeled. Thus the model would be simplified 

and ultimately result in smaller test generation times than modeling the complete system.  

 

The experiences and results of this project indicate that MBT is worth the effort. Although 

a relatively small test object was used the results of each experiment illustrate the gain of 

MBT. The MBT process as described in this thesis includes some implementation, but in 

comparison to manually written test scripts little implementation effort is required. The MBT 

approach to testing increases the abstraction level of the tester, thus requiring different skills 

compared to a scripting-based testing approach. The focus was on the modeling task rather 

than the implementation task, even though some implementation was required. The test 

harness implementation task of the Qtronic testing process was in this thesis straight-forward 

when the test execution environment was set up. The modeling task included a learning phase 

in all experiments of this project, thus more time were required, but still produced a large 

number of test cases. Moreover, a working and correct model does not require change and 

may be used in a number of test generations. By simply changing the test generation criteria 

all kinds of test cases may be generated and the result is sets of test cases, generated 

dependent on the testing goals.  

4.7.2 Qtronic 

Qtronic was the MBT tool used in this thesis. Before the Qtronic course was attended (as 

stated in section 3.2.1) the tool had been installed and examples shipped with the tool had 

been reviewed. Thus the main features of the tool were known prior to the course. Testing the 

tool prior to attending the course was useful since the examples resulted in questions and 

basic knowledge of the tool features. Given the basic knowledge it was easier to focus on 

details and specific questions during the course. 

 

As expected, the main task of using Qtronic is the modeling. For this purpose QML is 

used, which is an object-oriented language based on Java, although the standard library of 

QML is very limited compared to the standard library of Java. The QML models may be 

expressed entirely in textual notation or together with graphical notation. The graphical 

notation of QML models is defined using a separate tool, Qtronic Modeler (see section 4.7.3 

for analysis).  
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Figure 4.1: Qtronic2 Client 

Qtronic Projects 

The first step when testing with Qtronic was to create a project. A new project included a test 

design configuration and a model folder. Graphical and textual QML files were then added to 

that folder or to some created folder. Hence one or more folders were used to structure the 

model files of a project. Moreover, model files may be linked between different folders if 

necessary, to support reusability. For example, if the model is a client-server architecture, two 

separate folders may be created for the client and for the server. A general folder containing 

links to the client and the server files, along with a system definition, may then be used define 

how the two interact. Hence, the conclusion is that Qtronic supports a good way of organizing 

and structuring models.  

Test Design Configurations 

Test design configurations (see Appendix C.2.1 for parameters) may include one or more 

scripter plugins for rendering the generated abstract test cases to an executable format. Each 

Qtronic project had at least one test design configuration, to which the generated test cases 

were bound. The test design configuration parameters supported test generation criteria such 

as different types of state chart coverage, control flow, boundary value analysis and 

equivalence class partitioning (see Appendix C.2.1 for complete list and details). In this 

project another test design configuration parameter was used for test generation, namely 

requirement statements. They are explicitly stated and named in either in the graphical or 
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textual model files. The goal was to cover all paths of the model and this goal could have 

been achieved by using state chart coverage parameters.  However, requirement statements 

were chosen because of traceability. The requirement statements were grouped by interface of 

the model and by state machine and were stated for each transition on the form: 

<interface>/<state machine>/<event>. Thus they provided a mechanism to control test 

generation, where the test generation could focus on particular state machines, as well as a 

mechanism to trace the relationship between test cases and covered events in the model. As 

expected, Qtronic provided a wide range of test configuration parameters, although not all of 

them were used and explored in this project. The conclusion is that Qtronic supports the test 

generation criteria that could be expected, although not all parameters were evaluated in this 

project. 

Test Generation Options 

The third information of Qtronic projects, other than test design configurations and model 

files, were the test generation options. In contrast to the test design configuration these 

options are global for the project and across different test design configurations. An example 

of such a project option is the lookahead depth, or the search depth (see Appendix C.2.2 for 

details of these options). The algorithmic options, global for each Qtronic project, defined 

heuristics used in the test generation, i.e. how test cases are generated. Another useful test 

generation option was the only finalized runs option. This setting ensured that only test cases 

ending in a final state, i.e. complete paths through the model were generated. The conclusion 

regarding the test generation options is that they provide a good mechanism for controlling 

the test generation, depending on the structure and the complexity of the model. 

Test Generation 

Qtronic uses a client-server architecture, where the client user interface is an Eclipse-plugin or 

a stand-alone version. The server component, Qtronic Computation Server, may be run 

locally or remotely. The computation server is used for test generation and performs the 

calculations. In this thesis the computation server was set up locally. The test generation 

started by loading the model files to the computation server and once a test design 

configuration was defined the test generation was performed. The expectation was that the 

test generation status would be shown, since test generations may require a significant amount 

of time. This expectation was fulfilled since the console window reports the current coverage 

(according to the specified test design configuration) and also reports the approximated time 

left. However, the reported estimations of the test generation time was rarely accurate. 

Qtronic also provided a view, the Model Profiler, to track the test generation. This view 

included information about the test generation, such as which part of the model required the 

most time. This information was updated continuously during test generation and in the cases 

where the model contained errors, which were not discovered during the model parsing, this 

information was helpful discovering such errors. The conclusion of the test generation is that 

Qtronic provides sufficient information for the test generation although the estimated time left 

should not be trusted. Furthermore the Model Profiler view is helpful to discover errors in the 

model that result in unexpectedly large test generation times.  

Script Generation 

As known prior to the Qtronic course, the tool generated abstract test cases. These abstract 

test cases were then rendered to an executable format, which in this project were TCL scripts. 

Qtronic includes scripter plugins for TCL, TTCN-3 and Perl but also provides the possibility 



 99 

of defining own scripter plugins. The TCL scripter plugin generated a test suite file, including 

the test cases, as well as a test harness. The test harness included empty procedures, which 

required implementation. The procedures of the test harness were used to define the test cases 

of the test suite. Each test harness procedure corresponded to a message type on a particular 

interface, as defined in the QML model. Thus the procedures were either sending input to or 

receiving output from the SUT, and the implementation made use of the defined test 

execution environment. The receiving procedures of the test harness constituted the oracle 

information, i.e. contained the expected output of the SUT. Thus, when receiving the SUT 

output it could be compared against the expected output and indicating mismatches. In this 

way each test case was assigned a pass/fail verdict, although the verdict functionality had to 

be implemented manually. The expectation of the script generation was that the test suite 

script would be affected by changing the flow of the model whereas the test harness script 

would only be affected by changes in the system block, i.e. defined message types of each 

interface. This expectation was fulfilled, thus most of the test harness was reused throughout 

the project. The conclusion of the script generation is that the test harness implementation is a 

straightforward task, given a test execution environment, and provides sufficient means to 

implement verdict functionality, i.e. oracle information, and that the test suite script is 

completely generated by Qtronic (the test suite script implementation is based on the test 

harness procedures). 

