

Karlstads universitet 651 88 Karlstad
Tfn 054-700 10 00 Fax 054-700 14 60

Information@kau.se www.kau.se

Faculty of Economic Sciences, Communication and IT
Department of Computer Science

Tomas Hall Andreas Midestad

KauNet Triggers

Degree Project of 30 ECTS credit points
Master of Science in Information Technology

Date/Term: 10-01-22

Supervisor: Per Hurtig

Examiner: Donald F. Ross

Serial Number: E2010:02

KauNet Triggers

Tomas Hall Andreas Midestad

c© 2010 Tomas Hall, Andreas Midestad and Karlstad University

This thesis is submitted in partial fulfillment of the requirements

for the Masters degree in Computer Science. All material in this

thesis which is not my own work has been identified and no mate-

rial is included for which a degree has previously been conferred.

Tomas Hall Andreas Midestad

Approved, 2010-01-22

Opponent: Johan Nordholm

Advisor: Per Hurtig

Examiner: Donald F. Ross

iii

Abstract

An important aspect of development and research in the field of computer networking

systems is evaluation. Through evaluation, performance and behavior of software and

protocols over a network can be determined. A network emulator is one of several tools

available to accomplish this.

In this thesis, the network emulator Dummynet is described, as well as its extension

KauNet. KauNet extends Dummynet by introducing pattern-driven emulation. A pattern

defines specific points at which to apply a certain computer network characteristic or

behavior. The use of patterns allow an increased control and repeatability of an emulation.

Repeating a test with an identical configuration and the same pattern will yield identical

results.

The goal of the project was to add a new functionality to KauNet. The new func-

tionality consists of a notification system capable of passing information from KauNet to

external observers. By adding this new functionality, emulation statistics can be avail-

able for the observers immediately when occurring. Another example of information that

can be forwarded, is simulated cross-layer information. For KauNet to know when and

what information to send, a new type of pattern has been created, called trigger pattern.

Trigger patterns behave similarly to the existing patterns, sharing the same structure and

processing in KauNet. Through the use of trigger patterns, events may be raised at specific

points. The notification system may then be used to pass the event information.

This thesis describes the evaluation, design and implementation of the trigger patterns

v

and notification system in KauNet. Finally, it concludes with a verification of the new

trigger functionality in a usage example.

vi

We would like to thank our supervisor Per Hurtig for all his invaluable help.

vii

Contents

1 Introduction 1

1.1 Problem, Goals & Motivation . 2

1.2 Disposition . 3

2 Background 5

2.1 Evaluation of Computer Networking Systems 5

2.1.1 Theoretical Analysis . 6

2.1.2 Simulation . 6

2.1.3 Emulation . 8

2.1.4 Live Testing . 10

2.2 Dummynet . 11

2.2.1 IPFW & Packet Classifying . 13

2.2.2 Pipes & Queues . 14

2.2.3 Dummynet Usage Example . 15

2.3 KauNet . 17

2.3.1 Patterns . 18

2.3.2 Pattern Generation Utility . 22

2.3.3 KauNet Usage Example . 23

2.4 Summary . 24

ix

3 Problem Description 27

3.1 Background . 27

3.2 Motivating Examples . 28

3.2.1 Real-Time Emulation Updates . 28

3.2.2 Cross-layer Optimization . 29

3.2.3 Link Properties Estimation . 31

3.3 Design Considerations . 31

3.4 Summary . 32

4 Design 33

4.1 Triggers . 33

4.2 Trigger Passing . 34

4.2.1 KauNet . 35

4.2.2 Trigger Passing Mechanism Evaluation 35

4.2.3 KauNet Communication Module . 47

4.2.4 Adaptation Layer . 49

4.2.5 Adaptation Layer Communication Module 49

4.3 Summary . 50

5 Implementation 53

5.1 Dummynet/KauNet Architecture . 53

5.2 Trigger Patterns . 57

5.2.1 Pattern Structure . 57

5.2.2 Pattern Generation . 59

5.3 Trigger Passing . 60

5.3.1 KauNet . 60

5.3.2 KauNet Communication Module . 61

5.3.3 Adaptation Layer Communication Module 62

x

5.3.4 Adaptation Layer . 64

5.4 Summary . 64

6 System Demonstration 67

6.1 Theory . 67

6.2 Method . 69

6.3 Results . 71

6.3.1 Experiment 1 . 71

6.3.2 Experiment 2 . 72

6.4 Conclusions . 73

7 Conclusions & Future Work 75

7.1 Future Work . 76

References 77

A IPC Evaluation 81

A.1 Test Machine Specifications . 81

B FreeBSD 83

C Source code 85

C.1 File Difference Output . 85

C.2 FreeBSD Kernel (with KauNet) . 86

C.2.1 ip dummynet.h . 86

C.2.2 ip dummynet.c . 87

C.3 KauNet Communication Module . 91

C.3.1 kcm.h . 92

C.3.2 kcm.c . 94

C.4 Adaptation Layer Communication Module 101

xi

C.4.1 alcm.h . 101

C.4.2 alcm.c . 103

C.5 Adaptation Layer . 106

C.5.1 al.c . 107

C.6 Pattern Generation Utility . 109

C.6.1 patt gen.diff . 109

C.7 The Internet Protocol Firewall . 116

C.7.1 dummynet.c . 116

xii

List of Figures

2.1 Simulator. 6

2.2 Emulator. 8

2.3 Live testing. 10

2.4 Dummynet - Emulation overview. 12

2.5 Dummynet pipes and traffic filtering. 13

2.6 KauNet - Emulation overview. 17

2.7 Example 1 - Dummynet with 50% packet loss. 18

2.8 Example 2 - KauNet with 50% packet loss. 18

2.9 Data-driven packet loss example [19]. 21

2.10 Time-driven packet loss example [19]. 21

3.1 KauNet Trigger Example. 29

4.1 Passing triggers using an IPC mechanism. 36

4.2 Passing triggers using network sockets. 36

4.3 Raw signal data transfer. 38

4.4 Dynamic shared memory data transfer. 39

4.5 Static shared memory data transfer. 39

4.6 Maximum reliable rate as a function of the payload size. 43

4.7 Maximum bandwidth as a function of the payload size. 44

4.8 KauNet communication module using an intermediate receiver and IPC. . 47

xiii

4.9 KauNet communication module using sockets. 48

4.10 KauNet trigger passing. 50

5.1 Dummynet event flow. 54

5.2 KauNet pattern structure (compressed format). 58

5.3 KauNet trigger passing implementation overview. 65

6.1 Test bed setup. 67

6.2 Experiment 1 setup. 69

xiv

List of Tables

2.1 Pattern behavior in data-driven mode. 19

2.2 Pattern behavior in time-driven mode. 19

5.1 Type of pattern and unit mapping. 59

6.1 Theoretical experiment results. 68

A.1 IPC test bed specification, KauNet host. 81

A.2 IPC test bed specification, receiving host. 82

xv

Chapter 1

Introduction

Computer networking is an ever expanding field of development and research, especially

since the advent of the Internet (that is, once people realized that it was, in fact, not a

fad). Over the years, countless programs and protocols have been developed to provide

a wide range of services and functionality for users and providers alike. As the number

of applications and the size of the networks grow, so does the need to evaluate new and

existing network systems. One of the methods available is the use of a network emulator;

a piece of software used to simulate characteristics of different network setups, without the

need for a real network using the actual hardware components.

One well known and commonly used emulator available for several platforms is Dum-

mynet (see Section 2.2). Dummynet is capable of emulating complex network topologies

and apply a variety of emulation effects such as packet losses and bandwidth restrictions

on traffic that passes through it. One significant drawback is the lack of a reliable way

to reproduce results in experiments performed. This led to the eventual development of

KauNet, an extension built on top of Dummynet (see Section 2.3). In addition to providing

all of the functionality of Dummynet, KauNet introduces a new concept; deterministic em-

ulation effects using a pattern based system. Patterns are data files inserted into KauNet,

defining specific points at which to apply different emulation effects. Each pattern con-

1

2 CHAPTER 1. INTRODUCTION

sists of a number of values divided into discrete steps, each step representing either one

millisecond or one packet in the emulation, depending on the mode of operation. Each

value represent an emulation effect to be applied at the specified point. Through the use

of patterns, experiments can be repeated with a high degree of reproducibility by using

the same patterns and traffic.

1.1 Problem, Goals & Motivation

Currently, KauNet statistics and limited emulation information is only available on de-

mand. The purpose of this thesis is to introduce a new mechanism (trigger passing) to

allow observers residing outside the emulator (subscribers) on both local and remote ma-

chines to receive notifications (events) from KauNet. With the ability for KauNet to send

notifications automatically and in real-time, it is possible to emulate additional network

characteristics, such as cross-layer information. It can also be used for more general up-

dates and control messages. Examples of the use of notifications in KauNet are given in

greater detail in Section 3.2.

The trigger passing functionality is to be realized by implementing a new type of KauNet

pattern; the trigger pattern. The trigger pattern should be implemented in such a way that

it can be used in the same manner as, and synchronized with, the existing patterns. This

allows notifications to be sent at specific points in time with the same granularity as

other KauNet patterns. Each time the trigger pattern is invoked, KauNet should send an

event notification out of the emulator, including any information deemed necessary for the

receiving subscriber. The goals of this thesis are to;

1. Determine different methods for how the trigger passing mechanism can be imple-

mented.

2. Determine what and how much information the different methods can send.

1.2. DISPOSITION 3

3. Evaluate the methods to ensure they perform sufficiently well.

4. Choose an appropriate method and implement the trigger passing mechanism.

5. Implement a way to generate the trigger patterns.

6. Modify KauNet to support trigger patterns and make use of the trigger passing

mechanism to send out event notifications.

The minimum requirements for the trigger passing are that an event should contain at

least four bytes of information, corresponding to the trigger value specified by the content

of the loaded trigger pattern. The mechanism should also be able to send events reliably

(without losses) at a rate equal to or greater than the update rate of the time-driven

KauNet patterns (i.e. one event per millisecond).

1.2 Disposition

This report consists of a total of 7 chapters plus an appendix.

The background, ideas and programs used in the thesis are described in Chapter 2. It

provides an overview of different methods that may be used when evaluating the perfor-

mance of computer network systems. It also introduces the network emulator Dummynet

and its extension KauNet, describing what they are, how they can be used and general

functionality, as well as a simple usage example.

The thesis project is introduced in Chapter 3. It explains the problem to be solved,

motivating why and how trigger patterns and trigger passing can be used to solve this.

The considerations that had to be taken into account during the initial design phase and

evaluation are also mentioned here.

The overall system design is described in Chapter 4. It describes the trigger concept and

trigger patters in greater detail, what they are and what they do. It explains the purpose

and design of the trigger passing mechanism, motivating the design with an evaluation

4 CHAPTER 1. INTRODUCTION

of different possible implementations of the mechanism with an experimental prototype

trigger passing mechanism. Based on this evaluation, the design and purpose of the com-

ponents that are to be implemented for the trigger passing mechanism are explained and

motivated.

Chapter 5 describes the implementation of the entire system. It describes the Dum-

mynet/KauNet architecture and implementation in detail as a background for the imple-

mentation of triggers and the trigger passing mechanism. The structure and creation of

trigger patterns is explained, as well as the implementation details of the trigger passing

mechanism using the components introduced in Chapter 4.

Chapter 6 provides a usage example of how trigger patterns can be generated and used

with KauNet in the form of a simple demonstration experiments. In addition, it shows how

custom adaptation layers can be designed that makes use of the implemented functionality.

The experiments also serves as a verification for the implementation.

The conclusions of the thesis are in Chapter 7. It summarizes the project purpose,

design and implementation, and a short evaluation of the results. Finally, it includes

possible topics for future work and improvements to the system.

Chapter 2

Background

Theoretical analysis, simulation, emulation and live testing are all different methods to

evaluate performance and behavior of computer networking systems. This chapter gives

a brief overview of the mentioned methods, as well as an introduction to KauNet, an

extension to the widely used emulator Dummynet, the emulator used in this thesis. A

description of the Internet Protocol Firewall application (IPFW), which is used to configure

KauNet, is also available. There are also a few examples provided to illustrate the setup

and usage of KauNet and pattern creation.

2.1 Evaluation of Computer Networking Systems

Evaluation of computer networking systems is often performed to determine the perfor-

mance and behavior of software (for example a network protocol) over a network. To get

an estimate of how different software behaves, there are many different ways to test it. In

the following sections, the four primary methods available are described for how evaluation

of software over a network can be performed. The methods include theoretical analysis,

simulation, emulation and live testing.

5

6 CHAPTER 2. BACKGROUND

2.1.1 Theoretical Analysis

The goal of doing a theoretical analysis of a computer networking system is to understand

and control how network and traffic are formed. The understanding helps when designing

mechanisms and algorithms to efficiently locate and share information. Mathematical mod-

els can be used to understand the performance limits and trade-offs in computer networks.

For example, web browsers and other network related applications use the Transmission

Control Protocol (TCP) [1] to transfer information between computers over the Internet.

As there are many applications relying on TCP, it is a massive candidate for theoretical

analysis. An example of this is [2], where they more accurately predict TCP send rate

using a simple analytic characterization.

2.1.2 Simulation

Simulated Network

Host BHost A

Simulator Host

Figure 2.1: Simulator.

A network simulator is essentially a software implementation of a real network, used to

mimic the expected behavior of a network in a given scenario. Rather than using the actual

hardware, all components in the simulator, such as routers, hosts and links are virtual,

creating a representation of a real network and its components. As such, for a complete

2.1. EVALUATION OF COMPUTER NETWORKING SYSTEMS 7

and accurate simulation, each component and protocol used in the simulation must be

implemented separately, along with any effect they may have on the traffic. An example

of a simple network simulator setup is illustrated in Figure 2.1, featuring a simulation of

a satellite connecting two end hosts. In addition to the hosts, dishes, satellite and links

connecting them, a traffic generator component would also have to be implemented in

order to simulate the traffic between the two hosts. By using a software implementation,

testing becomes hardware independent and with a great deal of control, offering a number

of benefits.

First, the level of control over each component allows each step in the simulation to

be monitored closely, allowing full control of anything taking place within the simulator.

This makes it easy to identify potential bottlenecks and problems in the implementation.

In addition, it offers easily reproducible results by simply using the same simulation pa-

rameters to repeat the test [3]. Second, as the testing is done in a virtual environment, no

special hardware is required. A simulator can typically run on a single work station. This

is especially beneficial in scenarios with large or advanced networks, where creation and

modification to the experiment may be both expensive and complicated to perform [3], e.g.

an Internet scenario. Eliminating the need to build an actual network also means the test

scenarios are easy to both create and alter by simply adding or removing components to the

virtual environment. Last, the hardware independence means that the simulation is not

subject to limitations found in real hardware and software implementations. A simulator

can easily ignore these limitations, such as protocol overhead or routing delays, or even

offering features that are not possible in real systems, such as links with extremely high

bandwidth (and traffic generators capable of taking advantage of it) or free of corruption.

This is possible as the simulator does not have to run in real-time or transfer any actual

data over a network link.

Unfortunately, the software implementation also has drawbacks. A real network with

real protocols and hardware and software components contain numerous factors that may

8 CHAPTER 2. BACKGROUND

influence the traffic and test results in ways that are hard to predict. Implementing all

these factors in the simulator may be difficult or even impossible (cf. [4][5][6]). Therefore,

it is important to note that the accuracy of any achieved results depend greatly on the level

of abstraction and how accurate the implementation of the simulator is. As a result, many

simulators either have a high level of abstraction or are specialized for certain scenarios.

Given these properties, simulators are well suited for performing an initial evaluation of

a system as no potentially expensive prototype needs to be built. For this reason it is often

popular within the academic community, and numerous simulators are available. However,

evaluation using a simulator should be seen as complementary to more thorough testing

using the actual implementations as opposed to a simulator implementation, in order to

obtain more accurate results. An example is the network simulator 2 (ns-2) [7] and its

successor ns-3 [8] (currently in development).

2.1.3 Emulation

Simulated

Dish – Satellite – Dish

Communication

Host BHost A Emulator Host

Figure 2.2: Emulator.

An alternative to simulation is emulation. In practice, an emulator is fairly similar

to a simulator in that it simulates a network rather than using an actual one. The main

difference is that it also uses real hardware and software in the experiment to an extent.

This difference is illustrated in Figure 2.2, using the same experiment setup as with the

2.1. EVALUATION OF COMPUTER NETWORKING SYSTEMS 9

simulator (see Figure 2.1 for comparison). Note the difference in the setup, where the

emulator uses two real hosts connected via an emulator host, whereas the simulator uses

virtual hosts. This is a typical setup for network emulators. The hosts themselves provide

the traffic generation functionality (using a specialized tool such as Iperf [9], or an arbitrary

application), as well as handle any end-to-end functionality. The emulator host simulates

the intermediate network characteristics. This is done by intercepting the incoming and

outgoing traffic sent by the end hosts and applying various emulation effects on it, such as

dropping, delaying or modifying the content of the packets.

Like a simulator, an emulator avoids the reliance on any actual hardware beyond the

hosts and network link to emulate the characteristics of a specific network configuration.

Therefore, setting up and altering an experiment is fairly easy, for the most part consisting

of (re)defining the emulation effects. An important difference is that an emulator uses

the actual implementation of protocols, software and some of the network hardware (as

opposed to the simulator, which uses its own implementation). For this reason, it is

sometimes referred to as a real-time simulator. Emulators generally only simulate an end-

to-end effect on the traffic [10], imposing the characteristics of the network on the traffic,

whereas a simulator generally tries to create a virtual representation of the entire network

topology. This increases the level of abstraction, reduces the control over the environment

and makes it considerably more difficult to identify specific problems in the test when

compared to a simulator, as the emulator is essentially a black box. However, increased

abstraction also reduces complexity and offers a number of advantages. This solution means

that the emulator needs to implement less functionality, making the implementation less

complex and generally allowing emulators to offer broader capabilities than a simulator,

though also less detailed. In addition, the reliance on real implementations means that

emulators are subject to the same inherent limitations as the original implementations and

able to automatically include some of the factors that a simulator may find difficult to

implement, bringing the tests closer to a real scenario. As a bonus, code implemented

10 CHAPTER 2. BACKGROUND

for testing using an emulator can often be reused as-is in the final product, whereas a

simulation implementation may require a complete rewrite. A drawback from the reduced

control comes in the form of a somewhat lower degree of reproducibility due to the use of

components outside the scope of the emulator, introducing additional factors that cannot

be fully controlled. Use of deterministic emulation effects greatly reduces this problem

however, offering fairly easily reproducible results.

