KauNet Triggers

Tomas Hall Andreas Midestad

Contents

- Background
- Problem description
- Design considerations
- Results
- Design
- Implementation
- Summary

Background

- Evaluation of computer network systems
 - Theoretical, live testing, simulation, emulation
- Dummynet
 - Pipes Simulated link & traffic filtering
 - Probabilistic emulation effects
 - IPFW

Background

- KauNet
 - Extends Dummynet
 - Deterministic, pattern based emulation
 - Pattern generation utility

Background

KauNet – Patterns

- Reproducibility
 - Reuse of patterns
- Modes of operation
 - Time-driven
 - Data-driven

- Types of patterns
 - Bandwidth change
 - Packet loss
 - Delay change
 - Bit–error

Problem description

On-demand statistics

Problem description

- Desired functionality
 - Send *event information* (trigger value) to subscribers (trigger passing)
 - Pattern based event passing (trigger patterns)
- Examples
 - Real-time emulation updates/statistics
 - Cross-layer optimization
 - Link properties estimation

Design considerations

Pattern synchronization (example)

Packet	1	2	3	4	5	6	7	8	9	10
Packet loss pattern	1	0	0	0	0	1	0	0	1	0
Trigger pattern	42	0	0	0	0	29	0	0	37	0

patt_gen -pkt -pos loss.pat data 10 1,6,9

- patt_gen -trig -pos trg.pat data 10 1,42,6,29,9,37
- Send 4 bytes of data reliably at one event per millisecond (minimum).

Results

- Trigger pattern
- Trigger passing
 - KauNet communication module
 - Adaptation layer
 - Adaptation layer communication module

Design Trigger pattern

Trigger pattern structure:

Trigger passing

KauNet Communication Module (KCM)

- Receives events from KauNet
- Forwards events to subscribers
- Handles subscribers
- Kernel module KauNet plugin
 - Simplifies implementation
- Modular design

Trigger passing - KauNet Communication Module

KauNet host

Local IPC

KauNet host

Network sockets

Trigger passing evaluation - IPC mechanisms

- Signals (sigqueue)
 - Standard
 - Signal + 4 bytes data
 - With shared memory (dynamic, static)
 - Signal + 4 bytes key or offset
- Sockets
 - UNIX domain sockets
 - Network sockets (UDP)

Trigger passing evaluation - Results

Design Trigger passing evaluation – Results

Trigger passing evaluation - Summary

- Network sockets
 - Sufficient data rate and payload
 - Simplifies the design / implementation

Trigger passing - Adaptation Layer

- Adaptation Layer
 - Arbitrary application which interprets received events
 - Experiment specific implementation
 - Uses the adaptation layer communication module to interact with KauNet

Trigger passing - Adaptation Layer Communication Module

Adaptation Layer Communication Module

- C-library (API)
- Simplifies adapation layer
- Backward compatibility
- Functionality
 - Communicates with KauNet
 - Parses received events
 - No semantic awareness of events

Implementation

Summary

- Trigger pattern generates events
- Trigger passing *distributes* events
- Subscriber interprets events
- Enables:
 - Define when to generate events and what to send
 - Implement adaptation layer to interpret events

Demonstration

Bandwidth change pattern

- No bandwidth between the seconds 4 and 6
- Trigger pattern
 - Triggers at the seconds 0, 4, 6 and 10

Demonstration

Ping results

```
64 bytes from 10.0.2.1: icmp_seq=6 ttl=64 time=0.319 ms
64 bytes from 10.0.2.1: icmp_seq=7 ttl=64 time=0.322 ms
64 bytes from 10.0.2.1: icmp_seq=8 ttl=64 time=0.325 ms
64 bytes from 10.0.2.1: icmp_seq=13 ttl=64 time=0.257 ms
64 bytes from 10.0.2.1: icmp_seq=14 ttl=64 time=0.333 ms
64 bytes from 10.0.2.1: icmp_seq=15 ttl=64 time=0.334 ms
```

21 packets transmitted, 17 packets received, 19.0% packet loss

Demonstration

Adaptation layer output

Received value 1 at time 1260871692:574073 (12 bytes) Received value 2 at time 1260871696:581029 (12 bytes) Received value 3 at time 1260871698:585016 (12 bytes) Received value 4 at time 1260871702:592739 (12 bytes)

Packet (#)	1	2	3	4	5	6	7	8	9	10	11
Time (s)	0		1		2		3		4		5
Trigger	1								2		

Packet (#)	12	13	14	15	16	17	18	19	20	21
Time (s)		6		7		8		9		10
Trigger		3								4