Qtronic Views 

Qtronic included a number of views. Except for the coverage editor (defining the test design 

configuration settings) and the console, where the progress of the test generation was shown, 

most views were related to inspecting the generated test cases. A traceability matrix view 

illustrated the relationship between coverage settings (i.e. test design configuration 

parameters) and the individual test cases. This view was very useful when the number of 

generated test cases increased and particular test cases were inspected. The generated test 

cases, bound to a particular test design configuration, were listed in a separate view. In this 

view a particular test case could be chosen for inspection. The test case view illustrated the 

interaction between the tester (Qtronic or the test scripts) and the SUT for a given test case. 

The view displayed the interactions as input and expected output from the SUT in terms of a 

sequence diagram. A similar view, the test step view, displayed further details about a 

particular test case. In this view message parameters could be inspected. Moreover, Qtronic 

provided an execution trace view that links a particular test case back to model from which it 

was generated (as a sequence of states in the state machine). This link is also illustrated in a 

graphical representation of the model. The conclusion regarding the Qtronic views is that they 

collectively provide a sufficient support for test generation result analysis.  

4.7.3 Qtronic Modeler 

Qtronic Modeler is a tool for creating graphical models (UML) within QML, shipped with 

Qtronic. The QML graphical notation, created using Qtronic Modeler, was used for 

describing finite state machines along with the QML textual notation. Creating state machines 

in the QML graphical notation defines the state machine execution logic, which otherwise has 

to be defined in the textual notation. The very minimum of textual notation is a QML class 

corresponding to the graphically defined state machine and a system block describing the 

interfaces and possible messages of each interface. Graphical state machines in QML consist 

of states and transitions, as well as initial and final states. A state machine may also include 

an internal state machine, which is bound to a particular state. Furthermore, as illustrated in 

this project, it is possible to make use of a separate QML model by starting a state machine in 
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the textual notation, thus also including logic from synchronizing the logic within the model 

using a separate QML model. The transition logic of a state machine is described using 

transition strings. The transitions strings consist of triggers, guards and actions, although none 

is required.  

 

Qtronic Modeler is a simple drawing tool. The project showed that the tool provides 

sufficient means for defining finite state machine logic, where the basis was the graphical 

notation which made use of the textual notation and class methods. The Qtronic User Manual 

[8] includes descriptions of QML and discusses differences compared to Java. However, the 

user manual does not include a complete description and an API (Application Programming 

Interface), but rather discusses the basic features in detail. An API would have been really 

useful instead of reading descriptions, which in some cases were not clear.  

 

 

Figure 4.2: Qtronic Modeler 

Qtronic Modeler was a simple drawing tool and not the most accurate tool for drawing 

state machines, especially not for transitions. The tool provided sufficient means for drawing 

states and transitions along with other features (such as internal transitions). However, when 

the number of transitions increased it was harder to keep a well-structured layout and 

graphical representation. For example, the placement of the transition strings was an issue. 

When the code blocks of the transitions strings increased in size and the number of transitions 

increased the solution was to move states and transitions further apart, which required one to 

zoom in and out as well as scroll horizontally and vertically within the tool. Given a large 

model this may have been expected, but not for this relatively simple model. The conclusion 
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regarding Qtronic Modeler is that it is a sufficient tool for describing state machine logic, but 

not an optimal tool. The conclusion regarding QML is that it included features that could be 

expected by an object oriented language, but that the Qtronic User Manual could have been 

more precise and included an API, although the standard library of QML is very limited to the 

standard library of Java.  
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5 Conclusion 

In this thesis the concept of model-based testing (MBT) has been evaluated and tested in a 

case study and four experiments. In this chapter the principal goals are repeated and the 

corresponding results of the project discussed. Furthermore, this chapter includes suggestions 

of subjects for future work.  

5.1 Results 

The general goal of this thesis work was to evaluate the concept of MBT. This general goal 

included applying the concept by using a tool suited for this purpose on an existing test object 

and to successfully execute the tests. This was done by developing a model for a system and 

then gradually increased the complexity. During the study the process required to successfully 

execute tests was evaluated in terms of the concept and the MBT tool. 

 

The general goal of the thesis work was further divided into sub-goals.  

 

1. Learn the concepts of model-based testing 

2. Learn to use a tool (Qtronic) for modeling, test code generation and test execution 

3. Develop a framework for a finite state machine and implement a logic on the 

framework (with incrementally increased complexity) to be used as a test object. 

4. Develop a model for the test object in the test tool and try different criteria for 

generation of test code 

5. Establish the test environment including development of “glue” between the test 

code and the test object. 

6. Execute the tests and incrementally make the test object and the model more 

complex. 

7. Evaluate the result, document the experience gained and make recommendations. 

 

The initial task of this project was to learn about the concepts of MBT. This was done in 

the pre-study, which initially focused on software testing in general, classic testing processes 

as well as testing at Tieto. The pre-study resulted in insights as to what MBT is, from where it 

originated, its scope, the process involved as well as the benefits and limitations of the 

method. 

 

An important part of the project was to learn Qtronic, the MBT tool used in this thesis. A 

course in Qtronic was attended before starting the experimental part of the project. This 

course was held by Conformiq, the tool manufacturer, and lasted for three full working days. 

The course was a necessary step of the learning phase for using Qtronic, although tool 

documentation was available prior to the course. The Conformiq instructors provided useful 

information and shared experiences that could not be found in the Qtronic User Manual. 

Furthermore, one of the instructors stayed for two additional days following the course to 

assist and provide feedback for the initial modeling of the SUT. However, the learning phase 

continued after the course and also after the instructor had left. At this point in the learning 

phase, when basic functionality and features of Qtronic were known, the Qtronic User Manual 

provided useful information about details in Qtronic. The principal goal states that a tool for 
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modeling, test code generation and test execution was to be learned. Qtronic encompasses the 

first two mentioned features, but not the test execution feature. The version of Qtronic used in 

this project is a tool for offline generation of test scripts, meaning that test code is generated 

separately and it is then up to the tester to use the generated code. Hence, Qtronic did not 

include test execution of the generated test code.  

 

The third principal goal of the project was to develop and implement a test object to be 

tested. This was achieved by developing a client-side protocol module for a client-server of an 

ATM system. This test object was implemented in Java and was extended throughout the 

project. Although the implementation followed a design pattern, namely the state design 

pattern, the implementation of the test object was not the main focus of the project. The goal 

was to develop a test object that was to be tested but the test object development was not the 

primary focus of the project.  

 

When the concepts of MBT were known, the basics of the Qtronic tool were known and a 

test object was implemented the MBT process was started. The goal was to create a working 

model within Qtronic and try different criteria for generating test code. The modeling phases 

of the project were successfully completed, although the initial work required a learning phase 

and required more time to complete. Design factors were found to be important considerations 

as the model were gradually increasing in complexity. Although design factors were 

considered when starting modeling new possibilities and practices for design factors were 

discovered throughout the project.  