An emulator is a compromise between a simulator and a real network, taking advantage

of properties from both; the repeatable, controllable and easily created environment of a

simulator, with the use of real code and hardware from a real network for more accurate

results. Numerous emulators are available, such as the previously mentioned ns-2 and ns-3

with its provided emulator interface, as well as Dummynet [11] and its extension KauNet

[12], both of which will be explained in greater detail later in this chapter.

2.1.4 Live Testing

Host BHost A

Figure 2.3: Live testing.

Finally, the most direct method of evaluation is to use a real network, such as the

Internet, or a test bed for more specific tests. The most immediate disadvantage should

be obvious; it requires an actual network with all its components to be constructed and

configured. The same scenario as in the previously mentioned simulation and emulation

2.2. DUMMYNET 11

examples (see Figure 2.3) would require a setup involving an actual satellite, which is

generally infeasible for testing purposes. Live testing over custom networks is therefore

potentially expensive, both in terms of hardware costs and time, and difficult to modify.

An alternative is to use existing infrastructure, such as the Internet, but that option

raises another problem with live testing. Reproducing test results may be difficult or even

impossible due to the large number of factors beyond the control of the experiment. For

instance, the traffic pattern on the Internet changes constantly and the conditions are

unlikely to be identical between tests. Even controlled test beds can experience changing

conditions as random events in the nodes due to software or hardware may influence traffic

generation or forwarding. Furthermore, it may be difficult to accurately interpret the

results. An unexpected result could be caused by the tested system itself, but also by

the implementation of the transport protocol, operating systems or hardware used in the

test bed [3]. The use of the actual protocols and hardware also means that all factors are

automatically included, unlike simulators and emulators where some or all of these must

either be ignored or implemented explicitly [3][6]. This in turn means that live testing is

usually a far more accurate way to estimate the performance of a system and its behavior

in a real world scenario. Live testing is therefore an important part of the evaluation,

despite its difficulty to deploy and use.

2.2 Dummynet

One network emulator widely used is Dummynet [5], originally developed by Luigi Rizzo

in the late 1990s to run network experiments. It has since then also been used for traffic

shaping and bandwidth management. The emulator is a software implementation and, for

the last decade, a standard component of FreeBSD (see Appendix B). It is also available

for Mac OS X (since 2006), and a ported version for Linux was recently released (2009).

Dummynet supports various emulation features, including bandwidth limitations, delay,

12 CHAPTER 2. BACKGROUND

and probabilistic packet losses over multiple links. Multi-hop links can be emulated by

reinjecting traffic into the emulator, allowing Dummynet to be used to emulate both simple

and complex topologies. The emulator can be further extended by simply linking several

instances of Dummynet or physical systems in the test bed.

Host A Host B

IP traffic IP traffic

DummyNet

Pipe 1

Pipe 2

User

IPFW

Configuration of

DummyNet

. . .

Pipe n

Emulator

Test Network For Emulation Traffic

Figure 2.4: Dummynet - Emulation overview.

An example of an emulation setup using Dummynet is shown in Figure 2.4. Host A and

Host B are connected to each other through the Dummynet Network Emulator, forming

a dedicated experiment network. These hosts are used as the source and destination for

the traffic in the experiment and they also generate the traffic itself, while the Dummynet

machine emulates the intermediate network. The user interacts with Dummynet via the

IPFW application (see Section 2.2.1), which creates and manages the pipes and queues used

in Dummynet (see Section 2.2.2). In addition to providing the interface for Dummynet,

IPFW also manages the rules used for packet classifying. Each pipe represents a flow

and the rules can be used to match traffic against certain conditions and filter it through

specific pipes. Dummynet works by intercepting network traffic in the protocol stack and

applies the specified emulated effects for each pipe, for example bandwidth limitations [13].

Figure 2.5 illustrates in detail the path of a packet through the emulator. As a packet

enters the emulator from the network stack, it is classified by IPFW by matching it to one

2.2. DUMMYNET 13

Dummynet

Scheduler

Pipe 1

IPFW

Rules
Incoming Packets Outgoing Packets

Pipe 2

Pipe n

Queues Delay Lines

Figure 2.5: Dummynet pipes and traffic filtering.

of its predefined rules. The packet is then placed in one of the queues belonging to the pipe

specified by the matched rule. Alternatively, if packet dropping has been configured for the

pipe and is triggered by the packet, the packet is immediately dropped. Dummynet drain

these queues at a rate corresponding to the bandwidth of the emulated link, using one of

several possible queue management schemes, including Random Early Detection (RED)

[14], First-In-First-Out (FIFO) and Worst-case Weighted Fair Queuing (WF2Q+) [15][16].

As the queues are drained, the packet eventually enters the scheduler. The scheduler

processes the emulated effects of the link to calculate the packet’s expected output time.

Based on this, the packet is then placed in a delay line, from which it is eventually removed

and reinjected into the network stack.

2.2.1 IPFW & Packet Classifying

The Internet Protocol Firewall (IPFW) [17] is an optional firewall application part of and

sponsored by FreeBSD. It is used to control the traffic flow through the use of rules created

through a built-in stateless rule syntax. With the addition of Dummynet, IPFW also

provides an interface for interacting with the emulator, and support is added for the pipe

and queue objects used in Dummynet. Through IPFW, additional pipes and queues can be

added to and removed from Dummynet, existing pipes and queues can be configured, and

traffic flow statistics can be retrieved. It also provides the packet classification functionality

14 CHAPTER 2. BACKGROUND

used to divide traffic into the various pipes and queues in Dummynet.

IPFW filters traffic based on a rule hierarchy created by the user. When a packet

enters or leaves the host, IPFW attempts to match it to a rule. These can include, for

instance, the type of protocol used and the source or the destination (IP address or port

number). Several similar rules may be added, which means that traffic may match more

than one rule. In these cases, IPFW will attempt match the traffic to the rule with

the highest priority (the lowest rule ID number) and work its way through the rules by

decreasing priority until it finds one that matches. Although by default, IPFW will only

match a packet once to a single rule, it is also possible to reinject matched packets into the

classifier. When matching reinjected traffic, IPFW will continue matching from the last

matched rule in order to prevent infinite loops. Once a matching rule has been selected,

IPFW can choose how to handle the traffic, for example by allowing or denying it. By

default, IPFW contains a rule with the lowest possible priority, matching any traffic that

has not already been matched, that simply drops the packet.

2.2.2 Pipes & Queues

A pipe is essentially a representation of a traffic flow, along with certain restrictions and

modifiers placed upon it. These restrictions provide the emulated properties of the link,

such as maximum bandwidth, packet losses, or any other effects Dummynet is capable of

emulating. Dummynet can use an arbitrary number of pipes, each identified by a unique

identifier and configured individually with any combination of emulation effects.

Queues are queues of packets that share the bandwidth of a single pipe. Several queues

can be attached to a single pipe, which also contains a default queue (meaning a queue

does not need to be explicitly defined for each pipe). As with pipes, they can be configured

separately, to accept a certain type of traffic or different sizes. The Dummynet scheduler

uses one of several queuing disciplines to drain the queues as fast as possible, as determined

by the emulated bandwidth of the pipe.

2.2. DUMMYNET 15

As illustrated in Figure 2.5, the rules in IPFW is used to filter the traffic through

specific pipes. This is done by allowing IPFW to create rules with pipes attached to them

as the action taken for a matched rule. One rule may for example match only TCP traffic

and divert this type of traffic through a specific pipe. Another rule may match UDP traffic

and filter this through another pipe. Using different rules and pipes, arbitrary topologies

of pipes can be constructed as needed [13].

2.2.3 Dummynet Usage Example

Below is a simple example illustrating how probability based packet loss, one of the em-

ulation options in Dummynet, can be configured and used. The test bed is setup as in

Figure 2.4, where host A (10.0.1.1) attempts to ping host B (10.0.2.1) via the Dummynet

host.

Emulator# ipfw add 1 pipe 42 icmp from 10.0.1.1 to 10.0.2.1 out

Using IPFW on the KauNet host, a rule with ID 1 (highest possible priority) is added.

The action for this rule is to filter the traffic through a pipe, with ID 42. The type of

traffic that matches this rule is any traffic using the Internet Control Message Protocol [18]

(ICMP, e.g. ping), from 10.0.1.1 to 10.0.2.1, applying to outgoing traffic only.

Emulator# ipfw pipe 42 config bw 10Mbit/s delay 10ms plr 0.3

Next, IPFW is used to configure pipe 42 with a set of emulation parameters. The pipe

receives a bandwidth limitation of 10 Mbit/s as well as a delay of 10 ms (in addition to

any normal delay). Finally, a packet loss rate of 30% is set.

Host A# ping -i 0.1 -c 20 10.0.2.1

Illustrating the effects on the emulated link, host A attempts to ping host B (in this

example using 20 packets at a rate of 10 per second).

16 CHAPTER 2. BACKGROUND

PING 10.0.2.1 (10.0.2.1): 56 data bytes

64 bytes from 10.0.2.1: icmp_seq=0 ttl=64 time=10.771 ms

64 bytes from 10.0.2.1: icmp_seq=1 ttl=64 time=11.713 ms

64 bytes from 10.0.2.1: icmp_seq=2 ttl=64 time=11.299 ms

64 bytes from 10.0.2.1: icmp_seq=6 ttl=64 time=11.956 ms

64 bytes from 10.0.2.1: icmp_seq=8 ttl=64 time=11.285 ms

64 bytes from 10.0.2.1: icmp_seq=11 ttl=64 time=11.161 ms

64 bytes from 10.0.2.1: icmp_seq=12 ttl=64 time=11.002 ms

64 bytes from 10.0.2.1: icmp_seq=13 ttl=64 time=11.297 ms

64 bytes from 10.0.2.1: icmp_seq=14 ttl=64 time=11.023 ms

64 bytes from 10.0.2.1: icmp_seq=15 ttl=64 time=10.641 ms

64 bytes from 10.0.2.1: icmp_seq=16 ttl=64 time=11.359 ms

64 bytes from 10.0.2.1: icmp_seq=17 ttl=64 time=11.299 ms

64 bytes from 10.0.2.1: icmp_seq=18 ttl=64 time=10.914 ms

64 bytes from 10.0.2.1: icmp_seq=19 ttl=64 time=11.429 ms

--- 10.0.2.1 ping statistics ---

20 packets transmitted, 14 packets received, 30.0% packet loss

round-trip min/avg/max/stddev = 10.641/11.225/11.956/0.337 ms

As a result of Dummynet intercepting the traffic, packets 3,4,5,7,9 and 10 are dropped

as they are sent, a total of 30% as specified. It should be noted that as packet losses

in Dummynet are probabilistic, another ping may result in different packets and even a

different number of packets being dropped.

2.3. KAUNET 17

Host A Host B

IP traffic IP traffic

DummyNet / KauNet

Pipe 1

Pipe 2

patt_gen

utility
Patterns

User

IPFW

Configuration of

DummyNet/KauNet

. . .

Pipe n

KauNet Host

Test Network For Emulation Traffic

Figure 2.6: KauNet - Emulation overview.

2.3 KauNet

Two problems faced when working with Dummynet is the difficulty in reproducing tests and

the difficulty in controlling the emulated environment. The former is primarily a result of

the use of probabilistic emulation effects, while the latter comes from the use of a command

line tool (IPFW) for configuration of the environment, requiring changes to the emulation

to be made manually. Reproducing an experiment would therefore require very exact

synchronization of Dummynet, scripts and traffic generation tools. Using probabilistic

emulation effects, accurate reproduction may not be possible at all. KauNet [12] is an

extension to Dummynet attempting to alleviate these problems by introducing the ability

to emulate deterministic emulation effects.

Its functionality include deterministic emulation of the same features that Dummynet

can emulate; bandwidth limitations, packet losses and delays, in addition to the prob-

abilistic emulation of the original Dummynet1. The important difference is that unlike

the original Dummynet, KauNet emulation effects are deterministic and controlled using

premade patterns. Patterns are data files generated using the included pattern generation

utility (patt gen, see Section 2.3.2), either manually by a user or from traffic logs or other

1KauNet also introduces a new emulation effect; the ability to apply bit-errors to packets.

18 CHAPTER 2. BACKGROUND

real world data sources. The patterns support both a data- and time-driven mode, act-

ing on a per packet basis (in data-driven mode) or per millisecond basis (in time-driven

mode). Through the use of deterministic patterns, experiments have a great deal of control

over the environment as well as offering a high degree of reproducibility. A usage example

illustrating deterministic packet loss is included in Section 2.3.3.

Dummynet and KauNet are integrated with a patched IPFW for setup and configu-

ration of the emulation environment. The patterns created using patt gen are inserted

into KauNet using a new configuration option in IPFW, allowing a user to load KauNet

patterns for specific pipes, as illustrated in Figure 2.6.

2.3.1 Patterns

1 2 3 4 1 4

1 2 3 4 2 3

Figure 2.7: Example 1 - Dummynet with 50% packet loss.

1 2 3 4 1 4

1 2 3 4 1 4

Figure 2.8: Example 2 - KauNet with 50% packet loss.

The use of patterns in KauNet is a deterministic method to describe the characteristics

of a network. For example, Dummynet without KauNet can drop packets with a certain

2.3. KAUNET 19

Characteristic Data-driven mode
Packet Loss The specified packets are lost
Bandwidth Change Changes take place after the specified number of sent packets
Delay Change Changes take place after the specified number of sent packets
Bit-errors Flip bits at the specified positions

Table 2.1: Pattern behavior in data-driven mode.

Characteristic Time-driven mode
Packet Loss All packets within the specified time periods are lost
Bandwidth Change Changes take place at specified points in time
Delay Change Changes take place at specified points in time
Bit-errors Flip bits at the specified points in time

Table 2.2: Pattern behavior in time-driven mode.

probability, meaning that two test runs might drop different packets. In Figure 2.7, four

packets are received by the Dummynet host and, in the first run, the second and third

packet are dropped. In the second run, four packets are received by the Dummynet host

and the first and fourth packet are dropped. With a KauNet pattern loaded however, test

runs are always the same and the pattern also describes which packets to drop. In both

test runs in the second example (see Figure 2.8), four packets are received and the second

and third packet are dropped. As KauNet is using patterns to know which packets to drop,

each new run will result in the same dropped packets.

All patterns may be configured to operate in one of two modes; data-driven mode

or time-driven mode. Data-driven patterns use incoming packets to step forward in the

pattern files, while time-driven patterns step forward each millisecond (an exception being

bit-error patterns, see below). Patterns can control four different characteristics; packet

loss, bandwidth changes, delay changes and bit-errors. A combination of the two modes

and the four characteristics produce different behaviors for the network (see Table 2.1 and

Table 2.2).

Each loaded pattern has an index to its current position in the pattern file. Bit-error

patterns in both data-driven mode and time-driven mode are coupled with the bandwidth

20 CHAPTER 2. BACKGROUND

restriction in the pipe, where the bandwidth specifies the number of bits to advance in the

pattern file. In time-driven mode, the index is incremented every millisecond, even if no

packets have been received, while data-driven pattern need a received packet to advance.

For the other characteristics (packet loss, bandwidth change and delay change) the index

is incremented one step for every millisecond or for every received packet, time-driven

mode or data-driven mode respectively. The default behavior when reaching the end of a

pattern is to wrap-around and start over. It is also possible to add an additional pattern

to continue emulation using the second pattern after the end of the first pattern [19].

An illustration of an example with packet losses in the different modes can be seen

in Figure 2.9 and Figure 2.10. The created pattern is of length four and set to drop the

second and fourth packet (0101, a zero to forward the packet successfully and a one to drop

the packet). As seen in the picture (Figure 2.9), the first, third and fifth (the first packet in

the second run) packet are forwarded successfully, while the second and fourth packet are

dropped. The pattern is wrapped around itself, meaning the sixth packet received would

be dropped and the seventh packet would be forwarded successfully, and so on.

The same pattern, as used in the previous example, is applied in the next example. As

this is a time-driven pattern, the pattern indicates that all packets received in the second

and fourth millisecond would be dropped. This is also illustrated in Figure 2.10. In this

example, two packets are received each millisecond, they are either dropped (a one) or

forwarded successfully (a zero).

For KauNet to be able to use a pattern, it need to be inserted into the kernel space

ahead-of-time. This is done by using the IPFW command.

ipfw pipe 100 config bw 1Mbit/s delay 10ms pattern created_pattern.pat

This command configures an already existing pipe (ID 100) and sets the bandwidth to 1

Mbit/s, the delay to 10 milliseconds and to use the created pattern in created pattern.pat.

The pattern is inserted into kernel space in a compressed format, where it is controlled by

KauNet.

2.3. KAUNET 21

Figure 2.9: Data-driven packet loss example [19].

Figure 2.10: Time-driven packet loss example [19].

22 CHAPTER 2. BACKGROUND

In addition to regular patterns, KauNet supports grouping patterns together into sce-

narios. Scenarios are, like patterns, created with patt gen, but are essentially simply col-

lections of patterns.

2.3.2 Pattern Generation Utility

patt gen is a command line pattern generation tool which can both create and manage

patterns. Pattern content can be entered on the command line directly or imported from

simple text files containing uncompressed pattern descriptions. The pattern descriptions

can be created from different kinds of sources, for example, simulator results, traffic logs

or hand crafted.

patt_gen <type> <how to generate> <filename> <mode> <size> <positions>

There are four types of patterns available for the pattern generation; packet loss, band-

width change, delay change and bit-error. Each of these types can be generated in a

pseudo-random way, using the Gilbert-Elliot model [20][21] or by specifying positions or

intervals directly (or in a file). The size parameter has a different unit depending on the

selected mode. Packet loss, bandwidth change and delay change use the unit packets in

data-driven mode and the unit milliseconds in time-driven mode. The fourth character-

istic, bit-error, uses the unit kilobyte in both data-driven and time-driven mode. Due to

patt gen compressing the pattern file, there is only an indirect connection between size

and disk space. The position parameter describes all positions (or intervals) used in the

pattern.

For convenience, there is also a graphical user interface (GUI) available, called Pattern

generation GUI (pg gui).

2.3. KAUNET 23

2.3.3 KauNet Usage Example

This usage example is illustrated in Figure 2.6. Host A (10.0.1.1) sends ping packets to

Host B (10.0.2.1) via a KauNet emulator.