 

Initially different criteria for generating test code were used to investigate the possibilities 

within Qtronic. The available criteria met the expectations for black-box testing and testing of 

finite state machines. Moreover, the different criteria were well defined in the Qtronic User 

Manual. Hence, the criteria for test generation were not evaluated and compared any further 

since the criteria used were sufficient to exercise the complete model.  

 

A test environment was established, defining how the generated test code and the test 

object interacted. The test environment, or glue code, included a general test execution 

environment and script implementation dependent of the model. The test execution 

environment was defined at the beginning of the project and was then reused throughout the 

project. This test execution environment defined how the test code and the test object 

communicated, i.e. how the test code sent input and retrieved output from the test object. The 

test script (the test harness) was dependent on the model and contained the actual 

implementation for sending input and retrieving output from the test object. Thus, the test 

script made use of the test execution environment in its implementation.  

 

Another goal was to execute tests against the test object and to incrementally make the test 

object and the model more complex. The generated test code was executed when the script 

implementation was completed. The test execution resulted in failures, due to errors in the 

model, the test script implementation or in the test object. As the errors were corrected the test 

execution eventually resulted in that all test cases passed. The test object, and subsequently 

the model, was incrementally extended given a successful test execution.  

 

The final goal of the project was to evaluate the results and document experiences and 

recommendations. The results of the project work were evaluated in a qualitative analysis, 

which made use of metrics of the different artifacts as indications for the work effort required 

and to illustrate the gain of MBT. The modeling time and script implementation time, which 
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were the most time-consuming tasks, in relationship to the test code generated illustrated this 

gain. An important consideration was that the initial project work included a learning phase 

for all tasks involved in the process, from the modeling task in Qtronic to the execution of the 

generated test code. The analysis outlined results, considerations and implications for the 

different tasks of the project.  

 

The key point of the analysis was the modeling of the project. The modeling was the most 

challenging and important task of MBT since the model is used for generating test code. The 

aspects documented, including design issues and design considerations are the most scalable 

and the most important aspects of the project work. However, the results in terms of modeling 

time and test generation are not scalable since they are dependent on the complexity of the 

model. Results and experiences for the script implementation were not scalable since this is 

dependent on the complexity of the model, the complexity of the test object and the test 

execution environment used. 

5.2 Discussion 

The thesis work was a feasibility study for the concept of model-based testing and the model-

based testing tool Qtronic. The project included the creation of a test object, which was 

incrementally developed, and testing this test object using Qtronic.  

 

Developing the test object during the project had its advantages. Since the test object was 

of relatively low complexity the model used for test generation was also of relatively low 

complexity. Hence modifications of the model were easier to trace through the different tasks 

involved in the complete testing process. The relationship between the model, modifications 

and the different tasks thus became more apparent compared with a scenario where a more 

complex system had been used. Furthermore, a significantly more complex system would 

required more time to get a complete and working first version of the model and less time to 

experiment with the test object and the model. The time frame of the project was also limited 

considering the time of the Qtronic course. Nevertheless, the project proved the concept and 

illustrated the gain of MBT. The project proved MBT to be a valid approach although the 

scalability of the project may be open to discussion. However, the design issues and design 

considerations for the modeling task should be more general since issues regarding design 

factors were encountered already in a model of relatively low complexity. There is no reason 

to believe that such issues would not be encountered for a more complex system, rather the 

opposite.  

 

The potential use of a more complex system, perhaps an existing system at Tieto, may 

have resulted in results such as test generation times and modeling time that would have been 

directly applicable to current projects within the organization. However, a test object of a 

relatively low complexity resulted in more time to evaluate and trace the relationships 

between the different tasks and between different model versions. Using a more complex 

system, considering the learning phase, would have resulted in that significantly more time 

had been spent on modeling the initial system and to implement the test scripts necessary to 

interact with the SUT, and less time for experiments.  

 

The most important experience of this project was the importance and the problems of the 

modeling task. In the MBT approach the focus is moved from test design and script 

implementation, compared to traditional testing approaches, such as the script-based testing 
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approach. The change of focus requires different tester skills as the abstraction level is 

increased. This is an important conclusion of this project since testing organizations and 

testers not always have the experience of object-oriented design and development in general. 

Thus this is an important consideration if MBT would be adopted in an organization. 

 

In the MBT approach the model is the most important and crucial artifact. Thus awareness 

and considerations of the model quality will be extremely important. Considering large and 

complex systems that have the potential of being widely used and last for a long time, the 

testing will be of great importance. Such systems often evolve as the time goes by and often 

imply large maintenance duties, as well as incremental development through the development 

process. In such scenarios the quality of the model will be a crucial issue. Thus design factors 

and good modeling practices have to be applied from the very start of projects testing 

activities. Moreover, the model also has the potential of serving as an effective means of 

communication, which is a factor that should not be underestimated. Instead of reusing, 

extending and modifying test scripts, that often involve different testers through time, a well-

structured model has the potential of make the whole testing process more effective.  

 

Another important consideration and aspect of the MBT approach is the ability to reuse the 

model in a series of test generations. Given a complete and working model of the SUT, a 

large number of test generations may be performed, depending on the testing goals of each 

generation. Considering a complex system, even larger numbers of test cases may be 

generated from model. This may be an advantage, if the test generation times are not crucial. 

However, MBT has the advantage that the test generation is dependent on the testing criteria 

(test design configuration in Qtronic). Thus test cases for a particular feature of the system or 

a particular part of the model may be generated. Furthermore, the model does not need to 

incorporate the whole SUT, but only the parts of interest according to the testing goals. The 

latter may be a good solution if the complete system is too large to model or if the test 

generation takes too long time. Hence, the MBT approach offers flexibility to the software 

testing process since it includes one artifact to maintain and develop, which however results 

in strong requirements on the model quality.  

 

To summarize, this project applied and evaluated the concept of MBT. The feasibility 

study illustrated the gain and the characteristics of the concept. The results and the experience 

indicate that MBT should be applied or further evaluated at Tieto. The conclusions of this 

project are listed below. 

 

Benefits of the model-based testing approach: 

• Automates generation of test code and test result evaluation 

• Increases the abstraction level of testing 

• A good model may serve as a means of communication in the development process 

• Supports incremental development 

 

Limitations on the project: 

• The scalability of the project and the test object used in the feasibility study is an 

issue 
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5.3 Future work 

To further evaluate the concept of MBT and Qtronic the following areas are proposed for 

future work. 

5.3.1 Manual test design vs. MBT 

To further evaluate the gain of MBT the concept could be compared to the currently applied 

manual test design. That is, MBT and manual test design could be applied to the same project 

or the same system. In such a project test design time, test coverage and discovered defects 

may be suitable metrics to compare the two approaches. Such a project should preferably be 

carried out simultaneously by two independent testers or test teams with corresponding 

experience. The reason for this is that performing one of the testing approaches before the 

other may affect the results of the following approach since knowledge about encountered 

defects in the system may be gained. For example, if MBT were applied first and resulted in a 

number of errors the knowledge of the encountered errors could be used in the evaluation of 

manual test design.  

 

An important consideration for such a project would be the learning phase. If experienced 

testers perform the manual test design approach, the testers performing MBT should also be 

experienced. Difference in experience would impact the findings and the results between the 

different approaches. Furthermore, for the results of such an experiment to be applicable and 

scalable a good practice would be to use an existing system from the organization. The goal 

of the project would be to evaluate if MBT is worth the effort, and thus the results need to be 

scalable and applicable to the projects and the organization at large. 

5.3.2 Modeling of current applications at Tieto 

An alternative to the quantitative analysis mentioned above would be to apply MBT to an 

existing system or an existing project to perform a qualitative analysis. Such a project would 

be similar to this thesis but result in more scalable results and experience that in general could 

be applicable to the organization. An important consideration for such a project would be the 

learning phase. If a significant learning phase is required in the project this would have an 

impact on the results and the experiences. The reason for this is that if there is not enough 

knowledge from the start of the project, the initial modeling effort of the project may result in 

discoveries and problems later on in the project. Mistakes or lack of knowledge in the early 

phases of the project may result in problems later on that affect the success of the project. For 

example, if design factors were not considered when starting to model a complex system the 

lack of initial knowledge may have consequences for the later stages of the project.  

5.3.3 Evaluation of the tool 

A third project could be an evaluation of Qtronic, or other MBT tools. Evaluating a tool does 

not necessarily have to be a separate project, but could be included in the previously 

suggested projects. However, evaluating the capabilities of a specific tool, or comparing 

several tools, might be more easily performed in a separate project. The focus of such a 

project could be on test generation times and test coverage to gain more knowledge about the 

capabilities of specific tools before applying them in projects within the organization. The 

result of the project could outline expectations for modeling time, test generation time and test 

coverage. Such indications could be useful for time and cost estimations if MBT would to be 

applied in current projects and to know what to expect in such a scenario as well as to 

minimize unexpected outcomes. 
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5.4 Final Comments 

The project started with a pre-study of the MBT concept and an introductory course of the 

MBT tool Qtronic. Following the course a feasibility study of the concept was performed. The 

feasibility included the development of a test object, which was limited to the protocol 

module for the client of a simplified model for an ATM (Automated Teller Machine) client-

server system. The feasibility study included four experiments, with different purposes and 

goals. The test object was incrementally developed during these experiments to simulate the 

process of applying MBT in a new project. The general goals of the project were to evaluate 

the MBT concept, the MBT tool Qtronic, to execute tests on a test object of incrementally 

increased complexity and to document experiences and make recommendations.  

 

The project was a success since it proved and illustrated the concept of MBT as well as its 

gain. All four experiments resulted in successful test executions, where each test case 

automatically was assigned a pass/fail verdict and discovered errors in the test object were 

corrected. The main task of the project was the modeling task and the most important 

experience of the project is the importance of applying a good and well-structured design to 

the model. Design issues are important considerations since the model is the central artifact of 

this approach. Another important aspect and consideration is the learning phase required, 

since MBT increases the abstraction level and requires different skills compared to traditional 

software testing. This project has shown the gain and the characteristics of MBT and it is 

recommended to further evaluate this approach within the organization at Tieto. 
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A Requirements and Specifications 

In this appendix different types of requirements and specifications are discussed 

A.1 Requirements 

This section describes different types of requirements. 

A.1.1 User requirements 

User requirements in this context are high-level abstract requirements, or are statements, in a 

natural language plus diagrams, of what services the system is expected to provide and the 

constraints under which it operates. They should only specify the external behavior of the 

system. These requirements should target managers who do not have a detailed technical 

knowledge of the system [33]. 

A.1.2 System requirements 

System requirements are detailed descriptions of what the system should do, where system 

services and constraints are described in detail. The document including system requirements 

is sometimes called a functional specification. It may serve as a contract between the system 

end user and the software developer. These requirements should target technical staff, and 

maybe project managers [33].  

 

Furthermore, software system requirements are often classified as functional and non-

functional requirements [33]. 

A.1.3 Functional requirements 

Functional requirements are statements of services the system should provide, and how the 

system should react to particular inputs and how the system should behave in particular 

situations. Sometimes they may also state explicitly what the system should not do [33]. 

Functional requirements simply specify a function that a system or a component must be able 

to perform [18]. Functional requirements are sometimes known as capabilities [1], and 

typically refer to requirements defining the acceptable mappings between system input values 

and corresponding output values [14]. 

A.1.4 Non-functional requirements (quality requirements) 

Non-functional requirements are constraints on the services or functions offered by the system 

[33]. Non-functional requirements are sometimes known as constraints or quality 

requirements [1]. 

Quality requirements may be grouped in six headings. The quality requirements contain so 

many aspects that it is appropriate to categorize them [31]. These are briefly described below. 
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Functionality 

Functionality regards whether the desired functions are present in a system or not. 

Functionality can be further divided into the following characteristics: suitability, correctness, 

compatibility, compliance with standards and security [31].  

Reliability 

This category is regarded with robustness measures. Reliability answers questions like “Is the 

system robust?”, and “Does it work in different situations?” It can be further divided into 

maturity, defect tolerance, restart (after defect) and accessibility [31].  

Usability 

Usability describes if the system is intuitive, comprehensible and simple to use [31].  

Usability is the capability of the software product to be understood, learned, used and 

attractive to the user under specified conditions, and may be divided into understandability, 

learnability, operability, attractiveness and usability compliance [27]. 

Understandability is the capability of the software product to allow the user to understand 

whether the software is suitable and how it can be used for particular tasks. Learnability is the 

capability of the software product to allow the user to learn its application. Operability is the 

capability of the software product to allow the user to operate and control it. Attractiveness is 

the capability of the software product to be attractive to the user. Usability compliance is the 

capability of the software product to conform to standards, conventions, style guides or 

regulations to usability [27]. 

Efficiency 

Efficiency regards how well the system uses resources. This includes time aspects, such as 

performance characteristics. It also includes resource requirements (for example scalability) 

[31].  

Maintainability 

The fifth category of quality requirements is maintainability. This category describes if the 

workforce, developers and users can upgrade the system, and how easy [31]. IEEE [19] 

defines maintainability as an attribute that relates to the amount of effort needed to make 

changes in the software. Maintainability may be sub-divided into quality factors: testability, 

correctability and expandability.  

Testability is described as an indication of the degree of testing effort required. 

Correctability is described as the degree of effort required to correct errors in the software and 

to handle user complaints. Expandability is the degree of effort required to improve or modify 

the efficiency or functions of the software [19].  

These quality factors have measures associated with them. For example, testability may be 

measured in statement coverage, branch coverage and test plan completeness. Correctability 

may be measured in closure time (for a reported problem) and fault rate. Finally, 

expandability may be measured by change effort, change size, change rate and number of 

changes [19]. 

Portability 

The final classification, portability, describes if and how well the system can work on 

different platforms (for example with different databases). Subcategories include adaptability, 

installation requirements, compliance with standards and replaceability [31].  