The following is an example of a packet loss pattern used in KauNet.

KauNet# ./patt_gen -pkt -pos plp.pat data 20 5,6,8,12,14,17

patt gen is in this example used to create a packet loss pattern by hand. The first parameter

tells patt gen that this is a packet loss pattern. The second says that this pattern is position-

based, i.e. the pattern is triggered for specific packets or milliseconds. The third is the file

the pattern will be written to. The fourth says that this pattern will be data-driven, i.e.

advanced for each packet. The fifth defines the length of the pattern, in this case that it

will cover 20 packets before wrapping around. Finally, the series of numbers defines the

specific packets to be dropped.

KauNet# ipfw add 1 pipe 42 icmp from 10.0.1.1 to 10.0.2.1 out

KauNet# ipfw pipe 42 config bw 10Mbit/s delay 10ms pattern plp.pat

IPFW is now used to create a rule matching any outgoing ICMP traffic (from 10.0.1.1 to

10.0.2.1), along with a pipe to filter this traffic through. The pipe is configured with a

fixed bandwidth and delay, and the KauNet pattern file is loaded.

Host A# ping -i 0.1 -c 20 10.0.2.1

Using ping, 20 ICMP packets are sent to a network connected machine.

PING 10.0.2.1 (10.0.2.1): 56 data bytes

64 bytes from 10.0.2.1: icmp_seq=0 ttl=64 time=11.545 ms

64 bytes from 10.0.2.1: icmp_seq=1 ttl=64 time=11.039 ms

64 bytes from 10.0.2.1: icmp_seq=2 ttl=64 time=10.983 ms

24 CHAPTER 2. BACKGROUND

64 bytes from 10.0.2.1: icmp_seq=3 ttl=64 time=11.017 ms

64 bytes from 10.0.2.1: icmp_seq=6 ttl=64 time=11.548 ms

64 bytes from 10.0.2.1: icmp_seq=8 ttl=64 time=11.074 ms

64 bytes from 10.0.2.1: icmp_seq=9 ttl=64 time=11.253 ms

64 bytes from 10.0.2.1: icmp_seq=10 ttl=64 time=11.430 ms

64 bytes from 10.0.2.1: icmp_seq=12 ttl=64 time=11.009 ms

64 bytes from 10.0.2.1: icmp_seq=14 ttl=64 time=11.115 ms

64 bytes from 10.0.2.1: icmp_seq=15 ttl=64 time=11.269 ms

64 bytes from 10.0.2.1: icmp_seq=17 ttl=64 time=11.307 ms

64 bytes from 10.0.2.1: icmp_seq=18 ttl=64 time=11.758 ms

64 bytes from 10.0.2.1: icmp_seq=19 ttl=64 time=11.679 ms

--- 10.0.2.1 ping statistics ---

20 packets transmitted, 14 packets received, 30.0% packet loss

round-trip min/avg/max/stddev = 10.983/11.288/11.758/0.255 ms

The results show that packets with sequence numbers 4, 5, 7, 11, 13 and 16 are dropped,

corresponding to the positions defined by the pattern, for a total of 30% loss. Note that

subsequent runs using the same pattern would result in the same packets being dropped

as the packet loss pattern is deterministic. Compare this to the unmodified Dummynet

example in Section 2.2.3, where another experiment using the same emulator configuration

could result in vastly different results.

2.4 Summary

Evaluating performance and behavior of both new and old systems are an important part of

developing new protocols and software for use in a network environment. Evaluation may

be performed using theoretical analysis and models, the use of simulators and emulators to

2.4. SUMMARY 25

create a fully or partially virtual test bed, or the use of real networks such as the Internet

or a custom built test bed. Each method offers both advantages and disadvantages and

are often complementary and beneficial for certain scenarios.

The focus of this thesis is emulation, specifically emulation using Dummynet and its ex-

tension KauNet. Dummynet is a well known emulator originally implemented on FreeBSD,

a UNIX-like open source operating system, and has since been ported to several other plat-

forms. It offers several emulation options including bandwidth restrictions and delays, as

well as probabilistic packet losses over multiple links and packet classification using the

IPFW application. KauNet extends Dummynet by introducing deterministic emulation of

the previously mentioned options on top of the original Dummynet functionality. This is

done through the use of patterns, separate data files generated by hand or real world data

sources loaded into the emulator. KauNet thus offers greater control over the emulated

environment and a higher degree of reproducibility.

Chapter 3

Problem Description

This chapter provides an overview of KauNet and its capabilities, as well as an introduction

and motivation for the new functionality that is to be implemented in this thesis; the trigger

pattern and trigger forwarding. Triggers are a method of passing information from KauNet

to external applications and may be used for a variety of purposes, such as simulating cross-

layer information or providing real-time emulation information. The chapter describes

the desired functionality and the considerations that had to be taken into account when

designing and implementing the trigger pattern and forwarding mechanism.

3.1 Background

KauNet is under development at Karlstad University and is used in research both at the

university and at international research institutions such as ISAE in Toulouse, France.

KauNet is a network emulation system and emulates deterministic end-to-end network

characteristics such as bandwidth changes, delay changes, packet losses and bit-errors.

The deterministic behavior is controlled by patterns, which can be based on many dif-

ferent sources of input, for example simulation results, actual measurements, statistical

properties, or be hand-crafted. The patterns are run in two different modes; time-driven

27

28 CHAPTER 3. PROBLEM DESCRIPTION

and data-driven mode. In time-driven mode, the pattern is advanced one step each mil-

lisecond, while in data-driven mode, the pattern is advanced for every received packet.

One exception is bit-errors, which operates in data-driven mode and are more fine-grained

(advances on per bit basis).

The next section of this chapter will introduce a number of examples where the use of

triggers can provide additional functionality to the emulator.

3.2 Motivating Examples

Triggers can be used for a variety of purposes. A very simple usage scenario would be to

send emulation statistics up from KauNet to allow detailed real-time logging of the emula-

tion, as opposed to the on-demand statistics available via IPFW. Evaluation of algorithms

estimating link properties such as delay or available bandwidth may benefit from access to

the actual link properties to compare to the estimation. Another possibility is to use it for

real-time updating of the current emulation status, which may be useful for both statistics

gathering and synchronization. However, triggers are not limited to distributing existing

statistics, but can also be used to support additional functionality in the emulation, such

as emulating cross-layer information at the end hosts for usage in evaluation of applications

and protocols utilizing cross-layer optimization.

3.2.1 Real-Time Emulation Updates

Modification to the experiment setup during the course of the experiment requires careful

synchronization of all components involved. For instance, a scenario may involve changing

the emulator configuration to add a new link or remove an existing one at a specific time, or

to start or stop a traffic generation tool at specific points during the emulation to simulate

a network event taking place. This may be both difficult and time consuming to solve

using scripts on multiple machines. By using trigger patterns, this synchronization can be

3.2. MOTIVATING EXAMPLES 29

done easily using the existing setup and triggers. It will then become a simple matter of

creating a trigger pattern that raises events at the same time as a different loaded pattern.

Instead of trying to estimate when an internal emulator event takes place, the emulator

itself can then use triggers to inform other applications of the event with a high degree of

accuracy, and they in turn can react accordingly. Another more general use case for this

type of trigger usage is logging.

3.2.2 Cross-layer Optimization

Transport Layer

Network Layer

MAC Layer

Link Layer

Adaptation Layer

Application Layer

Application

KauNet Host

2

3

1

Host A

Figure 3.1: KauNet Trigger Example.

A candidate for the use of trigger patterns is the cross-layer optimization scenario. In a

real network, an application can receive and react to information, such as the signal strength

for a wireless connection, from interfaces residing in the lower layers in the network stack.

For an emulated link, this is not possible as the link will actually be a wired connection with

30 CHAPTER 3. PROBLEM DESCRIPTION

relatively simple characteristics attempting to emulate complex characteristics. In these

cases, it would be beneficial for the host to be able to receive information from the various

layers of the network stack. A simple example is the estimation of available bandwidth

using link information, such as the aforementioned signal strength. Another example is

wireless mobile ad-hoc networks (MANETs). As the topology in these networks changes,

links may go down unexpectedly and cause packet losses until a new route is established.

As a result, they often show significantly degraded TCP performance (cf. [22][23][24]).

The loss recovery service provided by TCP assumes that any packet loss is caused by

excessive traffic on the link, engaging the TCP congestion control mechanism [25]. The

congestion control will attempt to prevent further losses by reducing the transmission rate

(in implementations such as New Reno [26], the rate is reduced by half). However, if a con-

gested network is not the cause, reducing the throughput will not solve the actual problem.

Furthermore, once a new route is established, the throughput may take some time reaching

its previous level (cf. the congestion avoidance algorithm [25]). By exploiting cross-layer

information, TCP can be made aware of the cause of the packet loss and react more appro-

priately. While insufficient bandwidth may still be dealt with using the congestion control,

in case of a routing failure, it may be more efficient to resume transmitting at the former

rate once a new route has been established [27]. As a final example, TCP Quick-Start [28]

makes use of cross-layer information for initial bandwidth estimation. As a connection is

established, the sender will send a network layer request for bandwidth along the routed

path. Intermediate routers may either accept, deny or negotiate a different bandwidth.

Using triggers and a suitable receiving application, these types of cross-layer information

can be emulated and their effects evaluated, as illustrated in Figure 3.1. In this setup, host

A is connected to a KauNet host used to emulate a wireless link. Triggers are used here by

KauNet to send a notification to a subscribing adaptation layer on host A (1), which will

receive and interpret the event as emulated cross-layer information (e.g. signal strength).

The adaptation layer can then transform and forward the event directly to the application

3.3. DESIGN CONSIDERATIONS 31

(2), while the application will interpret the information as cross-layer information from

the network stack (3). This allows events and information specific for routers or wireless

networks to be emulated even when using a wired test bed without any of the actual

hardware.

3.2.3 Link Properties Estimation

Many applications and protocols rely on algorithms to estimate network resources or prop-

erties, such as delay or available bandwidth [29]. In TCP, these types of estimations can

be used to set appropriate protocol parameters based on the expected delay or adjust

the congestion control mechanism to allow a higher throughput based on the expected

bandwidth. An example is the Westwood TCP implementation (TCPW) [30], which uses

bandwidth estimation to control the sending rate. Instead of halving the window and

slowly building the rate back up using the congestion avoidance (as is the case in TCP

implementations such as New Reno [26]), TCPW resets the window size to a value based on

the estimated bandwidth [31]. This means that Westwood is less sensitive to random losses

than New Reno by not overreacting by assuming congestion and cutting the transmission

rate immediately [32].

When testing the accuracy of these algorithms, triggers in KauNet offer a method of

sending the actual values that is used in the emulation directly to an application where

the estimated value can be compared to the real value.

3.3 Design Considerations

In the last example of the previous section, KauNet triggers are used to report the current

bandwidth on the emulated link to an application. Any changes to the bandwidth should

therefore be reported. As modifications to the emulated environment in KauNet are caused

by patterns being invoked, including the emulated bandwidth, a trigger pattern that can

32 CHAPTER 3. PROBLEM DESCRIPTION

run synchronized with the other types of patterns is therefore desired. To accomplish the

synchronization, trigger patterns should have the same structure and granularity as the

other KauNet patterns.

For an adaptation layer to receive triggers generated in KauNet, the KauNet host need

a mechanism to forward the triggers. The adaptation layer can reside on either the local

machine (the KauNet host) or on a remote machine. Different methods should be evaluated

for making a decision about how to pass information to the adaptation layer. The threshold

for the trigger passing rate should be at least one event per millisecond, corresponding to

the resolution of time-driven KauNet patterns.

3.4 Summary

While KauNet supports on-demand access to emulation statistics, it is desirable for a

mechanism to allow immediate notification of events. Event information can be used for

a variety of purposes, such as emulating cross-layer information not otherwise available or

provide real-time statistics and emulation state updates. To facilitate this, an additional

pattern, the trigger pattern, is to be implemented to send events with arbitrary data

from KauNet to an adaptation layer on a local or remote machine. As with the regular

KauNet patterns, the trigger pattern should support both data- and time-driven modes

and be created using the pattern generation utility. In order for events to be forwarded,

the implementation of an appropriate inter-process communication mechanism is necessary.

Various methods are available, and to ensure a working design that can satisfy the demands,

these should first be evaluated in terms of, primarily, reliability, maximum event frequency

and maximum bandwidth.

Chapter 4

Design

This chapter introduces and describes the general design and use of the trigger functionality

to be added to KauNet, as well as necessary modifications to the existing platform. The

trigger functionality is composed of two parts; the trigger passing mechanism that sends

information from KauNet, and the trigger pattern that controls it. This in turn requires the

creation of new components for both sending and receiving events raised by the triggers.

Described in this chapter are the design choices made for both the trigger patterns and

the trigger passing mechanism. Motivating the design choices made is an experiment that

evaluates different possible implementations of an inter-process communication mechanism,

as well as a description of the new trigger passing components that are to be added.

4.1 Triggers

Triggers are internal events taking place within KauNet, and are used as a mechanism for

passing information out from the FreeBSD kernel. As described in Section 3.2, triggers are

useful for several purposes, such as emulating cross-layer information or automatic real-

time emulation updates. KauNet triggers are governed by the trigger pattern that may be

inserted into the emulator in the same fashion as any other KauNet pattern. The trigger

33

34 CHAPTER 4. DESIGN

pattern is a value pattern, meaning it can store arbitrary values for each position in the

pattern. These values are used as the trigger value that is passed when an event is raised.

This enables a user to generate trigger patterns using predefined values that can be used to

describe the different types of events taking place, as well as any related information that

should be passed. As with the other types of KauNet patterns, the trigger pattern can use

both time- and data-driven modes of operation. This means the trigger pattern can be

run synchronous to any other pattern loaded in the emulator1. Therefore, it is possible to

generate events at very precise points in time or at the arrival of specific packets, matching

the occurrence of another pattern event. A trigger pattern could for example be generated

based on an existing pattern to raise events whenever a packet is dropped or when the

emulated bandwidth exceeds a specific threshold. The trigger value could then be used to

describe the type of event and/or the sequence number of the dropped packet or the exact

bandwidth.

4.2 Trigger Passing

Trigger patterns add the ability for KauNet to generate events internally, but for this to be

useful in the general case, some sort of mechanism allowing observers outside the KauNet

kernel to be notified of these events is necessary. The purpose of the trigger passing

mechanism is to allow internal KauNet triggered events to be forwarded to subscribing

adaptation layers (see Section 4.2.4). Ultimately, the trigger passing mechanism should

be able to pass any event raised to an arbitrary number of adaptation layers running on

both local and remote machines. As neither KauNet nor the trigger pattern is aware of

the semantic meaning of the trigger value, the interpretation of the value is left to the

receiver. Therefore, it will also be necessary for the trigger passing mechanism to define

the structure of the data so that it can be accessed and parsed correctly.

1An exception is the bit-error pattern that uses a higher resolution than the per packet basis advance-

ment of the other data-driven patterns.

4.2. TRIGGER PASSING 35

The chosen mechanism must be able to pass a minimum of one event per millisecond up

from the kernel (the maximum event frequency for a time-driven trigger pattern), preferably

out to a local and remote receiver directly and with a margin of error. It should also be

able to pass triggers without any losses, assuming any intermediate network does not cause

packet losses. Finally, it should be able to pass the trigger in a timely manner so that it

is not outdated by the time it arrives at the receiver, barring any network delays beyond

the control of the mechanism. Furthermore, it should preferably be as easy to implement,

modify and use as possible.

4.2.1 KauNet

In order to avoid unnecessary modifications to the KauNet kernel, it was decided that

KauNet should not contain the implementation of the trigger passing functionality (thus

keeping the kernel code cleaner and avoiding the need to frequently recompile the kernel

during development). Instead, this is implemented in a separate kernel module that can be

loaded and unloaded independently. The module itself provides an interface for KauNet

to use when it wishes to pass a trigger. Because of this, only a few lines of code need to

be added to KauNet to support the trigger passing mechanism, and changes to the trigger

passing implementation should require no or only a few changes to KauNet itself.

4.2.2 Trigger Passing Mechanism Evaluation

In the design of the KauNet Communication Module (see Section 4.2.3), consideration had

to be taken to ensure that triggers and the associated data could be handled at a sufficient

rate. As events are potentially triggered continuously, it must be capable of passing the

events in a timely manner. The design chosen for the communication module must be

able to satisfy this demand, but in addition to performance and reliability, other factors

such as complexity, scalability and adaptability/expandability should also be evaluated.

Performance and reliability are evaluated as the maximum rate the mechanisms are able to

36 CHAPTER 4. DESIGN

Application

KauNet

KauNet host

Network

1

2

Figure 4.1: Passing triggers using an IPC mechanism.

KauNet

KauNet host

Network

1

Figure 4.2: Passing triggers using network sockets.

4.2. TRIGGER PASSING 37

send information without losses. The remaining factors are not evaluated experimentally,

but subjectively valued based on how easy a system using the different mechanisms is

to design and implement, and modify in case higher rates or payloads are required. For

this reason, tests were performed using different methods to pass triggers from the kernel

up to the userspace. Two methods were chosen for evaluation; using an inter-process

communication (IPC) mechanism, or using sockets. An IPC mechanism would require two

separate stages; first passing events up from the kernel to an intermediate application (1)

and then sockets to forward them out (2), as illustrated in Figure 4.1. Using sockets would

allow the first step to be bypassed entirely by forwarding the events directly from the kernel

(see Figure 4.2). For the first method, the IPC mechanisms evaluated were POSIX [33]

signals and UNIX domain sockets. For the second, network sockets using the UDP [34]

protocol was tested.

Without an existing trigger pattern, a way to simulate events being sent from KauNet

to an external application had to be implemented. In order for the test to be as accurate

and relevant as possible, the events should be generated in the kernel and forwarded to

a userspace application. Rather than implementing the experiment code directly into the

KauNet code, a kernel module for generating events was created to avoid unnecessary

contamination and repeated compilation of the kernel as well as offer easy modifications,

while still allowing the experiment to take place in kernelspace. A simple userspace client

application was implemented to receive the generated events.

Tests were performed to find the maximum reliable rate at different payload sizes for

the various methods. The maximum reliable rate for each method and payload size was

determined based on ten tests, running for ten seconds each. The number of losses (events

generated and sent but not received) and errors (events not sent or sent incorrectly) were

recorded, and the threshold for the maximum reliable rate was zero losses and zero errors.