 112 

A.2 Specifications 

In this section software specifications are discussed. 

A.2.1 Software requirements specification 

The software requirements specification, or software requirements document, is the official 

statement of what is required of the system developers. It should include both user 

requirements for a system and a detailed specification of the system requirements. If there are 

a large number of requirements, the detailed system requirements may be presented as 

separate documents. Also, it should only specify the external behavior of the system [33]. 

Software requirements specifications establishes the basis for agreement between 

customers and contractors or suppliers on what the software is to do, as well as what it is not 

expected to do.  For non-technical readers this document is often accompanied by a software 

requirements definition document [1].  

 

Software requirements specification permits a rigorous assessment of requirements before 

design can begin and reduces later redesign. It should also provide a realistic basis for 

estimating product costs, risks and schedules. Software requirements are often written in 

natural language, but in this specification they may be supplemented by formal or semi-

formal descriptions. The general rule is that notations should be used which allow the 

requirements to be described as precisely as possible [1].  

  

This specification is supposed to be of use for a variety of users. Customers may specify 

requirements and read them to check that they meet their needs. Managers may use the 

requirements specification to plan a bid for the system and to plan the system development 

process. The requirements may be used by engineers to understand what system is to be 

developed. Test engineers may use the requirements to develop validation tests for the 

system, while maintenance engineers may use the requirements to help understand the system 

and the relationships between its parts [33]. 

A.2.2 System requirements specification 

In the system requirements specification the system requirements are separated [1]. This 

specification describes the functional and non-functional requirements in more detail. If 

necessary, further detail may also be added to the non-functional requirements. An example 

of such detail could be interfaces to other systems. This specification is really a part of the 

software requirements specification [33].  

A.2.3 Software design specification 

A software design specification is an abstract description of the software design which is a 

basis for more detailed design and implementation. This specification adds further detail to 

the system requirements specification, and is an implementation-oriented document which 

should be written for the software engineers who will develop the system [33].  

A.2.4 Component specification 

A comprehensive component specification should include three types of properties: 

operations, the object state and interactions. Individual operations should be specified in terms 

of constraints on their inputs and outputs, as pre and post-conditions. The state constraints of 

the object should be described by specifying invariants which depicts the limits on each of the 

attributes of the object. State-transitions diagrams could be used to define specific sequences 
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of operations that represent the object’s protocols. Finally, the interactions among methods 

and attributes should be specified by a series of functional models, for example using object 

interaction diagrams. This constrains how the methods interact with each other either directly 

or indirectly through the components attributes [25].  

A.2.5 Interface specification 

Many software systems have to operate with other systems which already have been 

implemented and installed in an environment or are under development. The interfaces of the 

existing systems must be precisely specified if the new system and the existing systems must 

work together. These specifications should be defined early in the process and be a part of the 

software requirements specification. These specifications may include procedural interfaces, 

data structures and representation of data, if these are defined in existing sub-systems. These 

describe the data and operations that can be accessed through a sub-system interface [33]. 

A.2.6 Behavioral specification 

Model-based specification is an alternative approach to formal specifications. In a behavioral 

specification the system specification is expressed as a system state model. System operations 

are specified by defining how they affect the state of the system model. In this way the 

behavior of the system is defined [33]. 

An example of such a model is a state chart diagram, or a state machine. In that case the 

model consists of a collection of states and transitions, and the relationship between them. 

The relationship consists of transitions between states, where transitions are triggered by 

events. Also, execution of transitions most often includes execution of corresponding actions. 

State machines could be quite more complicated, but could be used as described above in the 

simple case to model the behavior of a system. These state charts could be defined using 

UML, for example [29]. 
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B Testing 

This appendix contains further details and definitions of software testing. 

B.1 Terminology 

When discussing software testing fundamentals it is also important to introduce proper 

terminology to ensure that further discussion are based on a common vocabulary that is 

widely accepted in the academic world as well as in the industry. 

B.1.1 Glossary 

Errors 

An error is a mistake, misconception, or misunderstanding on the part of a software developer 

[6]. 

Faults (or Defects) 

A fault (defect) is introduced into the software as the result of an error. It is an anomaly in the 

software that may cause it to behave incorrectly, and not according to its specification [6]. 

Failures 

A failure is the inability of a software system or component to perform its required functions 

within specified performance requirements [18]. 

System under test (SUT) 

The system is the program, library, interface, or embedded system that is being tested [35]. 

Test Cases 

A test case is a set of test inputs, execution conditions, and expected results developed for a 

particular objective, such as to exercise a particular program part or to verify compliance with 

a specific requirement [18]. 

Test 

A test is a group of related test cases, or a group of related test cases and test procedures 

(steps needed to carry out a test). A group of tests that are associated with a database, and are 

usually run together, is often referred to as a test suite [6]. 

Testbed 

An environment containing the hardware, instrumentation, simulators, software tools, and 

other support elements needed to conduct a test [18]. 

Test Coverage 

The degree to which a given test or set of tests addresses all specified requirements for a 

given system or component [18]. 
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Test Harness 

A test harness (or test driver) is a software module used to invoke a module under test and, 

often, provide test inputs, control and monitor execution, and report test results [18]. 

Test Objective 

An identified set of software features to be measured under specified conditions by comparing 

actual behavior with required behavior described in the software documentation [18]. 

Test Oracle 

A test oracle is a document or piece of software that allows testers to determine whether a test 

has been passed or failed [6]. 

Test Scripts 

A test script is detailed instructions for the set-up, execution, and evaluation of results for a 

given test case [18]. 

Test Suite 

A test suite is a collection of test cases [35]. 

Software Quality 

IEEE Standard Glossary of Software Engineering Terminology gives two definitions of 

quality [18]: 

1. Quality relates to the degree to which a system, system component, or process meets 

specified requirements. 

2. Quality relates to the degree to which a system, system component, or process meets 

customer or user needs, or expectations. 

B.1.2 Defects 

This section describes and discusses concepts regarding defects. 

Defect (or Fault) 

A defect (fault) is introduced into the software as the result of an error. It is an anomaly in the 

software that may cause it to behave incorrectly, and not according to its specification [6]. 

Defect root cause 

A defect root cause is the origin, or source, of a defect. The sources of a defect can be 

education, communication, oversight, transcription, and process. Education involves the 

education of the software engineer, communication involves communication between 

software engineers, oversight involves software engineers omitting actions, transcription 

involves the software engineer knowing what to do but makes a mistake in doing it, and 

process involves a process misdirecting software engineers in his or her actions [6].  

Defect detection 

One goal of testing is to detect defects in the software. One way to do this is to designing test 

cases which tries to expose defects of the software. Defects can be classified in many ways, 

such as requirements and specification defects, design defects, coding defects and testing 

defects. Depending on the defect type of interest, different techniques may be used. These 

techniques are most commonly categorized as static or dynamic techniques [6]. 
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Defect analysis and defect prevention 

Defect analysis and defect prevention are two related processes. The goals for these processes 

are to analyze defects to find their root causes, take actions and make changes (both in the 

overall development process and in the testing process), as well as preventing defects from 

reoccurring [6]. 