The total number of different tested payload sizes were 18, ranging from 4 bytes up to 1000

bytes. From the results of these tests, the maximum reliable bandwidth for each method

38 CHAPTER 4. DESIGN

could be inferred.

Events were generated in bursts, followed by a pause of one millisecond (the shortest

possible reliable pause for the kernel), in order to simulate a number of events taking place

simultaneously within KauNet. This design was chosen in order to stress test the frequency

at which events could be generated reliably, which is important for trigger patterns in data

driven mode. As a result, the tests had to be timed to ensure that they could be performed

in the allocated time. The tests that failed to do so were omitted from the results. An

alternative using a continuous loop and timestamps instead of a pause in order to eliminate

this problem was explored, but was deemed infeasible as the increased CPU load from the

kernel module caused the tests to fail.

Two machines were used during the evaluation. The first machine (see Appendix

Table A.1 for specification) was used in all tests, while the second machine (see Appendix

Table A.2 for specification) was only used during the network socket test (remote). Even

though the two machines have a Gigabit Ethernet card each (connected via a router), the

tests were performed with the cards configured for 100 Mbit/s.

Evaluation of Signals

Kernel Module Application

Data (4 bytes)

Signal

Figure 4.3: Raw signal data transfer.

A POSIX signal is an asynchronous IPC mechanism that may be used to notify a process

of external events. Signals may be sent at any time from any process, the kernel or due

to a hardware exception, to any process with a known process identifier. When a signal is

4.2. TRIGGER PASSING 39

Kernel Module Application

Key (4 bytes)

Segment 0

Allocates /writes

Refers to

segment Reads
/

deallocates

Segment 1

Segment n

. . .

Shared Memory segmentsSignal

Figure 4.4: Dynamic shared memory data transfer.

Kernel Module Application

Offset (4 bytes)

Writes

Refers to

slot index
Re

ad
s

Slot 0

Slot 1

. . .

Slot n

Shared Memory segment

Shared Key Shared Key

Signal

Figure 4.5: Static shared memory data transfer.

40 CHAPTER 4. DESIGN

received, the operating system will cause an interrupt in the receiving process, suspending

the normal flow of execution until the signal has been processed. Various default signal

handlers are implemented that describes how a process should react to the signals, but a

process may also register its own signal handlers to provide a custom functionality for the

different signals (notable exception being the SIGKILL and SIGSTOP signals that may

not be redefined).

In the experiments, the sigqueue() function was used to generate SIGUSR1 interrupts,

allowing an integer (4 bytes of data) to be sent along with the signal. Two different

approaches were examined; raw signals and signals with shared memory. Raw signals uses

the attached data to transmit the event information directly (see Figure 4.3), while signals

with shared memory uses the data as key (see Figure 4.4) or offset (see Figure 4.5) to a

shared memory segment containing the event information. While raw signals are limited

to 4 bytes of data per signal, the addition of shared memory allows for significantly larger

payloads.

When using shared memory, two methods may be used to transmit the event informa-

tion. The first is to use the signal data to include a key to a shared memory segment.

The segment is created when the signal is generated and then deallocated at the receiver

once the information has been read. This method is referred to as dynamic shared mem-

ory (DSM), as the segments are allocated and deallocated as needed. The second method

creates a large shared memory segment at the start of the test, using a predefined key

known to both sender and receiver. The signal data sent is then an offset to one of several

slot in the shared memory segment, containing the event information. The information is

written to the slot when the signal is generated and read once received. Once read, the slot

can safely be reused by overwriting the content with new event information. In the tests,

the memory segment contained 1000 slots to store information. This method is referred

to as static shared memory (SSM), as shared memory is only allocated once and reused

throughout the test.

4.2. TRIGGER PASSING 41

In the case of shared memory, the event information is copied to the local memory on

reception, but is otherwise ignored. This ensures that the shared memory is no longer

needed and can safely be either deallocated or overwritten, while the information remains

at the receiver to be processed when there is time. It also minimizes the risk of reaching

the limit of the number of segments allocated at the same time, in the case of dynamic

shared memory. It is important to note that when the receiver is interrupted by a signal,

any signals received before the signal has been processed will be lost. Because of this, the

processing time for the received information is relevant to the performance of signals as an

IPC mechanism. As the processing becomes more time consuming, the more signals would

risk being lost. To alleviate this problem, an alternative method was also tested. Rather

than to let the interrupt handler take care of the processing, a separate work thread was

used to process the event information instead. By using a separate thread for processing,

the interrupt handler was left with the relatively simple task of storing the received key or

offset for the work thread to process, ensuring that the receiver spent a minimum amount

of time in interrupt mode. In these tests, the number of events that were not processed by

the work thread by the time the test ended were also recorded. In the case of static shared

memory, the number of times unprocessed memory was overwritten was also recorded, as

this would essentially be equivalent to a loss.

Evaluation of Sockets

A socket is a bidirectional endpoint for data communications. Two sockets can send data

back and forth by encapsulating it in a packet, containing the data itself and necessary

headers. They may be configured as use in both local and remote communication, support-

ing a wide range of features, by using different domains and protocols. Network sockets

(AF INET family) uses Internet protocols such as UDP or TCP, IP addresses and ports

for communication over networks. UNIX domain sockets (AF UNIX family) specialize in

local IPC communication, using file system path names for addressing.

42 CHAPTER 4. DESIGN

Both network sockets and UNIX domain sockets were tested, the former using both

a local client and one hosted on a network connected client for a total of three different

test scenarios. For the network sockets, the tests were performed using the UDP protocol.

While TCP does offer some desirable features, specifically retransmission of dropped pack-

ets in this case, it was decided that they would not be necessary for practical use. UDP

was chosen instead to avoid the larger headers and greater overhead.

Unlike with signals, very few special considerations had to be taken into account. Socket

communication feature a built-in buffer that automatically stores the packets until they

can be processed. While signals had the possibility of events being overwritten or lost due

to the receiver being busy, the buffer prevent such problems. Threaded processing was

therefore not necessary. Problems arise only if the buffers are filled, in which case the

arriving packets are dropped. The total number of packets not received were recorded,

along with the number of errors caused by the buffer of the sender being filled.

Results & Conclusion

The maximum reliable rates for the tested methods are illustrated in Figure 4.6. Omitted

from the graph are the test results for raw signals, as their payload can not be adjusted,

remaining constant at 4 bytes per signal. For this payload, raw signals showed no losses

up to 125 signals per millisecond. Signals using shared memory showed a correlation

between the payload size and the maximum rate, more so for SSM than DSM. DSM

signals maintained a rate around 45 signals per milliseconds for payloads up to 250 bytes,

at which it dropped to 40 where it remained for the remaining payload sizes. Higher rates

were tested and could be received, but the kernel was unable to generate the signals at an

appropriate rate and these were therefore excluded. SSM signals by comparison allowed a

significantly higher rate of about 100 signals per millisecond initially, but dropped sharply

to 65 and then 60 at payloads of 450 and 800 bytes respectively.

UNIX domain sockets allowed a fairly high rate of 60 at the lower payloads tested, but

4.2. TRIGGER PASSING 43

 2

 4

 8

 16

 32

 64

 128

 0 100 200 300 400 500 600 700 800 900 1000

R
at

e
(E

ve
nt

s/
M

ill
is

ec
on

d)

Payload (Byte)

DSM
SSM
UNIX

INET (local)
INET (remote)

Figure 4.6: Maximum reliable rate as a function of the payload size.

44 CHAPTER 4. DESIGN

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700 800 900 1000

B
an

dw
id

th
 (

M
bi

t/s
)

Payload (Byte)

DSM
SSM
UNIX

INET (local)
INET (remote)

Figure 4.7: Maximum bandwidth as a function of the payload size.

4.2. TRIGGER PASSING 45

quickly degraded with increased losses as the payload increased, dropping to as low as 2 per

millisecond at a payload size of 1000 bytes. While all tests showed decreased performance

if the system had other tasks to perform simultaneously, the UNIX domain sockets showed

a high sensitivity to disk operations in particular, showing significant degradation.

Network sockets communicating with a local receiver showed initial rates similar to

those of UNIX domain sockets at around 55 per milliseconds. The degradation was signif-

icantly lower however, dropping to 50 at a payload size of 400 bytes and then to 35 at 900

bytes.

Network sockets using a remote receiver initially had a rate of only 15 per millisecond,

the lowest initial value of all the methods, which quickly dropped to 10 at payloads of

only 100 bytes. However, it remained stable at this rate for the remaining payloads,

outperforming or matching UNIX domain sockets at payloads equal to or greater than 200

bytes.

From these results, the maximum data bandwidth out from the kernel can be inferred.

This is illustrated in Figure 4.7, with the bandwidth as a function of the payload size (using

the maximum reliable rate for each size).

To summarize the results, the following can be noted:

• Raw signals are vulnerable to losses only at higher rates, but have a very limited

payload that may make it undesirable for use.

• DSM signals are vulnerable to losses at medium and high rates but support larger

payloads. Errors during sending may result in orphaned shared memory segments

and thus memory leaks. There is also a maximum number of concurrently allocated

segments, regardless of their size.

• SSM signals are vulnerable to losses at medium to high rates depending on the

payload size, but allow the highest rates and bandwidth of all the tested methods.

A long processing time may result in unread events being overwritten (effectively a

46 CHAPTER 4. DESIGN

loss), but unlike the DSM method, does not result in a memory leak.

• UNIX domain sockets allow fairly high rates at smaller payloads, but quickly degrade

as the payload increases. It also degrades significantly with simultaneous hard drive

activity.

• Network sockets on a local machine allow rates similar to UNIX domain sockets, but

significantly lower degradation with increased payloads.

• Network sockets and a remote receiver have the lowest rates and bandwidth of all

the tested methods (although this may be caused by the network bandwidth rather

than the socket mechanism itself). This method does however allow the event to be

forwarded directly to other machines without an intermediate application to receive

event from the kernel and then pass it on to external observers.

• Performance of the socket methods may be improved by using larger buffers for both

the sender and the receiver.

• Overall performance and reliability may be improved by aggregating events using a

larger payload and sending them further apart.

• Performance is likely to be significantly improved if using an evenly distributed event

generation rather than bursts. The tests used to obtain these results are intended as

a worst-case scenario.

It is important to note that these tests were done to evaluate the performance of the

methods when sending data up to userspace from the kernel. Remote tests with network

sockets are unique among these tests as they send data both up from the kernel and out

to potential remote subscribers whereas the others are used for local communication only.

While all methods will need to use sockets to send data out to subscribers eventually, they

may do so using aggregation. The remote network socket tests were performed to evaluate

4.2. TRIGGER PASSING 47

their performance as a trigger passing mechanism without aggregating events. Assuming

aggregation of events, the remote network sockets results, especially for higher payloads,

may also serve as an indication for the potential final data rate to remote subscriber for

all methods.

Based on the evaluation, all the tested mechanisms are able to fulfill the minimum

requirements in terms of performance and reliability with no aggregation required. The

primary factors determining which mechanism to choose for implementation are therefore

complexity of design and implementation, and how easily it can be modified for additional

features and better performance. For these reasons, network sockets were selected, as

motivated in the next section.

4.2.3 KauNet Communication Module

Application

KauNet

KauNet host

IPC Module

KauNet Communication

Module

Event Subscriber Event Subscriber

Figure 4.8: KauNet communication module using an intermediate receiver and IPC.

The trigger passing functionality of KauNet is provided entirely by the KauNet Commu-

nication Module (KCM). The KCM provides an Application Programming Interface (API)

48 CHAPTER 4. DESIGN

KauNet host

KauNet

KauNet Communication

Module

Event Subscriber Event Subscriber

Figure 4.9: KauNet communication module using sockets.

for KauNet while remaining an independent module. KauNet uses an interface function

in the KCM and simply passes the event data as arguments. The KCM is responsible

for distributing the events received from KauNet to an arbitrary number of subscribers,

both local and remote. To this end, it also acts as a server, accepting subscription requests

from clients and keep track of subscribers. By implementing the KCM as a separate add-on

module, it is possible to replace it with few or no changes required to KauNet as its internal

workings are not relevant as long as its interface remains the same. It is even possible to

load and unload different modules at any time during an experiment. Conversely, changes

to KauNet should require few or no changes to the KCM.

The functionality of the communication module can be summarized as passing events

up (from the kernel) and out (to local or remote subscribers). Two possible designs were

considered; including a second component for receiving IPC communication from the kernel

and then distribute it out using network sockets (see Figure 4.8), or implement the network

sockets directly in the kernel and distribute the events to both local and remote subscribers

directly (see Figure 4.9). If network sockets could not perform sufficiently, the former

method could be used, using an IPC mechanism able to pass the information up from

the kernel more efficiently, and the intermediate receiver could then forward the events

4.2. TRIGGER PASSING 49

at its own pace, possibly aggregating them for better performance. The advantage of the

latter method is instead that the design and implementation is simplified considerably by

removing the need for the intermediate receiver, instead being able to use both local and

remote communication directly.

Based on the results of the trigger passing mechanism evaluation (see Section 4.2.2),

all methods are capable of providing the required functionality, although raw signals only

support limited payloads (4 bytes). The second design using network sockets was therefore

chosen. While the performance for data transfer out from the kernel is one of the lowest

of the tested mechanisms, network sockets are still able to provide reliable transfer at a

sufficient rates and payloads while also offering a simple implementation. Both aggregation

and increased payloads can be implemented with very little difficulty to increase bandwidth

and partially support a higher event rate. Should it still prove insufficient in certain

scenarios (such as a dense data-driven trigger pattern that may generate events at a higher

rate than the network socket can sustain), the overall design of the KCM ensures that it

can be replaced by a different implementation with relative ease.

4.2.4 Adaptation Layer

The Adaptation Layer (AL) is an arbitrary application that acts as a client for receiving

and processing KauNet events. It can run on either a local machine with KauNet, or a

remote machine connected via a network. It interacts with KauNet via its communication

module (ALCM, see Section 4.2.5), which provides the necessary interface functions for

communicating with KauNet. Depending on the specific needs for an experiment, it is

likely that a custom AL must be implemented.

4.2.5 Adaptation Layer Communication Module

The Adaptation Layer Communication Module (ALCM) is an API library for use by adap-

tation layers. Its purpose is to provide an interface to KauNet for use by the adaptation

50 CHAPTER 4. DESIGN

layer, thereby allowing changes to be made to both KauNet and the adaptation layer while

maintaining compatibility as long as it remains compliant with the API, as well as simplify-

ing the implementation changes to existing adaptation layers or completely new adaptation

layers. The ALCM interacts with the KCM, providing the adaptation layer with functions

to connect to a KauNet machine and receiving events. It also provides functionality for

parsing received data to extract specific information, such as the trigger value or any other

information known to the ALCM (timestamps, emulator information etc.). This allows

changes to be made to the structure of the data sent and received by the KCM and ALCM

without any need to alter the adaptation layer. It also ensures backward compatibility, as

long as information is not removed from the data.

4.3 Summary

DummyNet / KauNet

KauNet Host

KauNet Communication

Module
Network

Event

Subscriber

IP Traffic (Event Forwarding)

ALCM = Adaptation Layer Communication Module

Network

Adaptation Layer

ALCM

Adaptation Layer

ALCM

Adaptation Layer

ALCM

Adaptation Layer

ALCM

Event

Subscriber

Event

Subscriber

Event

Subscriber

Figure 4.10: KauNet trigger passing.

Described in this chapter is the design of the communication modules for both KauNet

4.3. SUMMARY 51

and the adaptation layer, a basic adaptation layer and trigger pattern for both time- and

data-driven modes to allow trigger passing from KauNet (see Figure 4.10).

The purpose of the trigger pattern is to generate events at a specified point, that is

passed up from the kernel, ultimately allowing the event to be forwarded to an adaptation

layer on both the local and non-local machines. As with other patterns, trigger patterns

are generated using patt gen. They can be generated using existing patterns, in order to

allow events to be generated when, for example, a packet is lost or when a bandwidth

threshold is reached.

The KauNet Communication Module (KCM) is an add-on kernel module to KauNet.

It is responsible for communication between KauNet and both local and non-local adap-

tation layers. To that end, it maintains a list of subscribers (adaptation layers that wish

to receive KauNet events), handle subscription requests, and forward events to any sub-

scribers. The Adaptation Layer Communication Module (ALCM) serves as the adaptation

layer’s counterpart to the KCM. It provides functionality for an adaptation layer to request

subscriptions and receive events from KauNet, as well as parse the received information.

The adaptation layer is an application that receive and process events from KauNet.

Depending on the application being tested, it can be implemented as a kernel- or userspace

application. An arbitrary number of adaptation layers may run and subscribe simultane-

ously on both the local and non-local machines. In order to receive events, it must first

send a subscription request to the KCM on the KauNet machine via the ALCM.

Chapter 5

Implementation

Described in this chapter are the implementation details of the trigger functionality in

KauNet, composed of the trigger pattern and trigger passing mechanism. The chapter

also includes an implementation overview of Dummynet and the inclusion of the KauNet

patterns as a short background for the implementation of the trigger pattern processing.

The implementation requires changes to be made to the existing KauNet code, but also to

the pattern generation utility (patt gen) to generate a new type of pattern, and the imple-

mentation of several new components that provides the trigger passing functionality. The

chapter describes the structure, creation and processing of the trigger pattern itself, as well

as the implementation in KauNet, the KauNet Communication Module, the Adaptation

Layer Communication Layer API and an example Adaptation Layer.

5.1 Dummynet/KauNet Architecture

The Dummynet implementation is summarized in Figure 5.1. The ready heap stores a

number of fixed-rate queues and handles scheduling based on bandwidth limitations. A

low link utilization or high bandwidth would mean that packets are sent from the ready

heap with little or no delay, while a congested link would result in more significant delays.

53

54 CHAPTER 5. IMPLEMENTATION

q1

q2

q3

q4

ready_heap

Fixed-rate queues

p

extract_heap

Extracts

queuePackets in q1

5 4

1

2

3

432

876

Packets in p

1

5

Calls

5

In
s

e
rts

p
a

c
k

e
t

9

S
c

h
e

d
u

le
d

 c
a

lls

Scheduled calls

Packet is sent via

dummynet_send()

9

E
x

tra
c

ts

p
a

c
k

e
t

Figure 5.1: Dummynet event flow.

5.1. DUMMYNET/KAUNET ARCHITECTURE 55

The extract heap (or delay line) contains packets that are scheduled to be sent based on

fixed delays (simulating for example transmission and processing times for the packets).

Marked in the figure are also the five primary Dummynet functions that are used for moving

the packets internally across the emulated link, corresponding to the following:

1. Packets enter the emulator and are either dropped or queued. Bandwidth scheduling

is applied for the ready heap.

2. Scheduler extracts queues from the ready heap, drains as many packets from them as

possible based on available bandwidth, and scheduling for remaining packets in the

queue is updated.

3. Packets are moved from the ready heap to the extract heap and fixed delay scheduling

is applied.

4. The scheduler drains packets from the extract heap and prepares them for being sent

out of the emulator back into the network stack.

5. The main Dummynet function executes once per millisecond, updates the internal

clock and checks for scheduled events.

It is also in these functions that KauNet applies its pattern based emulation effects and

advances its patterns. A more detailed description of the flow of events including the use

of patterns is as follows:

1. Whenever a packet is about to be added to a queue in the emulator, dummynet io()

is called. If the random packet loss function of Dummynet or a KauNet packet loss

pattern is present and determines that the incoming packet should be dropped, it

will be dropped immediately without being moved further into the emulator. If it

is not dropped, Dummynet will check the available bandwidth to see if it can be

moved forward immediately and, if so, call ready event(). If not, the packet is placed

56 CHAPTER 5. IMPLEMENTATION

in a queue, the expected output time of the packet based on the link bandwidth is

calculated, and the queue is inserted into the ready heap to await its scheduled output

time. In this function, the packet loss pattern for data-driven mode is advanced and

both data- and time-driven packet loss patterns are invoked. In addition, data-driven

bandwidth patterns are advanced, and any active bandwidth pattern is applied to

the packet.

2. ready event() is called whenever the scheduler is invoked to forward packets from a

queue in the ready heap further into the emulator. The function first extracts the

queue from the ready heap, then attempts to drain as many packets as possible from

the queue, as long as there is sufficient bandwidth to do so. For each packet that

is drained, the move pkt() (3) function is called. If there are still packets left in the

queue by the time the emulator has run out of available bandwidth, a new output

time is calculated for the remaining packets and the queue is reinserted into the ready

heap to await the next scheduling event. Finally, if the extract heap was empty prior

to ready event() being called, transmit event() (4) is called. If a bandwidth pattern

is active, it is applied here as the bandwidth scheduling is calculated.

3. move pkt() is called by ready event() whenever a packet is to be moved from the ready

heap to the extract heap. The function calculates the output time of the packet based

on any fixed delays specified by the pipe, then inserts the packet into the extract heap

to await a scheduling event. KauNet uses this function to advance loaded data-driven

delay patterns, and any active time- or data-driven delay pattern effects are applied

here for the output time calculation.

4. transmit event() is called when a packet is to be sent from the extract heap. The

function will attempt to drain as many packets from the extract heap as is possible

(i.e. all packets that are scheduled to be sent at this time). If a bit-error pattern is

present and currently active, it is invoked in this function to modify the content of the

5.2. TRIGGER PATTERNS 57

drained packet(s). The packets are eventually inserted into the network stack by the

dummynet send() function which is called periodically by Dummynet. Any packets

remaining (i.e. those scheduled to be sent later) are reinserted into the extract heap.

5. dummynet task() is the main function in Dummynet and is executed once for every

tick of the kernel (Dummynet is designed for kernels running at 1000 Hz, meaning

one tick per millisecond). The function updates the emulator’s internal timer that

is used by the scheduling mechanisms, as well as check for any events scheduled to

take place. Depending on the event, dummynet task() will call either ready event()

(for bandwidth based scheduling) or transmit event() (for fixed delay scheduling)

whenever necessary. KauNet advanced all its time-driven patterns here, as well as

calculate the bits to flip (if any) for bit-error patterns.

5.2 Trigger Patterns

Trigger patterns control both when events are raised by KauNet and to an extent also

what information these events contain. The implementation of the trigger pattern consists

of two parts; defining the structure of the pattern, and a way in which they can be created.

This section will describe in detail the content of the trigger pattern, as well as the syntax

used for the pattern generation utility when generating new trigger patterns.

5.2.1 Pattern Structure

All KauNet patterns share a common structure, as does the new trigger pattern. Patterns

are stored and imported into the kernel in a compressed format when loaded. The pattern

structure is divided into seven parts; magic bytes, version number, pattern type, pattern

size, data array size, indicator array, and data array. Each part is described below:

• Magic bytes: The numbers 75, 97, 117, 78, 101, and 116 are used to indicate the file

58 CHAPTER 5. IMPLEMENTATION

Figure 5.2: KauNet pattern structure (compressed format).

as a pattern file.

• Version number: The version number of the pattern. The only version currently

defined is 1.

• Pattern type: The pattern type is composed by eight bits, where the two most

significant bits indicate the mode of the pattern. There are three different modes

available; data-driven (1), time-driven (2), and a combination (3) (possible for bit-

error patterns). The lower six bits encode the pattern type: bit-errors (1), packet

losses (2), delays (3), bandwidth (4), and triggers (5).

• Pattern size: The pattern size specifies the length of the pattern in kilobytes, packets,

or milliseconds (see Table 5.1 for type of pattern and unit mapping). The size is an

unsigned integer.

• Data array size: The data array size specifies the number of shorts in the data array

(denoted by X in Figure 5.2).

• Indicator array: Each index in the array indicates if the short at the corresponding

position in the data array is a run-length value or a data value. There are X/16

shorts in the indicator array.

• Data array: The values in the data array are either run-length values (for run-length

encoding) or arbitrary data values (e.g. the bandwidth for bandwidth patterns or

5.2. TRIGGER PATTERNS 59

trigger values for trigger patterns).

Pattern type Size unit for data-driven mode Size unit for time-driven mode

Bit-errors Kilobyte Kilobyte
Packet losses Packets Milliseconds
Delay changes Packets Milliseconds
Bandwidth changes Packets Milliseconds
Triggers Packets Milliseconds

Table 5.1: Type of pattern and unit mapping.

5.2.2 Pattern Generation

To support trigger patterns, minor modifications were implemented in patt gen to allow the

creation of a new value pattern. Trigger patterns can currently only be explicitly specified

from the command line or in a file. In data-driven mode, the trigger patterns control after

how many packets a trigger event is raised. For time-driven mode, the pattern specifies

during which millisecond a trigger event is raised. The syntax for the creation of a trigger

pattern is as follows:

patt_gen -trig -pos <filename> <mode> <size> <position-value>

patt_gen -trig -pos <filename> <mode> <size> -f <infilename>

<filename> The name of the output file.

<mode> Specifies the generation mode (data/time).

<size> The size of the generated pattern in the unit listed in Table 5.1, depending on the

pattern type and mode.

<position-value> A comma separated list of tuples position-value separated by commas.

The first position in the pattern is index 1.

-f <infilename> A filename of a text file containing numbers separated by either a comma

or a row, describing positions and values. Two adjacent numbers form a position-value

tuple.

60 CHAPTER 5. IMPLEMENTATION

5.3 Trigger Passing

The trigger passing mechanism is used to forward the events raised by the trigger patterns

in KauNet and their associated information to both local and remote clients. To accomplish

this, four primary components/modifications are implemented. The first is a modification

to KauNet, allowing it to use functionality implemented in a kernel module loaded as

a plugin to KauNet, as well as define the internal data that it wishes to pass with the

event when it is raised. The second is the kernel module which KauNet is to use, called the

KauNet Communication Module (KCM). It implements the functionality that allows clients

to subscribe and unsubscribe to events, as well as receive events from KauNet and pass it

on to the subscribers. The third is the Adaptation Layer Communication Module (ALCM)

which is used by the client and provides an interface for communicating with the KCM.

The module allows clients to connect to a KauNet machine to subscribe or unsubscribe to

events, as well as receive event information. It also provides the functionality for parsing

the received events to extract specific information. Last, a client application is necessary,

called the Adaptation Layer. However, as this client is to provide the functionality desired

by a performed experiment, no general adaptation layer can be implemented. A simple

application was created to serve as an adaptation layer in the demonstration experiments

included in Chapter 6, illustrating the use of the ALCM and interaction with the KauNet

host.

5.3.1 KauNet

As mentioned in Section 4.2.1, the implementation of the trigger passing mechanism in

the KauNet kernel was decided to be kept at a minimum to avoid too many modifications

to the kernel and ease future modifications to both KauNet and the trigger passing. The

trigger passing itself is externalized in a plugin module (the KCM which will be explained

in greater detail in the next section). To interact with the module, KauNet defines a

5.3. TRIGGER PASSING 61

function pointer type (kcm event hook t) as a void function accepting a kcm event data t

struct as a parameter, and declares a static function pointer (kcm event hook) of the newly

the defined type, initialized with a null value. Whenever an event is triggered in KauNet,

KauNet will call the pass trigger() function which checks to see if the pointer has been

given a non-null value by an external KCM that has been loaded. If so, KauNet will store

any internal data that it wishes to send in a kcm event data t struct and pass this as an

argument to the function referenced by the pointer. By default, the argument is limited to

the trigger value (an integer), but can be modified fairly easily by modifying the contents

of the struct. If the pointer has not been redefined or if it at any point has been reset to

null, KauNet assumes that no KCM is currently loaded and the event is ignored as KauNet

has nowhere to send it. Trigger patterns are both advanced and invoked at the same time.

For time-driven trigger patterns, this takes place in the dummynet task() function. For

data-driven patterns, it takes place in the dummynet io() function, prior to any packet

loss taking place. See also the Dummynet implementation overview in Section 5.1.

5.3.2 KauNet Communication Module

The KauNet Communication Module (KCM) is a kernel module which provides the trigger

passing mechanism, allowing events raised in KauNet to be forwarded to subscribing clients.

The module consists of three parts; the load/unload handler (kcm handler), the listener

(kcm listener), and the event broadcaster (kcm event broadcaster).

The load/unload handler has two operations to perform; create a separate thread for the

listening and set the function pointer declared in KauNet (see previous section). When the

module is loaded, the listener thread is created and the pointer is set so that it references

the event broadcaster function. The module also has a flag which shows the current running

state (set to start on load). When the module is unloaded the pointer is reset to null and

the flag is set to stop. By changing the flag to stop, the thread can remove any allocated

memory, setting the flag to exit, and terminate itself. The module waits for the flag to be

62 CHAPTER 5. IMPLEMENTATION

set to exit before it terminates, which enables a clean exit.

The purpose of the listener is to accept subscription and unsubscription requests from

one or more adaptation layers. The listener creates a socket and binds it to a predefined

port on all interfaces, on which it accepts requests from clients. For each request, the

listener receives a packet containing the client IP address, the client port number and an

additional flag, which specifies if it is a request for subscription (a non-zero value) or an

unsubscription (a zero value). If the flag specifies a subscription, the client IP address and

port number are added to a subscription list which stores all subscribing clients. If the flag

specifies an unsubscription, the entry for the subscriber is removed from the list. During

the unloading of KCM, all IP addresses and port numbers are removed from the subscriber

list, and the socket is closed.

The purpose of the event broadcaster is to forward the events received from KauNet to

all subscribing clients. For this, it uses the previously mentioned subscriber list to fetch

the subscribers and forward the received trigger events. Each trigger event contains the

trigger value and also a timestamp of the trigger occurrence, where the trigger value is

received from the kernel and the timestamp is added in the module.

5.3.3 Adaptation Layer Communication Module

The Adaptation Layer Communication Module (ALCM) is a C-library providing an API for

the adaptation layer. The ALCM interacts with KauNet via the KCM. The API includes

the following functions for use by an arbitrary adaptation layer:

int subscribe(const char *ip, int port);

By calling this function, the adaptation layer will attempt to send a subscription

request to the specified IP address (in the form x.x.x.x) and port number. If the

receiver has a KCM loaded and listening on the specified port, the sender will be

added as a subscriber and receive events. If 0 is provided as the port, the function

will use the default port (1066) to connect. The function returns 0 if the request was

5.3. TRIGGER PASSING 63

sent successfully, else -1 is returned.

int unsubscribe();

Assuming the client has previously subscribed, this function will send an unsubscrip-

tion request to the same receiver. It returns 0 if the request was sent successfully,

else -1.

void* recv event();

This is a blocking function used to receive the next event from KauNet. It returns a

void pointer to the received data if successful, else a null pointer.

int getDataSize();

This function returns the size of the event data struct in bytes.

In addition, the default ALCM provides two functions for parsing the received event

data to retrieve specific information.

• int getValue(void *data)

This function returns the trigger value (an integer) from the event data specified.

• struct timeval getTimestamp(void *data)

This function returns the timestamp in the form of a timeval struct from the specified

event data.

Depending on the needs of the experiment, KauNet or the KCM may need to be

expanded to include additional information. By adding additional functions to the ALCM,

it can be made aware of any other information included in the event data by KauNet or

the KCM. If the event data is restructured, the get functions may require updating to

extract the correct information. However, as long as they provide the same functionality,

the ALCM can be updated while remaining backward compatible with older adaptation

layers as the internal structure of the event data received is not relevant to the adaptation

layer itself.

64 CHAPTER 5. IMPLEMENTATION

The provided ALCM is written as a userspace library for FreeBSD 7.2. Running it

on other UNIX systems should require only minor changes to the code. More extensive

modifications are necessary to adapt it for use in kernelspace.

5.3.4 Adaptation Layer

The adaptation layer is an application that utilizes the information sent by a KauNet host.

The information sent is defined by KauNet (internal emulation information such as trigger

value and pipe statistics) and the KCM (external information, such as timestamps). In the

default implementation, this information includes the trigger value that is stored in the

trigger pattern, and the timestamp of the event being raised. When creating an adaptation

layer, the ALCM C-library needs to be included, which enables the adaptation layer to

interact with a KauNet host via the functions described in Section 5.3.3. Depending on

the needs of the experiment, a custom adaptation layer will need to be implemented to

provide the desired functionality. Should any information in addition to the default (trigger

value and timestamp) be required, this information should be included in KauNet and the

KCM, and a parsing function should be implemented in the ALCM. A sample adaptation

layer code is provided (see Appendix C.5) where the adaptation layer subscribes to a

KauNet host, waits for events and prints out their content until manually terminated, at

which points it sends an unsubscription request. This adaptation layer is used for the

demonstration and verification in Chapter 6.

5.4 Summary

Described in this chapter are the implementation details for the trigger pattern added to

KauNet, as well as the components implemented to allow triggers to be passed to local

and remote subscribers. Figure 5.3 illustrates the complete system with its components

and how they interact. Trigger patterns are a new type of value patterns, storing arbitrary

5.4. SUMMARY 65

FreeBSD Kernel (KauNet Host)AL

KCM
kcm_event_broadcaster(...)

kcm_listener()

ALCM
getValue(...)

getTimestamp(...)

getDataSize()

subscribe(...)

unsubscribe()

recv_event()

...patt_gen
generates

Trigger Pattern

requests

socket

communication

loaded by

refers to

KauNet
kcm_event_hook

Trigger Processing

invokes

Figure 5.3: KauNet trigger passing implementation overview.

trigger values within them, that can be generated using a modified version of the pattern

generation utility (patt gen). Like other KauNet patterns, they can run in both time- and

data-driven mode. When a trigger pattern is invoked in KauNet, an event is raised and

KauNet calls a function via a function pointer (kcm event hook), passing the trigger value

stored in the pattern as an argument (as well as any other internal information that may be

necessary). The function pointer refers to a function (kcm event broadcaster) implemented

in the KauNet Communication Module (KCM), a KauNet plugin kernel module loaded

separately. When this function is called, the KCM will distribute the event via network

sockets to any subscribing adaptation layers of which it is aware. The Adaptation Layer is

an arbitrary application running either locally or on a remote host, acting as a receiver for

the events. Using the interface functions provided by the Adaptation Layer Communication

Module (ALCM), the adaptation layer can communicate with a KauNet host to send

subscription/unsubscription requests and receive event information, as well as parse the

received information.

Chapter 6

System Demonstration

In this chapter, a set of simple experiments are performed using trigger patterns in both

time- and data-driven mode. The purposes of the experiments are to show that the im-

plementation works as was intended, as well as illustrate how the trigger patterns can be

used in KauNet.

6.1 Theory

Host A (10.0.1.1) KauNet Host (10.0.2.1)

Figure 6.1: Test bed setup.

The experiments generate traffic from a FreeBSD machine to a KauNet emulator host,

connected via a local network. Host A uses an adaptation layer to subscribe to events from

the KauNet host, receiving a trigger value (an integer) and a timestamp of the event (local

67

68 CHAPTER 6. SYSTEM DEMONSTRATION

time of the KauNet machine with microsecond precision). When an event is received, the

adaptation layer simply prints the received value and timestamp. Traffic is generated using

ping (ICMP) at a rate of two packets per second, and a total of 21 packets.

A total of two experiments will be performed, using two different sets of patterns:

1. A data-driven trigger pattern.

2. A time-driven bandwidth change pattern synchronized with a time-driven trigger

pattern.

The data-driven trigger pattern is invoked at the arrival of the first packet, the ninth,

the thirteenth and twenty-first (last) packet. For the time-driven patterns, both will be

invoked at the fourth and sixth second of the experiment. In addition, the trigger pattern

will also be invoked at the arrival of the first packet (zeroth second) and last packet (tenth

second), signifying the start and end of the experiment. As the bandwidth change pattern

is invoked for the first time, the available bandwidth of the pipe will be cut. The result

is that all packets after the invocation are dropped until the second invocation, when the

bandwidth is restored.

Packet (#) 1 2 3 4 5 6 7 8 9 10 11
Time (s) 0 1 2 3 4 5
Data trigger 1 2
Time trigger 1 2

-
Packet (#) 12 13 14 15 16 17 18 19 20 21
Time (s) 6 7 8 9 10
Data trigger 3 4
Time trigger 3 4

Table 6.1: Theoretical experiment results.

At the specified rate and number of packets, the results of the experiments can be

predicted as illustrated in Table 6.1. Delays should be negligible in the experiment network,

meaning the measured results should match the prediction fairly well. In addition, in the

6.2. METHOD 69

second experiment, packet losses should occur from the fourth second to the sixth, during

the period when there is no available bandwidth. At the specified rate, this results in a

total of four lost packets

6.2 Method

0.0

1.0

2.0

0.0 2.0 4.0 6.0 8.0 10.0

B
an

dw
id

th
 (

M
bi

t/s
)

Time (seconds)

(1) (2) (3) (4)

Figure 6.2: Experiment 1 setup.