Defect analysis involves the process of identifying the root cases of defects. This process 

aims to pinpoint the exact cause of defects so that actions can be taken to make 

improvements, both at an individual level and at a process level [6].  

Defect prevention is the process that allows an organization to take actions to prevent 

defects from reoccurring knowing the root causes of defects. Activities in this process are 

action planning, action tracking, feedback, and process change [6].  

Requirements and specification defects 

The initial phase of the software life cycle is critical in terms of ensuring high quality in the 

software. Defects that originate in early phases can persist and be very difficult to remove 

later in the software development process. Requirements are often documented in natural 

language, thus they are often ambiguous, contradictory, unclear, redundant, and imprecise. 

The same applies for specifications since they also often are developed using natural 

language. Some specific requirements or specification defects are functional description 

defects, feature defects, feature interaction defects, and interface description defects [6].  

Design defects 

Design defects originate when components, interaction between components, interaction 

between components and external environments, or interactions with users are incorrectly 

designed. Design defects are related to coding defects, but when describing design defects a 

detailed design specification is assumed. If such a specification does not exist many of the 

design defects may be classified as coding defects instead [6]. 

Coding defects 

Coding defects are the result of implementation errors in the code. Coding defects may come 

from a failure to understand programming language constructs and miscommunication 

between developers, or from transcription and omission origins [6].  

Testing defects 

Documentation related to testing may contain defects. Such documentation may be test plans, 

test harnesses, and test procedures. Reviews are most often used to detect defects in test plans 

[6]. 

B.2 Testing techniques 

B.2.1 Static techniques 

This section contains descriptions of common static test techniques. 
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Inspection 

Inspection is the most formal review technique and is strictly governed. The inspection 

participants prepare themselves by examining selected areas according to role descriptions 

and check-lists. The inspection is then performed in terms of a meeting where all points of 

view are recorded and how they are to be addressed may be discussed. This way of working is 

formal, hence only a limited amount of material is examined on each occasion. For this type 

of review to be effective the participants have to be trained and the meeting itself have to be 

lead by an experienced moderator [31]. 

Walkthrough 

A walkthrough is a simpler and less formal review technique, which involves the author 

presenting his or her material to a selected group of participants. The goal is to more quickly 

involve the participants in the test basis and to create a common picture rather than 

identifying defects [31]. 

Technical review 

Technical reviews focus in the technical parts of the project, such as architecture and program 

design. Technical experts and architects and other developers are the primary participants. 

The purpose is to evaluate choices of solution and compliance with standards, as well as other 

documentation [31]. 

 Informal review 

Informal reviews include more than two people looking through a document or code that one 

of the participants has written. The purpose is to detect defects, but usually no check-lists are 

used and the result does not need to be documented [31]. 

B.2.2 Black-box techniques 

This section describes commonly used black-box testing techniques. Black-box testing 

techniques are test-specification techniques that derive test cases from the externally visible 

properties of an object without having knowledge of the internal structure of this object [27]. 

Equivalence class partitioning 

Equivalence class partitioning is a method for selecting test inputs when performing black-

box testing. The approach results in a partitioning of the input domain of the system under 

test. The technique may also be used to partition the output domain, but this is not a common 

usage. For each resulting partition, or equivalence class, the tester selects a representative 

member of that class. The approach assumes that all members of an equivalence class are 

processed in an equivalent way by the software. Moreover, the tester should consider both 

valid and invalid equivalence classes, where invalid classes represent invalid or unexpected 

inputs [6].  

Boundary value analysis 

Referring to the equivalence class partitioning definition above, boundary value analysis 

covers elements close to the edges of equivalence classes instead of any element of the class 

as in equivalence class partitioning. The reason for choosing equivalence class members of 

input and output close to the upper and lower edges is that such test cases are often valuable 
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in revealing defects. For example, if a specification of a software module states that the input 

values have to lie in the range between -1.0 and 1.0, valid test cases should include values for 

ends of the range, and invalid test cases should include values just above and below the ends. 

The result would be test cases including input values of -1.0, -1.1, 1.0 and 1.1 [6]. 

State transition testing 

State transition testing is based on the concept of finite state machines. In this approach the 

test case design makes use of an existing state transition diagram (a defined finite state 

machine). The state transition diagram is a model of the system to be tested, which is used 

when designing test cases. The test cases are designed to cover the states, transitions between 

states, and inputs and events that trigger state changes of the state machine [6]. 

Error guessing 

The error guessing approach is a test design approach based on the testers’, or developers’, 

past experience with systems under test, and their intuitions as to where defects may be found. 

The tester or developer may be able to make an educated “guess” as to which types of defects 

that may be present and design test cases to reveal them [6]. 

B.2.3 White-box testing techniques 

This section describes commonly used white-box testing techniques. White-box testing 

techniques are test-specification techniques that derive test cases from the internal properties 

of an object, with knowledge of the internal set-up of the object [27]. 

Statement testing 

IEEE [18] defines statement testing as testing designed to execute each statement of a 

computer program, where a statement, within a programming language, is defined as: “A 

meaningful expression that defines data, specifies program actions, or direct the assembler or 

compiler [18].” 

Branch testing 

IEEE [18] defines branch testing as testing designed to execute each outcome of each decision 

point in a computer program. They further define a branch as a point in a computer program 

at which one of two or more alternative sets of program statements is selected for execution 

[18].  

Path testing 

IEEE [18] defines path testing as testing designed to execute all or selected paths through a 

computer program [18]. In the context of software engineering a path is defined as: “A 

sequence of instructions that may be performed in the execution of a computer program [18].”  

Mutation testing 

IEEE [18] defines mutation testing as a testing methodology involving execution of two or 

more program mutations using the same test cases to detect differences in the mutations [18]. 

They further define a program mutation as: “A computer program that has been purposely 

altered from the intended version to evaluate the ability of test cases to detect the alteration 

[18].” 
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Loop testing 

The purpose of loop testing is to detect common defects associated with loops [6]. A loop is a 

sequence of computer program statements that is executed repeatedly until a condition is met 

or while a given conditions is true [18].  

For example, using a simple loop with a range of zero to n iterations, test cases should be 

designed so that there are: zero iterations, one iteration, two iterations, k iterations (where k < 

n), n - 1 iterations and n + 1 iterations (if possible) [6]. 

B.3 Traceability matrix 

Traceability is the ability to trace the connections between artifacts of the testing life cycle or 

software life cycle. It is the ability to track the relationship between test cases and the model, 

between the model and informal requirements, or between the test cases and the informal 

requirements [35]. A traceability matrix is a table that shows the relationships between two 

different artifacts of the testing life cycle. For example, the relationships between informal 

requirement identifiers and generated test cases [35]. 

 

In this thesis the traceability matrix will describe the relationship between coverage goals 

and generated test cases. Figure B.1 below is an example of such a matrix. 