For the purpose of these experiments, a sample adaptation layer has been implemented

(see Appendix C.5) to receive and print the trigger values and timestamps, using the

adaptation layer communication module (see Appendix C.4). For each experiment, traffic

is generated using ping (ICMP) on a network connected machine (host A) to the KauNet

emulator host (10.0.2.1). The patterns used are generated using patt gen.

1. Data-driven trigger pattern.

./patt_gen -trig -pos trg_data.tp data 21 1,1,9,2,13,3,21,4

The trigger pattern is configured to be invoked at the arrival of the first, ninth,

thirteenth and twenty-first packet. Each invocation is represented by a unique trigger

value (1, 2, 3 and 4 respectively). These packets were selected to correspond to the

invocations of the time-driven patterns (as illustrated in Table 6.1).

70 CHAPTER 6. SYSTEM DEMONSTRATION

2. Time-driven trigger and bandwidth change pattern. The experiment is illustrated in

Figure 6.2.

./patt_gen -bw -pos bw.bcp time 10000 4000,1,6000,2000

The bandwidth change pattern will change the bandwidth from the initial band-

width to no bandwidth (a bandwidth value of 1) at the fourth second, then restore

the bandwidth to 2 Mbit/s at the sixth second.

./patt_gen -trig -pos trg_time.tp time 10000 1,1,4000,2,6000,3,10000,4

The trigger pattern in synchronized with the bandwidth change pattern, being in-

voked at the fourth and sixth second. In addition, it is invoked as the experiment

starts (first millisecond) and ends (tenth second). As in the data-driven trigger pat-

tern, each invocation is represented by a unique trigger value.

The procedure for each experiment is almost identical, differing only in the patterns

loaded into KauNet.

1. The experiments use a single pipe (ID 100) to filter outgoing ICMP traffic between

the two machines. The pipe is added using IPFW.

KauNet# ipfw add 1 pipe 100 icmp from 10.0.1.1 to 10.0.2.1 out

2. The pipe is configured to use an initial bandwidth of 2 Mbit/s and load the patterns

used in the specific experiment using one of the following commands (depending on

the experiment).

1. KauNet# ipfw pipe 100 config bw 2Mbit/s pattern trg_data.tp

2. KauNet# ipfw pipe 100 config bw 2Mbit/s pattern bw.bcp pattern

trg_time.tp

3. The KauNet Communication Module (KCM) is loaded to enable trigger passing in

KauNet to external adaptation layers.

KauNet# kldload ./kcm.ko

6.3. RESULTS 71

4. The adaptation layer is loaded so that the remote machine can receive events from

KauNet.

Host A# ./adaptationLayer

When loaded, the adaptation layer will automatically connect to the KauNet machine

and start subscribing to events.

5. Host A uses ping to generate traffic at a rate of two packets per second and a total

of 21 packets, using the KauNet machine as destination.

Host A# ping -c 21 -i 0.5 10.0.2.1

6. (Optional) The KCM is unloaded and the adaptation layer is terminated using the

SIGINT signal (Ctrl+C).

KauNet# kldunload kcm.ko

6.3 Results

6.3.1 Experiment 1

Adaptation layer output (timestamps are written as seconds:microseconds):

Received value 1 at time 1260872513:989008 (12 bytes)

Received value 2 at time 1260872517:996164 (12 bytes)

Received value 3 at time 1260872520:000136 (12 bytes)

Received value 4 at time 1260872524:008111 (12 bytes)

The adaptation layer reports the arrival of the first packet when the first event (trigger

value 1) arrives. Subsequent events arrive four, six and finally ten seconds later, which

matches the expected arrival times of the selected packets.

72 CHAPTER 6. SYSTEM DEMONSTRATION

6.3.2 Experiment 2

Adaptation layer output (timestamps are written as seconds:microseconds):

Received value 1 at time 1260871692:574073 (12 bytes)

Received value 2 at time 1260871696:581029 (12 bytes)

Received value 3 at time 1260871698:585016 (12 bytes)

Received value 4 at time 1260871702:592739 (12 bytes)

The start of the experiment (arrival of the first packet) is reported by the first event.

Subsequent events arrive four, six and ten seconds later, as was expected from the created

pattern.

Ping results:

PING 10.0.2.1 (10.0.2.1): 56 data bytes

64 bytes from 10.0.2.1: icmp_seq=1 ttl=64 time=1.261 ms

64 bytes from 10.0.2.1: icmp_seq=2 ttl=64 time=0.317 ms

64 bytes from 10.0.2.1: icmp_seq=3 ttl=64 time=0.310 ms

64 bytes from 10.0.2.1: icmp_seq=4 ttl=64 time=0.323 ms

64 bytes from 10.0.2.1: icmp_seq=5 ttl=64 time=0.308 ms

64 bytes from 10.0.2.1: icmp_seq=6 ttl=64 time=0.319 ms

64 bytes from 10.0.2.1: icmp_seq=7 ttl=64 time=0.322 ms

64 bytes from 10.0.2.1: icmp_seq=8 ttl=64 time=0.325 ms

64 bytes from 10.0.2.1: icmp_seq=13 ttl=64 time=0.257 ms

64 bytes from 10.0.2.1: icmp_seq=14 ttl=64 time=0.333 ms

64 bytes from 10.0.2.1: icmp_seq=15 ttl=64 time=0.334 ms

64 bytes from 10.0.2.1: icmp_seq=16 ttl=64 time=0.334 ms

64 bytes from 10.0.2.1: icmp_seq=17 ttl=64 time=0.337 ms

64 bytes from 10.0.2.1: icmp_seq=18 ttl=64 time=0.334 ms

64 bytes from 10.0.2.1: icmp_seq=19 ttl=64 time=0.339 ms

6.4. CONCLUSIONS 73

64 bytes from 10.0.2.1: icmp_seq=20 ttl=64 time=0.330 ms

64 bytes from 10.0.2.1: icmp_seq=21 ttl=64 time=0.332 ms

--- 10.0.2.1 ping statistics ---

21 packets transmitted, 17 packets received, 19.0% packet loss

The ping results show loss of the ninth through twelfth packet for a total of four lost

packets, as was expected given the loaded bandwidth pattern.

6.4 Conclusions

The achieved results of both experiments are consistent with the expected results. In

the second experiment, the bandwidth change pattern causes loss of packets nine through

twelve (a total of four packets), corresponding to the two second window with no available

bandwidth. The trigger patterns also behave as expected, raising an initial event (1) as

the first packet arrives and provides a baseline timestamp for the remaining events. The

remaining events are received at the expected points; four, six and ten seconds later.

According to these results, trigger patterns in both time- and data-driven mode work

as intended. Perhaps of note is the slight drift in the timestamps, slightly under two

milliseconds per second on average, although there is insufficient data to draw any definite

conclusion. Even if it is not a coincidence in these specific tests, it may be a problem with

KauNet or Dummynet in general, as opposed to the implementation of the trigger passing

mechanism.

Chapter 7

Conclusions & Future Work

In this thesis a new KauNet pattern has been introduced. The new pattern, called trigger

pattern, enables information to be passed out from the kernel to an application. This new

functionality enables the previous on-demand access of information (i.e. get emulation

statistics via IPFW) to be provided directly when occurring. The trigger passing mecha-

nism can also provide cross-layer information to network connected computers or provide

real-time logging of the emulation.

The design for the trigger pattern and its implementation has been described in detail,

as well as the two communication modules needed for the trigger passing mechanism;

the KauNet Communication Module (KCM) and the Adaptation Layer Communication

Module (ALCM). The KCM handles the trigger passing from the kernel to the ALCM, and

the ALCM forwards the trigger information to an arbitrary adaptation layer. In addition

to the trigger pattern and the modules, a sample adaptation layer has been supplied to

show how to use the ALCM to interact with the KCM and KauNet. The sample adaptation

layer was tested and performed as expected. The setup and output are provided in Chapter

6.

The formal requirements for the trigger patterns were, primarily, to be able to send

event information from KauNet to an adaptation layer at least once every millisecond. Two

75

76 CHAPTER 7. CONCLUSIONS & FUTURE WORK

proposed communication mechanisms, signals and sockets, have been evaluated.While all

the tested mechanisms performed sufficiently, the method chosen was sockets. The reason

for this was implementation reasons; network sockets allow events to be sent directly instead

of relying on an intermediate layer, reducing the complexity of the mechanism.

Another requirement was to send information (the trigger value) with every event from

the kernel. Sockets were able to send (reliably without losses) at the rate of at least 10

events per millisecond, using an event payload size of up to 1000 bytes.

The results from the evaluation shows that the socket communication is able to send at

a rate of at least 10 events/millisecond to a remote receiver. By using a Gigabit Ethernet

card instead of a 100 Mbit/s card, the rate may be increased further. To enable reliable

use of trigger patterns in data-driven mode (one event per packet) in a network with a high

packet rate, aggregation of the events may be needed. By design, aggregation is possible

to implement in the KCM without modifying the kernel source code, as all changes are

made in the modules.

7.1 Future Work

In the current implementation of the pattern generation utility triggers can only be created

by specifying the positions and values by hand (or from a file). A new feature would be

to create a trigger pattern from an existing pattern (bandwidth, delay, packet loss, bit-

error). The difficulty of creating a trigger pattern from another pattern, is to specify when

or where the trigger should occur. For example, a simple trigger pattern can be created

from a bandwidth pattern, by generating a trigger when the bandwidth is changing. A

more difficult trigger pattern would be to create a trigger when the bandwidth exceeds a

specified threshold. For the second example, a secondary script language might be needed,

to simplify the trigger pattern creation.

References

[1] J. Postel, “Transmission Control Protocol,” RFC 793, Internet Engineering Task
Force, September 1981.

[2] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling TCP reno per-
formance: a simple model and its empirical validation,” IEEE/ACM Trans. Netw.,
vol. 8, no. 2, pp. 133–145, 2000.

[3] M. Allman and A. Falk, “On the effective evaluation of TCP,” SIGCOMM Comput.
Commun. Rev., vol. 29, no. 5, pp. 59–70, 1999.

[4] V. Paxson and S. Floyd, “Why we don’t know how to simulate the Internet,” in
WSC ’97: Proceedings of the 29th conference on Winter simulation, (Washington,
DC, USA), pp. 1037–1044, IEEE Computer Society, 1997.

[5] L. R. Marta Carbone, “Dummynet Revisited,” tech. rep., Diparti-
mento di Ingegneria dell’Informazione Universita di Pisa, May 2009.
http://info.iet.unipi.it/ luigi/papers/20090531-ccr-dummynet.pdf.

[6] S. Bajaj, L. Breslau, D. Estrin, K. Fall, S. Floyd, P. Haldar, M. Handley, A. Helmy,
J. Heidemann, P. Huang, S. Kumar, S. McCanne, R. Rejaie, P. Sharma, K. Varadhan,
Y. Xu, H. Yu, and D. Zappala, “Improving Simulation for Network Research,” Tech.
Rep. 99-702b, University of Southern California, March 1999. revised September 1999,
to appear in IEEE Computer.

[7] “The Network Simulator - ns-2,” October 2009. http://www.isi.edu/nsnam/ns/.

[8] “The ns-3 network simulator,” October 2009. http://www.nsnam.org/.

[9] “Iperf,” October 2009. http://sourceforge.net/projects/iperf/.

[10] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and D. Becker,
“Scalability and accuracy in a large-scale network emulator,” SIGOPS Oper. Syst.
Rev., vol. 36, no. SI, pp. 271–284, 2002.

[11] “Dummynet,” October 2009. http://info.iet.unipi.it/~luigi/dummynet/.

77

78 REFERENCES

[12] J. Garcia, P. Hurtig, and A. Brunstrom, “Kaunet,” October 2009.
http://kaunet.sourceforge.net/.

[13] L. Rizzo, “Dummynet and forward error correction,” in ATEC ’98: Proceedings of the
annual conference on USENIX Annual Technical Conference, (Berkeley, CA, USA),
pp. 31–31, USENIX Association, 1998.

[14] B. Brade, D. Clark, J. Crowcroft, b. Davie, S.Deering, D. Estrin, S. Floyd, V. Ja-
cobson, G. Minshall, C. Partridge, L. Peterson, K. Ramkrishnan, S. Shenker, J. Wro-
clawski, and L. Zhang, “Recommendations on Queue Management and Congestion
Avoidance in the Internet,” RFC 2309, April 1998.

[15] J. C. R. Bennett and H. Zhang, “Hierarchical packet fair queueing algorithms,” in
SIGCOMM ’96: Conference proceedings on Applications, technologies, architectures,
and protocols for computer communications, (New York, NY, USA), pp. 143–156,
ACM, 1996.

[16] J. C. R. Bennett and H. Zhang, “WF2Q: Worst-case Fair Weighted Fair Queueing,”
in IEEE IN-FOCOM ’96, (San Francisco, CA), March 1996.

[17] The FreeBSD Foundation, “The FreeBSD Handbook,” September 2009.
http://www.freebsd.org/doc/en/books/handbook.

[18] J. Postel, “Internet Control Message Protocol,” RFC 792, Internet Engineering Task
Force, September 1981.

[19] J. Garcia, P. Hurtig, and A. Brunstrom, “KauNet: Design and Usage,” Technical
Report 2008:59, Karlstad University, December 2008.

[20] E. N. Gilbert, “Capacity of a Burst-Noise Channel,” tech. rep., Bell System Technical
Journal, September 1960.

[21] E. O. Elliot, “Estimates of error rates for codes on burst-noise channels,” tech. rep.,
Bell System Technical Journal, September 1963.

[22] X. Yu, “Improving TCP performance over mobile ad hoc networks by exploiting cross-
layer information awareness,” in MobiCom ’04: Proceedings of the 10th annual inter-
national conference on Mobile computing and networking, (New York, NY, USA),
pp. 231–244, ACM, 2004.

[23] C. Mbarushimana, A. Shahrabi, and T. Buggy, “A cross-layer support for TCP en-
hancement in qos-aware mobile ad hoc networks,” in MSWiM ’08: Proceedings of the
11th international symposium on Modeling, analysis and simulation of wireless and
mobile systems, (New York, NY, USA), pp. 10–17, ACM, 2008.

REFERENCES 79

[24] J. Papandriopoulos, S. Dey, and J. Evans, “Optimal and distributed protocols for
cross-layer design of physical and transport layers in MANETs,” IEEE/ACM Trans.
Netw., vol. 16, no. 6, pp. 1392–1405, 2008.

[25] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC 5681, Internet
Engineering Task Force, September 2009.

[26] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification to TCP’s Fast
Recovery Algorithm,” RFC 3782, Internet Engineering Task Force, April 2004.

[27] A. Karnik and A. Kumar, “Performance of TCP congestion control with explicit rate
feedback,” IEEE/ACM Trans. Netw., vol. 13, no. 1, pp. 108–120, 2005.

[28] S. Floyd, M. Allman, A. Jain, and P. Sarolahti, “Quick-start for TCP and IP,” RFC
4782, Internet Engineering Task Force, January 2007.

[29] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based congestion control
for unicast applications,” in SIGCOMM ’00: Proceedings of the conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication,
(New York, NY, USA), pp. 43–56, ACM, 2000.

[30] “TCP westwood home page,” October 2003. http://www.cs.ucla.edu/NRL/hpi/tcpw/.

[31] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP westwood:
end-to-end congestion control for wired/wireless networks,” Wirel. Netw., vol. 8, no. 5,
pp. 467–479, 2002.

[32] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP westwood:
Bandwidth estimation for enhanced transport over wireless links,” in MobiCom ’01:
Proceedings of the 7th annual international conference on Mobile computing and net-
working, (New York, NY, USA), pp. 287–297, ACM, 2001.

[33] S. R. Walli, “The POSIX family of standards,” StandardView, vol. 3, no. 1, pp. 11–17,
1995.

[34] J. Postel, “User Datagram Protocol,” RFC 768, Internet Engineering Task Force,
August 1980.

[35] The FreeBSD Foundation, “The FreeBSD Project,” September 2009.
http://www.freebsd.org.

[36] F. Pohlmann, “Why FreeBSD,” September 2009.
http://www.ibm.com/developerworks/opensource/library/os-freebsd/.

[37] SpreadBSD, “FreeBSD,” September 2009. http://www.spreadbsd.org/?q=freebsd.

80 REFERENCES

[38] N. Saers, “A project model for the FreeBSD Project,” September 2009.
http://www.freebsd.org/doc/en US.ISO8859-1/books/dev-model/.

Appendix A

IPC Evaluation

During the trigger passing mechanism evaluation, two computers were used. The specifica-

tions of these computers can be read below, where the first computer is the main computer

with the KauNet kernel installed. The second computer is only used during the network

socket tests. See Section 4.2.2 for details about the evaluation.

A.1 Test Machine Specifications

Processor: Intel R© Pentium R© 4 CPU 2.80GHz
Memory: 512MB DDR SDRAM System Memory
Operating System: FreeBSD 7.2-RELEASE (KauNet kernel)
Hard drive: 40GB (WD400BB)
Network controller: 3Com R© 3c905C-TX Fast Etherlink XL

Intel R© 82559 Pro/100 Ethernet
Intel R© PRO/1000 Network Connection 6.9.6

Table A.1: IPC test bed specification, KauNet host.

81

Processor: Intel R© Pentium R© 4 CPU 2.80GHz
Memory: 1024MB DDR SDRAM System Memory
Operating System: FreeBSD 7.2-RELEASE (GENERIC kernel)
Hard drive: 80GB (WD800BB)
Network controller: 3Com R© 3c905C-TX Fast Etherlink XL

Intel R© 82559 Pro/100 Ethernet
Intel R© PRO/1000 Network Connection 6.9.6

Table A.2: IPC test bed specification, receiving host.

Appendix B

FreeBSD

FreeBSD [35] is an operating system and the platform on which Dummynet and KauNet

are implemented. FreeBSD was first developed in 1993, based on the BSD branch of the

UNIX kernel [17]. While it is not a UNIX operating system, it is considered ”UNIX-

like” and work in a similar manner and uses UNIX-compliant system APIs [36]. It also

provides optional binary compatibility with other UNIX and UNIX-like systems, such as

Linux, enabling most applications developed for another system to run on FreeBSD as well

[17], although some applications may only be partially or not at all supported. Unlike

operating systems such as Linux where distributions are packaged by selecting the kernel

and applications separately, FreeBSD is a complete OS, where the kernel, drivers and user

applications are all developed and packaged together for each version [37].