 

Figure B.1 Example of a traceability matrix 

This figure is a print-screen from the traceability matrix produced during test generation in a 

Qtronic [8]. The model used is an example that comes with Qtronic. In this case the coverage 

goal of the test generation is set to cover functional requirements. However, coverage goals 

may be states, transitions, branches, to mention a few. 

The model demonstrates behavior of the client side of the SIP protocol (specified in 

RFC3261 [30]) on an abstract level. SIP is an application-layer control (signaling) protocol 

for creating, modifying and terminating sessions with one or more participants. Examples of 

such sessions include Internet telephone calls, multimedia distribution, and multimedia 

conferences. This SIP model describes partial functionality of a SIP User Agent Client, and 

includes call setup, call termination by caller or callee and call cancellation during call setup. 

The model also includes the timers associated with these functionalities [8].  
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The matrix specifies what coverage goals are covered for a given test case (ranging from 1 

to 9). For example, test case 1 in the figure above covers only the “Resends INVITE after A 

timeout” requirement.  

 



 121 

 

C Test System 

This appendix describes the different parts of the test system in more detail, using finite state 

machines. 

C.1 Specifications 

This section includes the specifications in terms of UML state diagrams. These specifications 

were used to implement the test object as well as to create QML models in Qtronic. In these 

diagrams the error handling, such as handling of negative acknowledgements, are omitted 

since the diagrams would be significantly more complex.  

C.1.1 Version 1 

This section includes the initial specification which was used for the first experiment. 

Top-level state machine 

The figure below is a UML state diagram of the top-level state machine of the protocol 

module, where the states Authentication and Withdrawal have internal state machines. 

 

Rollback 

Authentication 

Balance 

T-Data Ind AUAck+/ 

Request command 

Withdrawal 

Idle 

Wait Close 

Amount input/ 

T-Data Req WPCmd 

Card inserted/ 

Connect Req 

Balance query/ 

T-Data Req BRCmd 

Commit T-Data Ind BRAck+/ 

Balance info, 

T-Data Req CLCmd 

Wait Command 

T-Data Ind CLAck+/ 

T-Disconnect Req 

 

Figure C.2: Specification 1: Top-level state machine 
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Authentication state machine 

The authentication state machine handles the user authentication, involving connection setup, 

card verification, pin code authentication and the corresponding network communication.  

 

PIN input/ 

T-Data Req AUCmd 

Wait T-Connect 

T-Connect Conf/ 

T-Data Req OPCmd 
Wait Open 

Wait PIN Wait Authentication 

T-Data Ind OPAck+/ 

Request PIN 

PIN input/ 

T-Data Req AUCmd 

 

Figure C.3: Specification 1: Authentication state machine 

Withdrawal state machine 

The withdrawal state machine handles money withdrawal, which primarily includes amount 

verification against the account. It also includes verifying that the ATM machine (the user 

interface) has enough bills (dispense result), and functionality for either scenario.  

 

T-Data Ind WRAck-/+ / 

T-Disconnect Req 

Dispense result+ / 

T-Data Req WCCmd 

Dispense result- / 

T-Data Req WRCmd 

T-Data Ind WPAck+ / 

Dispense order 

Wait Dispense 

Wait Rollback Wait Commit 

T-Data Ind WCAck+ / 

T-Data Req CLCmd 

Wait Prepare 

 

Figure C.4: Specification 1: Withdrawal state machine 
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C.1.2 Version 2 

This section includes the specification used in the second experiment.  

Top-level state machine 

The figure below specifies the behavior of the top-level state machine of the protocol module 

The states Withdrawal, Transfer and Deposit all have internal state machines. The withdrawal 

and authentication state machines are the same as in version 1. 
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Authentication 
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Withdrawal 

Idle 

Wait Close 

Amount input/ 

T-Data Req WPCmd 
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Connect Req 

Balance query/ 

T-Data Req BRCmd 

Commit 

T-Data Ind BRAck+/ 

Balance info, 

T-Data Req CLCmd 

Wait Command 

T-Data Ind CLAck+/ 

T-Disconnect Req 

Transfer Deposit 
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Transaction request/ 

T-Data Req TPCmd 

Deposit request/ 

T-Data Req DPCmd 

 

Figure C.5: Specification 2: Top-level state machine 

Transfer state machine 

The transfer state machine handles account transactions, which includes account and amount 

verifications against the server. 
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T-Data Ind TPAck+/ 

Request account 

Account input/ 

T-Data Req ACCmd 

T-Data Ind ACAck+/ 

Request amount 

Amount input/ 

T-Data Req TRCmd 

Wait Prepare Wait Account 

Wait Account 

Confirmation 
Wait Amount Wait Transfer 

T-Data Ind TRAck+/ 

Transaction info, 

T-Data Req CLCmd 

 

Figure C.6 : Specification 2: Transfer state machine 

Deposit state machine 

The deposit state machine handles account deposits, which includes the insertion of bills to 

the ATM and the creation of a receipt.  

 
T-Data Ind DPAck+/ 

Request amount 

Amount input/ 

T-Data Req DRCmd 
T-Data Ind DRAck+/ 

Deposit info, 

T-Data Req CLCmd 

Wait Prepare Wait Input 

Wait Deposit 

 

Figure C.7: Specification 2: Deposit state machine 

C.1.3 Version 3 

This section includes the specification used in the third experiment.  

 

The top-level state machine is the same in this specification as in Specification 2. The 

difference is that a biometric authentication is required to complete requests to the server. 

This applies for withdrawal, deposit, transfer and balance requests. New for this specification 

compared to Specification 2 is that the Balance state of the top-level state machine includes 

an internal state machine. The biometric authentication is modeled as separate state machine 

which is used in the internal state machines. The biometric authentication process must be 

successfully completed for the requests to be processed.  
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Top-level state machine 

The figure below specifies the behavior of the top-level state machine of the protocol module. 

The states Withdrawal, Transfer, Deposit and Balance all have internal state machines. The 

difference compared to version 2 is that these internal state machines include a biometric 

authentication. 
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Wait Close 
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Wait Command 

T-Data Ind CLAck+/ 
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Transaction request/ 
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Deposit request/ 

T-Data Req DPCmd 

 

Figure C.8: Specification 3: Top-level state machine 

Biometric authentication state machine 

The biometric authentication state machine handles the biometric information input and 

verifies this against the server. The first step in the process is to receive a random seed 

number from the server, which together with the biometric information authenticates the 

request. 
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T-Data Ind Seed/ 

Request biometrics 

Biometric input/ 

T-Data Req BACmd 

Wait Seed Wait Biometrics 

 

Figure C.9: Specification 3: Biometric authentication state machine 

The introduction of this process yields changes in the withdrawal, deposit and transfer state 

machines as well for the Balance state in the top-level state machine.  

Balance state machine 

In this specification the Balance state include an internal state machine. This state machine 

handles the biometric authentication as described in the figure below. If the biometric 

authentication fails the request is terminated. 