Development of FreeBSD is done using several versions in parallel [38]. Each major

version receives a -STABLE branch, representing the primary distribution. From this

branch, new releases are created, supporting additional or modified features. If the new

features are deemed stable and developed enough, they may then be backported into -

STABLE. The -CURRENT branch represents the latest version in development not yet

completed, similar to a beta. At the time of writing, the most recent release is 7.2, released

in May 2009, which is also the version for which the thesis project is implemented.

83

Appendix C

Source code

This appendix contains the source code, or the difference in the same, for the FreeBSD ker-

nel (ip dummynet), the communication modules, the sample adaptation layer, the pattern

generation tool, and IPFW.

C.1 File Difference Output

Below is a brief description of the output seen in Section C.2, Section C.6 and Section C.7.

For a full documentation, run man diff or info diff from a command line.

A minus sign in front of a row indicates a removed or replaced line in the source code.

A plus sign in front of a row indicates a replacement (of a previously removed line) or an

inserted line. For each deletion/change, a 20 line context (ten lines before and after) are

showed to aid in the understanding of the modification.

The numbers surrounded by two at-signs (on each side) are the starting line number and

the number of lines the change applies to for each file; the minus sign indicates the original

file and the plus sign indicates the modified file (with trigger patterns). For example, if

a line has been inserted on line 15, the line should state @@ -5,20 +5,21 @@. For the

original file, the starting line is 5 (line 15 - 10 context lines) and the number of lines is 20

85

86 APPENDIX C. SOURCE CODE

(2 * 10 context lines). For the modified file, the starting line is still 5 as in the original file,

but the number of lines is 21 (2 * 10 context lines + 1 inserted line).

C.2 FreeBSD Kernel (with KauNet)

The following output shows the difference between the original ip dummynet source code

(FreeBSD 7.2 with KauNet) and the same source code with trigger pattern implemented.

See Section C.1 for a description of the output. In addition to the modifications in the

ip dummynet files, the defined constant MAX PATTERNS is incremented to five, to make

room for the trigger pattern.

C.2.1 ip dummynet.h

@@ -373,11 +373,23 @@

ip_dn_claim_rule(struct mbuf *m)

{

struct m_tag *mtag = m_tag_find(m, PACKET_TAG_DUMMYNET, NULL);

if (mtag != NULL) {

mtag->m_tag_id = PACKET_TAG_NONE;

return (((struct dn_pkt_tag *)(mtag+1))->rule);

} else

return (NULL);

}

#endif

+

+#ifdef KAUNET /* KAUNET++ */

+/* Struct used for sending data to the KCM via the hook */

+struct kcm_event_data_t {

+ int value;

C.2. FREEBSD KERNEL (WITH KAUNET) 87

+};

+

+/* A typedef for the kernel module function pointer used to inform

+ the kernel communication module that an event has taken place */

+typedef void (*kcm_event_hook_t)(struct kcm_event_data_t data);

+#endif /* KAUNET++ */

+

#endif /* _IP_DUMMYNET_H */

C.2.2 ip dummynet.c

@@ -245,20 +245,26 @@

static void dummynet(void *);

static void dummynet_flush(void);

static void dummynet_send(struct mbuf *);

void dummynet_drain(void);

static ip_dn_io_t dummynet_io;

static void dn_rule_delete(void *);

#ifdef KAUNET

static int delete_pipe(struct dn_pipe *p);

+

+/* Trigger passing function */

+void pass_trigger(struct dn_pipe* pipe);

+

+/* KCM module hook */

+static kcm_event_hook_t kcm_event_hook = NULL;

#endif /* KAUNET */

88 APPENDIX C. SOURCE CODE

/*

* Heap management functions.

*

* In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.

* Some macros help finding parent/children so we can optimize them.

*

* heap_init() is called to expand the heap when needed.

@@ -947,27 +953,39 @@

*

* 1) any_active() checks if the pipe contains any patterns and if they

* are allowed to be traversed yet. If so, increase the number of "calls" to

* the pipe

*

* 2) should_advance() checks if the pattern is time-driven and appropriate

* to use in a time-driven mode. The second condition checks if the number

* of pipe calls equals 1 ms

*

* 3) If a certain pattern is active, it will be advanced

+ *

+ * 4) If a trigger pattern is active and has a trigger value set, transmit the

+ * event if the communication module is loaded. Increment invocations either way

+ *

*/

if (any_active(pipe))

pipe->calls++;

int bytes_to_consume;

for (j = 0; j < MAX_PATTERNS; j++) {

C.2. FREEBSD KERNEL (WITH KAUNET) 89

if (should_advance(pipe, j) && (pipe->calls * 1000 == hz)) {

switch (j) {

+ case TRIGGER:

+ advance_valuepattern(pipe->patterns[TRIGGER]);

+ pipe->pattern_pos[TRIGGER]++;

+ if (pipe->patterns[TRIGGER]->trigger_value) {

+ pass_trigger(pipe);

+ pipe->invocations[TRIGGER]++;

+ }

+ break;

case BITERROR:

bytes_to_consume = pipe->bandwidth / (8*hz);

pipe->patterns[BITERROR]->bit_overflow += pipe->patterns[BITERROR]->\

bandwidth % (8*hz);

if (pipe->patterns[BITERROR]->bit_overflow > (8*hz)) {

bytes_to_consume++;

pipe->patterns[BITERROR]->bit_overflow -= (8*hz);

}

advance_biterror(pipe->patterns[BITERROR], bytes_to_consume);

pipe->pattern_pos[BITERROR] += (bytes_to_consume * 8);

break;

@@ -1459,20 +1477,31 @@

if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len))

goto dropit;

#ifdef KAUNET

/*

* As a packet is entering the emulator, activate all patterns

* present. Also, if a packet loss pattern is active, advance

90 APPENDIX C. SOURCE CODE

* it and drop the packet if appropriate

*/

if (is_pipe) {

+ if (pipe->patterns[TRIGGER]) {

+ pipe->patterns[TRIGGER]->defer_start = 0;

+ if (!pipe->patterns[TRIGGER]->timedriven) {

+ advance_valuepattern(pipe->patterns[TRIGGER]);

+ pipe->pattern_pos[TRIGGER]++;

+ if (pipe->patterns[TRIGGER]->trigger_value) {

+ pass_trigger(pipe);

+ pipe->invocations[TRIGGER]++;

+ }

+ }

+ }

if (pipe->patterns[BITERROR]) {

pipe->patterns[BITERROR]->defer_start = 0;

}

if (pipe->patterns[PACKET_LOSS]) {

pipe->patterns[PACKET_LOSS]->defer_start = 0;

if (!pipe->patterns[PACKET_LOSS]->timedriven) {

advance_packetloss(pipe->patterns[PACKET_LOSS]);

pipe->pattern_pos[PACKET_LOSS]++;

}

if (pipe->patterns[PACKET_LOSS]->lose_packet == 1) {

@@ -2543,13 +2572,25 @@

break ;

}

return 0 ;

}

C.3. KAUNET COMMUNICATION MODULE 91

static moduledata_t dummynet_mod = {

"dummynet",

dummynet_modevent,

NULL

};

+

+#ifdef KAUNET

+void pass_trigger(struct dn_pipe *pipe)

+{

+ if (kcm_event_hook != NULL) {

+ struct kcm_event_data_t data;

+ data.value = pipe->patterns[TRIGGER]->trigger_value;

+ kcm_event_hook(data);

+ }

+}

+#endif /* KAUNET */

+

DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY);

MODULE_DEPEND(dummynet, ipfw, 2, 2, 2);

MODULE_VERSION(dummynet, 1);

C.3 KauNet Communication Module

The KauNet Communication Module (described in Section 4.2.3 and Section 5.3.2) is

composed by two parts; the header file and the source code file. The header file contains

definitions used by the module, while the source code file contains the implementation for

the trigger passing functionality.

92 APPENDIX C. SOURCE CODE

C.3.1 kcm.h

1 #ifndef __KCM_H__

2 #define __KCM_H__

3

4 #include <sys/param.h> /* kernel.h defines */

5 #include <sys/module.h>

6 #include <sys/kernel.h> /* types in module init */

7 #include <sys/systm.h> /* uprintf, optional */

8 #include <sys/malloc.h> /* malloc macros */

9 #include <sys/types.h>

10 #include <sys/errno.h>

11 #include <sys/kthread.h> /* kthread_create */

12 #include <sys/unistd.h> /* RFNOWAIT */

13 #include <machine/stdarg.h> /* valist */

14 #include <sys/proc.h> /* curthread, proc0 */

15 #include <sys/lock.h> /* LOCK_FILE, LOCK_LINE */

16 #include <sys/mutex.h> /* mtx_xxx */

17 #include <sys/sched.h> /* sched_add */

18 #include <sys/queue.h> /* slist */

19

20 //socket

21 #include <sys/socket.h>

22 #include <sys/libkern.h>

23 #include <netinet/in.h> /* sockaddr_in */

24 #include <sys/socketvar.h> /* so-functions */

25 #include <sys/uio.h> /* struct uio */

26

27

28 static int tstate;

C.3. KAUNET COMMUNICATION MODULE 93

29 #define T_START 0

30 #define T_STOP 1

31 #define T_EXIT 2

32

33 #define PORT 1066

34 #define UNSUBSCRIBE 0

35 #define DEBUG

36

37 struct kcm_event_data_t {

38 int value;

39 };

40

41 struct kcm_send_event{

42 int value;

43 struct timeval timestamp;

44 } __attribute__((packed));

45

46 struct subscription_data_t{

47 int subscribe; /* 0: unsubscribe, 1: subscribe */

48 };

49

50 struct socket *so;

51

52 /* SLIST stuff */

53 struct slist_entry {

54 struct sockaddr_in subscriber;

55 SLIST_ENTRY(slist_entry) slist_entries;

56 };

57 SLIST_HEAD(, slist_entry) head;

94 APPENDIX C. SOURCE CODE

58 MALLOC_DEFINE(M_SLIST, "slist", "slist_entry");

59

60 /* Stuff for kernel hook */

61 typedef void (*kcm_event_hook_t)(struct kcm_event_data_t data);

62 extern kcm_event_hook_t kcm_event_hook;

63

64 #endif //__KCM_H_

C.3.2 kcm.c

1 #include "kcm.h"

2

3 /* Prototypes */

4 void kcm_event_broadcaster(struct kcm_event_data_t data);

5 void kcm_listener(void);

6 void kcmExit(void);

7

8 void kcmExit(void) {

9 tstate = T_EXIT;

10 kthread_exit(0);

11 }

12

13 /* Need socreate and sobind from kcm_listener to be run before sending

14 any packets, but no packets are sent before any subscribers

15 received (i.e. socreate and sobind have been run)

16

17 1. socreate and sobind

18 2. soreceive => subscribers added to list

19 3. kaunet_event send packets to subscribers

C.3. KAUNET COMMUNICATION MODULE 95

20 */

21 void kcm_event_broadcaster(struct kcm_event_data_t data)

22 {

23 int ret;

24 struct iovec aiov;

25 struct uio auio;

26 struct slist_entry *item;

27 struct kcm_send_event message;

28 struct timeval timestamp;

29

30 microtime(×tamp);

31

32 /* auio */

33 auio.uio_iov = &aiov;

34 auio.uio_iovcnt = 1;

35 auio.uio_offset = 0;

36 auio.uio_rw = UIO_WRITE; /* Read from socket */

37 auio.uio_segflg = UIO_SYSSPACE;

38 auio.uio_td = curthread;

39

40 SLIST_FOREACH(item, &head, slist_entries) {

41 //Add the data to send

42 message.value = htonl(data.value);

43 message.timestamp.tv_sec = htonl(timestamp.tv_sec);

44 message.timestamp.tv_usec = htonl(timestamp.tv_usec);

45 #ifdef DEBUG

46 printf("Sending value: %d %ld:%ld\n",

47 data.value,

48 (long int)timestamp.tv_sec,

96 APPENDIX C. SOURCE CODE

49 (long int)timestamp.tv_usec);

50 #endif

51

52 /* Data to send */

53 aiov.iov_base = &message;

54 aiov.iov_len = sizeof(struct kcm_send_event);

55 auio.uio_resid = sizeof(struct kcm_send_event);

56

57 ret = sosend(so, (struct sockaddr*)&item->subscriber, &auio,

58 0, NULL, 0, curthread);

59 if (ret != 0) {

60 printf("sosend, ret: %d\n", ret);

61 }

62 }

63 }

64

65 void kcm_listener(void) {

66 int ret, flag = MSG_DONTWAIT;

67 struct iovec aiov;

68 struct uio auio;

69 struct sockaddr_in sain;

70 struct sockaddr_in *fsain;

71 struct subscription_data_t controlData;

72 /* tailq list */

73 int slist_size = sizeof(struct slist_entry);

74 struct slist_entry *item;

75 SLIST_INIT(&head);

76

77 ret = socreate(AF_INET, &so, SOCK_DGRAM, 0, curthread->td_ucred, curthread);

C.3. KAUNET COMMUNICATION MODULE 97

78 if (ret != 0) {

79 printf("socreate, ret: %d\n", ret);

80 kcmExit();

81 }

82

83 sain.sin_family = AF_INET;

84 sain.sin_port = htons(PORT);

85 sain.sin_addr.s_addr = INADDR_ANY;

86 sain.sin_len = sizeof(sain);

87

88 ret = sobind(so, (struct sockaddr*)&sain, curthread);

89 if (ret != 0){

90 printf("sobind, ret: %d\n", ret);

91 kcmExit();

92 }

93 auio.uio_iov = &aiov;

94 auio.uio_iovcnt = 1;

95 auio.uio_offset = 0;

96 auio.uio_rw = UIO_READ; /* Read from socket */

97 auio.uio_segflg = UIO_SYSSPACE;

98 auio.uio_td = curthread;

99

100 while (tstate == T_START) {

101 /* Data to receive */

102 aiov.iov_base = &controlData;

103 aiov.iov_len = sizeof(struct subscription_data_t);

104 auio.uio_resid = sizeof(struct subscription_data_t);

105

106 /* wait for packet to arrive with ip address and port */

98 APPENDIX C. SOURCE CODE

107 ret = soreceive(so, (struct sockaddr**)&fsain, &auio, 0, NULL, &flag);

108 switch(ret){

109 case EAGAIN:

110 case 0:

111 /* If packet received */

112 if (auio.uio_resid != sizeof(controlData)) {

113 if (controlData.subscribe != UNSUBSCRIBE) {

114 MALLOC(item, struct slist_entry*, slist_size, M_SLIST, M_NOWAIT);

115 item->subscriber = *fsain;

116 SLIST_INSERT_HEAD(&head, item, slist_entries);

117 } else if (controlData.subscribe == UNSUBSCRIBE) {

118 SLIST_FOREACH(item, &head, slist_entries) {

119 if (item->subscriber.sin_port == fsain->sin_port &&

120 item->subscriber.sin_addr.s_addr == fsain->sin_addr.s_addr) {

121 SLIST_REMOVE(&head, item, slist_entry, slist_entries);

122 FREE(item, M_SLIST);

123 }

124 }

125 }

126 #ifdef DEBUG

127 printf("%subscription from %s:%d\n",

128 (controlData.subscribe != UNSUBSCRIBE?"S":"Uns"),

129 inet_ntoa(fsain->sin_addr),

130 ntohs(fsain->sin_port));

131 #endif

132 }

133 break;

134 default:

135 printf("soreceive, ret: %d\n", ret);

C.3. KAUNET COMMUNICATION MODULE 99

136 break;

137 }

138 pause(NULL, 100);

139 }

140

141 ret = soclose(so);

142 if (ret != 0) {

143 uprintf("soclose, ret: %d\n", ret);

144 }

145

146 /* Remove all subscribers */

147 while ((item = SLIST_FIRST(&head))) {

148 #ifdef DEBUG

149 printf("Removing client %s:%d\n",

150 inet_ntoa(item->subscriber.sin_addr),

151 item->subscriber.sin_port);

152 #endif

153 SLIST_REMOVE(&head, item, slist_entry, slist_entries);

154 FREE(item, M_SLIST);

155 }

156 kcmExit();

157 }

158

159 static int kcm_handler(module_t mod, int op, void *arg){

160 int err = 0;

161 switch (op){

162 case MOD_LOAD:

163 tstate = T_START;

164 kcm_event_hook = &kcm_event_broadcaster;

100 APPENDIX C. SOURCE CODE

165 kthread_create((void *)kcm_listener, NULL, NULL, RFNOWAIT, 0, "KauNetCM");

166 printf("KauNet Communication Module Loaded.\n");

167 break;

168 case MOD_UNLOAD:

169 kcm_event_hook = NULL;

170 if (tstate == T_START){

171 tstate = T_STOP;

172 }

173 while (tstate != T_EXIT){

174 tsleep(curthread, PDROP, "KCM tsleep", 2*hz);

175 }

176 printf("KauNet Communication Module Unloaded.\n");

177 break;

178 default:

179 err = EOPNOTSUPP;

180 break;

181 }

182 return err;

183 }

184

185 static moduledata_t kcm_data= {

186 "kcm",

187 kcm_handler,

188 0

189 };

190

191 MODULE_VERSION(kcm, 1);

192 DECLARE_MODULE(kcm, kcm_data, SI_SUB_KLD, SI_ORDER_ANY);

193

C.4. ADAPTATION LAYER COMMUNICATION MODULE 101

194

C.4 Adaptation Layer Communication Module

The Adaptation Layer Communication Module (described in Section 4.2.5 and Section

5.3.3) is composed by two parts; the API and the implementation of the API functions.

The implementation of the API depends on how the KauNet Communication Module is

implemented, e.g. how a subscription is made or how the received message is constructed

(value and timestamp).