 

T-Data Ind BAAck+/ 
Biometric Authentication Wait Balance 

T-Data Ind BRAck+/ 

Balance info, 

T-Data Req CLCmd 

 
 

Figure C.10: Specification 3: Balance state machine 

Withdrawal state machine 

The withdrawal state machine of this version, compared to version 1, required a successful 

biometric authentication to carry out the account withdrawal request. The Biometric 

Authentication state in the state machine below includes an internal state machine to 

encapsulate that logic. If the biometric authentication fails the request is terminated.  



 127 

 

T-Data Ind WCAck+ / 
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T-Disconnect Req 

Dispense result+ / 

T-Data Req WCCmd 

Dispense result- / 

T-Data Req WRCmd 

T-Data Ind WPAck+ / 

Dispense order 

Wait Dispense 

Wait Rollback 

Biometric Authentication 

 

Wait Prepare 
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Figure C.11: Specification 3: Withdrawal state machine 

Transfer state machine 

As for the Withdrawal state machine, the Transfer state machine of this version required a 

biometric authentication to carry out account transaction requests. The Biometric 

Authentication state includes an internal state machine for describing the authentication 

process. If the biometric authentication fails the request is terminated. 
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Figure C.12: Specification 3: Transfer state machine  
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Deposit state machine 

As for the other state machines handling account requests the Deposit state machine requires a 

successful biometric authentication. If the biometric authentication fails the deposit request is 

terminated. 

 

T-Data Ind DPAck+/ 

Request amount 

Amount input/ 

T-Data Req DRCmd 

T-Data Ind DRAck+/ 

Deposit info, 

T-Data Req CLCmd 
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Figure C.13: Specification 3: Deposit state machine 

C.2 Qtronic 

This appendix describes features of Qtronic in greater detail. 

C.2.1 Test design configuration parameters 

The parameters of the test design configuration are grouped into requirements, control flow, 

conditional branching, state chart and dynamic coverage.  

Requirements 

Requirements may be established to establish additional test goals driven by functional 

requirements. The requirements, or requirement links, are marked in the model using 

requirement statement, which is a QML extension to Java. The argument of this statement is a 

constant string, really a name of the requirement. This requirement marks a point in the model 

which can be used as a testing goal to guide Qtronic in the test generation [8].  

Control flow 

The control flow parameters include testing and coverage goals for QML statements and 

methods used in the model. An example of statement coverage may be to cover an assign 

statement, assigning a value to a variable, and an example of method coverage may be to 

cover a function call in the model to a QML function in the model [8]. 

Conditional branching 

Conditional branching includes boundary value analysis, branch coverage, and atomic 

condition coverage. Boundary value analysis covers the boundary value cases for all the 

arithmetic comparisons. This is a technique for determining tests covering known areas of 

frequent problems at the boundaries of input ranges. Branch coverage tells Qtronic to look for 

QML branches, such as then and else branches of if statements, at least once. Atomic 



 129 

condition coverage tests every QML atomic condition branch, such as different sides of a 

Boolean “and” (i.e.. &&), at least once [8].  

State chart 

State chart parameters include state coverage, transition coverage, 2-transition coverage, and 

implicit consumption. State coverage guides Qtronic to generate test cases that cover every 

UML state at least once. Similarly, transition coverage guides Qtronic to generate test cases 

that cover every UML transition. 2-transition coverage tests every pair of two subsequent 

UML transitions at least once. Implicit consumption tests that the system correctly ignores 

messages that are not handled by any transition for a given state [8]. 

Dynamic Coverage 

Dynamic coverage includes All Paths-States, All Paths-Transitions, and All Paths-Control 

Flow. All Paths-States tests every possible sequence of UML states at least once. All Paths-

Transitions test every possible sequence of UML transitions at least once. All Paths-Control 

flow All Paths-Control Flow tests every possible sequence of conditional branches, such as 

then and else branches of if statements, at least once [8].  

C.2.2 Test generation options 

Test generation options are defined at a project-level in Qtronic. Thus they apply for all test 

design configurations defined for a specific project. This section briefly describes the 

available test generation options. 

Lookahead Depth 

This option controls the amount of lookahead for planning the test cases. The specified value, 

ranging from 1 to 7, corresponds to the number of external input events to the system or 

timeouts. If the logic in the design model manipulates the data after a certain number of 

external events the lookahead depth must be increased. The reason for this is that Qtronic 

must be aware of this to make decisions on the data values. However, if the lookahead value 

is high that will affect test generation times [8]. 

Maximum Delay 

The maximum delay option defines the time internal, ranging from 0 seconds to 10 minutes, 

in which it is valid to deliver a message. The setting of this option depends on the application 

being tested [8]. 

Only Finalized Runs 

If this option is selected Qtronic will only generate test cases ending in a “clean” state. 

Typical “clean” states are final states in the model. However, final states for internal state 

machines only indicate that the internal state machine execution read an end and not that the 

top-level state machine reached an end [8].  

Require Conversion for Interoperability testing 

When this option is selected, a require statement is handled as an assert statement whenever a 

thread received a message from another thread, or in a thread is awakened by a timeout when 

it is not waiting for any external interfaces. A require statement in QML requires a Boolean 

argument supplied to be true. A thread is a thread of execution in a program. A model in 

Qtronic may include several threads running concurrently, possible communicating with each 

other [8].  
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OSI Methodology Support 

Selecting this option activates the “OSI Methodology” feature of Qtronic. This feature 

provides support for generating test cases conforming to the OSI methodology for organizing 

test cases as described in ISO 0646-1 [8].  

The feature divides all test cases into three sections: preamble, body, and postamble. 

Moreover, every test case is named according to by the name of one of the requirements 

verified in the body, except if the body does not verify any new requirements. In the latter 

case test cases are named according to one of the structural checkpoints of the body. The 

cases are also ordered in dependency order, so typically later test cases depend on earlier test 

cases [8]. 

Test Case Name Prefix 

This option simply defines the default name prefix that is given to new test cases. The default 

value is “Test Case”, thus test cases are given names as “Test Case 1” [8].  

C.2.3 Views for test generation result analysis 

This section briefly describe the available views for analysis the generated test cases. 

Traceability Matrix View 

The traceability matrix correlates the coverage options to the individual test cases. For 

example, this view may display which states in the model are covered by a particular test 

case. 

Coverage Editor 

The coverage editor presents the final coverage percentage in regards to the coverage settings. 

For example, suppose that one want to cover all states of the model, and if successful, the 

coverage editor will display the number 100 for that coverage setting.  

Test Case List 

The test case list shows the generated test cases, including the test case names and the 

generation date. 

Test Case View 

The test case view shows the interaction between the tester and the SUT in a given test case. 

This view displays the input and the expected output of the SUT for a particular test case.  

Test Step View 

The test step view shows detailed information about the messages that are transferred between 

the tester and the SUT in a given test case. In effect, this is a more detailed view of the Test 

Case View.  

Execution Trace View 

The execution trace view links the test cases back to the model from which they were 

generated. This view shows a sequence of states through the model for a given test case.  

 