C.4.1 alcm.h

1 #ifndef __ALCM_H__

2 #define __ALCM_H__

3

4 #include <stdlib.h>

5 #include <sys/types.h>

6 #include <sys/socket.h>

7 #include <stdio.h>

8 #include <netinet/in.h>

9 #include <arpa/inet.h>

10

11 #define PORT 1066

12 #define SUBSCRIBE 1

13 #define UNSUBSCRIBE 0

14

15 /*

16 * Start subscribing to KCM at address ip, listening on port

17 * Returns 0 if successful, else -1

102 APPENDIX C. SOURCE CODE

18 */

19 int subscribe(const char* ip, int port);

20

21 /*

22 * Unsubscribe from KCM currently connected to

23 * Returns 0 if successful or not currently connected, else -1

24 */

25 int unsubscribe();

26

27 /*

28 * Blocking receive function for receiving event data

29 * Returns void ptr to received data, or NULL on failure

30 */

31 void* recv_event();

32

33 /*

34 * Parse event data and retrieve trigger value

35 * Returns trigger value as int

36 */

37 int getValue(const void* data);

38

39 /*

40 * Parse event data and retrieve timestamp

41 * Returns timestamp as struct timeval

42 */

43 struct timeval getTimestamp(const void* data);

44

45 /*

46 * Get the size of the event data struct

C.4. ADAPTATION LAYER COMMUNICATION MODULE 103

47 * Returns size in bytes

48 */

49 int getDataSize();

50

51

52 struct subscription_data_t{

53 int subscribe;

54 };

55

56 /* The structure of the struct KCM sends */

57 struct kcm_receive_event {

58 int value;

59 struct timeval timestamp;

60 };

61

62 #endif /* __ALCM_H__ */

C.4.2 alcm.c

1 #include "alcm.h"

2

3 int sockfd = 0;

4 struct sockaddr_in server;

5

6 int subscribe(const char* ip, int port)

7 {

8 int ret;

9 struct subscription_data_t connectData;

10

104 APPENDIX C. SOURCE CODE

11 if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0){

12 perror("socket");

13 return -1;

14 }

15

16 server.sin_family = AF_INET;

17 server.sin_port = (port==0?htons(PORT):htons(port));

18 if (inet_aton(ip, &server.sin_addr) == 0){

19 perror("inet_aton");

20 return -1;

21 }

22

23 connectData.subscribe = htonl(SUBSCRIBE);

24 ret = sendto(sockfd, &connectData, sizeof(struct subscription_data_t),

25 0, (struct sockaddr*)&server, sizeof(struct sockaddr_in));

26 if (ret == -1) {

27 perror("sendto - subscribe");

28 return -1;

29 }

30

31 return 0;

32 }

33

34 int unsubscribe()

35 {

36 if (sockfd != 0) {

37 int ret;

38 struct subscription_data_t connectData;

39

C.4. ADAPTATION LAYER COMMUNICATION MODULE 105

40 connectData.subscribe = htonl(UNSUBSCRIBE);

41 ret = sendto(sockfd, &connectData, sizeof(struct subscription_data_t),

42 0, (struct sockaddr*)&server, sizeof(struct sockaddr_in));

43 if (ret == -1) {

44 perror("sendto - unsubscribe");

45 return -1;

46 }

47 sockfd = 0;

48

49 return 0;

50 }

51

52 return -1;

53 }

54

55 void* recv_event()

56 {

57 int ret;

58 struct kcm_receive_event *msg;

59 msg = (struct kcm_receive_event*)malloc(getDataSize());

60

61 ret = recvfrom(sockfd, msg, sizeof(struct kcm_receive_event), 0, NULL, 0);

62 if (ret < 0){

63 perror("recvfrom - recv_event");

64 return NULL;

65 }

66

67 return (void*)msg;

68 }

106 APPENDIX C. SOURCE CODE

69

70 int getValue(const void* data)

71 {

72 struct kcm_receive_event *msg = (struct kcm_receive_event*)data;

73

74 return ntohl(msg->value);

75 }

76

77 struct timeval getTimestamp(const void* data)

78 {

79 struct kcm_receive_event *msg = (struct kcm_receive_event*)data;

80 struct timeval timestamp;

81 timestamp.tv_sec = ntohl(msg->timestamp.tv_sec);

82 timestamp.tv_usec = ntohl(msg->timestamp.tv_usec);

83

84 return timestamp;

85 }

86

87 int getDataSize()

88 {

89 return sizeof(struct kcm_receive_event);

90 }

C.5 Adaptation Layer

The following sample code is an example of how an adaptation layer can be implemented.

The adaptation layer is used in Chapter 6. It uses the ALCM API (see Appendix C.4) and

shows how to use the different available functionality. The steps showed (implemented)

are as follows:

C.5. ADAPTATION LAYER 107

• Subscribe

• Wait and receive a message (event)

• Print the contents of the received event; value, timestamp and size of event

• Repeat the previous two steps until a SIGINT signal is received

• When a SIGINT signal is received: Unsubscribe

More information is available in Section 5.3.4.

C.5.1 al.c

1 #include "alcm.h"

2 #include <signal.h>

3

4 #define IPADDRESS "127.0.0.1" //IP address of the server/kernel module

5

6 void die(int signal)

7 {

8 //Attempt to send unsubscription event to host subscribed to

9 if (unsubscribe() != 0) {

10 printf("ERROR: Unsubscribe failed\n");

11 exit(-1);

12 }

13

14 exit(0);

15 }

16

17 int main()

18 {

108 APPENDIX C. SOURCE CODE

19 void* buffer; //Event information buffer

20

21 signal(SIGINT, die);

22

23 //Attempt to send subscription request to defined IP address using

24 //the default port defined in alcm.h

25 if (subscribe(IPADDRESS, PORT) != 0) {

26 printf("ERROR: Failed to subscribe to %s:%d\n", IPADDRESS, PORT);

27 exit(-1);

28 }

29

30 while (1) {

31 buffer = recv_event(); //Blocking call to receive next event

32 if (buffer != NULL) {

33 printf("Received value %d at time %d:%d (%d bytes)\n",

34 getValue(buffer), //Parse trigger value from event

35 (int)getTimestamp(buffer).tv_sec, //Parse timestamp

36 (int)getTimestamp(buffer).tv_usec,

37 getDataSize()); //Get event data size

38

39 free(buffer);

40 }

41 else {

42 printf("ERROR: Received NULL message\n");

43 exit(-1);

44 }

45 }

46

47 return 0;

C.6. PATTERN GENERATION UTILITY 109

48 }

49

C.6 Pattern Generation Utility

The following output is a comparison between the pattern generation utility with and

without trigger patterns. See Section C.1 for a description of the output.

C.6.1 patt gen.diff

16:21:49.000000000 +0100

@@ -22,20 +22,21 @@

#define UNKNOWN_FILE 0

#define PATTERN_FILE 1

#define SCENARIO_FILE 2

/* Pattern types. Used in pattern file header, field "Pattern type". */

#define UNDEFINED_TYPE 0

#define BITERROR 1

#define PACKET_LOSS 2

#define DELAY 3

#define BANDWIDTH 4

+#define TRIGGER 5

/* Describes how patterns will behave, e.g. random bit errors, packet losses

during certain intervals etc. */

#define RANDOM 1

#define GILBERT 2

#define POSITION 3

110 APPENDIX C. SOURCE CODE

#define INTERVAL 4

/* #define EXPONENTIAL 5 */

/* #define BOUNDED_PARETO 6 */

@@ -56,22 +57,22 @@

#define PLOT 3

/* Forward declaration */

int32_t ceildiv(int32_t num, int32_t denum);

/*Temporary hack to fix -graphx*/

int32_t graphx = 0;

-static char *ptype[5] =

- { "", "biterror", "packet loss", "delay", "bandwidth" };

+static char *ptype[6] =

+ { "", "biterror", "packet loss", "delay", "bandwidth", "trigger" };

static char *dmode[3] = { "unspecified", "data-driven", "time-driven" };

/* Header structure for compressed pattern. Total size 16 bytes */

struct p_header {

char magic[6]; /* "KauNet". 6 bytes */

uint8_t version; /* 1 byte */

uint8_t type; /* 1 byte. This byte is divided into two

* parts. The two most significant bits

* indicate if the pattern was produced

* in time-driven or data-driven mode.

C.6. PATTERN GENERATION UTILITY 111

@@ -450,21 +451,21 @@

1 The header is valid

*/

int32_t

check_header(struct p_header * hdr)

{

char type = hdr->type & TYPE_PART;

return (strncmp("KauNet", hdr->magic, 6) == 0) && /* Check magic bytes. */

(hdr->version == VERSION) && (hdr->type & MODE_PART) && /* 2 bits, either 01,\

10 or 11. */

((type == BITERROR) || (type == PACKET_LOSS) ||

- (type == DELAY) || (type == BANDWIDTH));

+ (type == DELAY) || (type == BANDWIDTH) || (type == TRIGGER));

}

/* Advances pattern read state in compressed data (i.e. pattern file).

Parameters:

prs

A pointer to the pattern read state structure.

prs->distance is set to the number of zero bits before a

@@ -719,34 +720,49 @@

prexlbl = "x100000 ";

}

divisor = yrange;

112 APPENDIX C. SOURCE CODE

sprintf(yticmode, "divisor = %d\nset ytics auto\n", divisor);

sprintf(plotmode,

"set bars small\nplot \"%s\" using (int($1)/divisor):((int($1)-1)%%divisor+\

0.5):(0.5) with yerrorbars linetype 1 pointtype 0\n",

plot_txt);

} else if (((hdr->type & TYPE_PART) == BANDWIDTH)

- || ((hdr->type & TYPE_PART) == DELAY)) {

+ || ((hdr->type & TYPE_PART) == DELAY)

+ || ((hdr->type & TYPE_PART) == TRIGGER)) {

if (!extract_values(prs, plotfile, PLOT))

return 0;

xrange = hdr->patternsize;

yrange = (((prs->max_value / 100) * 100) + 100);

- typelbl =

- (hdr->type & TYPE_PART) == BANDWIDTH ? "Bandwidth" : "Delay";

+ switch (hdr->type & TYPE_PART) {

+ case BANDWIDTH:

+ typelbl = "Bandwidth";

+ ylbl = "Bandwidth (kbps)";

+ break;

+ case DELAY:

+ typelbl = "Delay";

+ ylbl = "Delay (MilliSeconds)";

+ break;

+ case TRIGGER:

C.6. PATTERN GENERATION UTILITY 113

+ typelbl = "Trigger";

+ ylbl = "Trigger (Events)";

+ break;

+ }

+/* typelbl =

+ (hdr->type & TYPE_PART) == BANDWIDTH ? "Bandwidth" : "Delay"; */

xlbl = (hdr->type & TIME_DRIVEN) ? "MilliSeconds" : "Packets";

- ylbl =

+/* ylbl =

(hdr->type & TYPE_PART) ==

- BANDWIDTH ? "Bandwidth (kbps)" : "Delay (MilliSeconds)";

+ BANDWIDTH ? "Bandwidth (kbps)" : "Delay (MilliSeconds)";*/

gplbl = xlbl;

sprintf(yticmode, "set ytics auto\n"); /* Automatic scaling */

sprintf(plotmode, "plot \"%s\" with steps\n", plot_txt);

} else

return 0; /* Unknown pattern type. */

fprintf(gp, "\n# %s Plot \n#----------------------\n", typelbl);

@@ -862,22 +878,22 @@

display_usage()

{

printf("\nUsage:\n\n"

"patt_gen -ber|-pkt -rand <filename> <mode> <size> <random_seed> <BVAL> \n"

"patt_gen -ber|-pkt -ge <filename> <mode> <size> <random_seed> <good_BER>\

<bad_BER> <good_tran_prob> <bad_tran_prob> \n"

114 APPENDIX C. SOURCE CODE

"patt_gen -ber|-pkt -pos <filename> <mode> <size> <positions> \n"

"patt_gen -ber|-pkt -pos <filename> <mode> <size> -f <infilename> \n"

"patt_gen -ber|-pkt -pos <filename> <mode> <size> -r <infilename> \n"

"patt_gen -ber|-pkt -int <filename> <mode> <size> <interval-list>\

[<start_value>]\n"

"patt_gen -ber|-pkt -int <filename> <mode> <size> -f <infilename>\

[<start_value>]\n"

- "patt_gen -del|-bw -pos <filename> <mode> <size> <position-values> \n"

- "patt_gen -del|-bw -pos <filename> <mode> <size> -f <infilename> \n\n"

+ "patt_gen -del|-bw|-trig -pos <filename> <mode> <size> <position-values> \n"

+ "patt_gen -del|-bw|-trig -pos <filename> <mode> <size> -f <infilename> \n\n"

"The first switch for the command controls which type of pattern should be\

produced: \n bit-error, packet loss, delay change or bandwidth change.\n"

"The second switch controls how the pattern should be generated: \n\

(pseudo-)randomly, using the gilbert-elliot model, or by explicilty giving\

positions either directly or in a file.\n\n"

" <filename> The name of the output file. \n"

" <mode> Specifies the generation mode (data / time). \n"

" The mode specification can influence the interpretation of later\

parameters. \n"

" <size> Specifies the length of the generated pattern. \n"

" The unit of the size can be either kilobytes, packets or\

milliseconds dependent on the type of pattern generated.\n"

" <random Seed> Gives the seed to use for random number generation. \n"

" Set to 0 to use internal seeding (Requires internet connectivity)\n"

" <positions> A comma separated list of positions where errors/losses are\

wanted.\n"

@@ -1718,20 +1734,23 @@

size_factor = BITS_KBYTE;

C.6. PATTERN GENERATION UTILITY 115

} else if (strcmp("-pkt", argv[1]) == 0) {

hdr.type = PACKET_LOSS;

size_factor = 1;

} else if (strcmp("-del", argv[1]) == 0) {

hdr.type = DELAY;

size_factor = 1;

} else if (strcmp("-bw", argv[1]) == 0) {

hdr.type = BANDWIDTH;

size_factor = 1;

+ } else if (strcmp("-trig", argv[1]) == 0) {

+ hdr.type = TRIGGER;

+ size_factor = 1;

} else if (strcmp("-info", argv[1]) == 0) {

filetype = check_filetype(argv[2]);

if (filetype == SCENARIO_FILE) {

print_scn_info(argv[2]);

} else if (filetype == PATTERN_FILE) {

dump(argv[2], INFO);

} else {

fprintf(stderr, "File is not scenario file or pattern file. Aborting");

exit(EXIT_FAILURE);

}

@@ -1858,21 +1877,21 @@

if (argc == 8)

tmpsv = strtoul_ck(argv[7]); /* Check if option startvalue is present */

total_ones = set_interval(argv[6], &cpatt, hdr.patternsize * size_factor,\

tmpsv);

}

} else {

116 APPENDIX C. SOURCE CODE

printf ("Requested patterntype is unsupported for this type of patterns\n");

exit(EXIT_FAILURE);

}

finalize_cpattern(&cpatt);

- } else if ((hdr.type & TYPE_PART) == DELAY || (hdr.type & TYPE_PART) ==\

BANDWIDTH) {

+ } else if ((hdr.type & TYPE_PART) == DELAY || (hdr.type & TYPE_PART) ==\

BANDWIDTH || (hdr.type & TYPE_PART) == TRIGGER) {

init_cpattern(outfileptr, &hdr, &cpatt);

if (patterntype == POSITION) {

if (strcmp(argv[6], "-f") == 0) {

filebuf = read_textfile(argv[7]);

total_ones = set_values(filebuf, &cpatt, hdr.patternsize * size_factor);

} else {

total_ones = set_values(argv[6], &cpatt, hdr.patternsize * size_factor);

}

} else {

C.7 The Internet Protocol Firewall

IPFW is the application used to load KauNet patterns into the kernel. Only a few changes

are made to enable loading of trigger patterns.

C.7.1 dummynet.c

@@ -319,21 +319,21 @@

ipfw_list_pipes(void *data, uint nbytes, int ac, char *av[])

C.7. THE INTERNET PROTOCOL FIREWALL 117

{

int rulenum;

void *next = data;

struct dn_pipe *p = (struct dn_pipe *) data;

struct dn_flow_set *fs;

struct dn_flow_queue *q;

int l;

#ifdef KAUNET

int i;

- char *pattern_types[MAX_PATTERNS] = { "Bit error", "Packet loss", "Delay change", \

"Bandwidth change" };

+ char *pattern_types[MAX_PATTERNS] = { "Bit error", "Packet loss", "Delay change", \

"Bandwidth change", "Trigger" };

char pattern_string[500];

char tempstr[256];

#endif /* KAUNET */

if (ac > 0)

rulenum = strtoul(*av++, NULL, 10);

else

rulenum = 0;

for (; nbytes >= sizeof *p; p = (struct dn_pipe *)next) {

double b = p->bandwidth;

@@ -520,21 +520,21 @@

case TOK_APPEND:

if (scenario_set)

errx(EX_USAGE, "You can not append a pattern while working with scenarios.\n");

patterns[current_pattern].append = 1;

printf("Trying to append patterns.\n");

118 APPENDIX C. SOURCE CODE

/* Fallthrough */

case TOK_PATTERN:

if ((current_pattern+1 > MAX_PATTERNS) && !patterns[current_pattern].append)

- errx(EX_USAGE, "You have exceeded the limit of four patterns/pipe.\n");

+ errx(EX_USAGE, "You have exceeded the limit of %d patterns/pipe.\n", \

MAX_PATTERNS);

if (scenario_set)

errx(EX_USAGE, "You can not load a scenario and a pattern at the same time.\n");

NEED1("You must supply a pattern file.\n");

strcpy(filename, abs_filename(av[0]));

/* Read and parse pattern file */

if ((buff = file_to_buff(filename)) == NULL) {

errx(EX_DATAERR, "Failed to load pattern file, exiting\n");

@@ -1080,21 +1080,21 @@

return hdr;

}

/* Sync necessary data between pipe and pattern */

void

sync_info(struct pattern *p, struct p_header *hdr, struct dn_pipe *pipe)

{

p->pattern_pipe_nr = pipe->pipe_nr;

p->timedriven = (hdr->type & MODE_PART & TIME_DRIVEN) ? 1 : 0;

C.7. THE INTERNET PROTOCOL FIREWALL 119

- p->pattern_type = ((hdr->type & TYPE_PART) - 1) & (PACKET_LOSS | BITERROR | DELAY \

| BANDWIDTH);

+ p->pattern_type = ((hdr->type & TYPE_PART) - 1) & (PACKET_LOSS | BITERROR | DELAY \

| BANDWIDTH | TRIGGER);

p->defer_start = 1;

pipe->pattern_size[p->pattern_type] = hdr->patternsize;

}

/* Returns the absolute path of a given filename */

char*

abs_filename(char *filename) {

char *name, *end = NULL;

@@ -1200,21 +1200,21 @@

p->pattern_segments = hdr->arraysize;

return hdr;

}

void

print_pattern_status(struct dn_pipe *pipe)

{

int i;

- char *names[MAX_PATTERNS] = { "bit error", "packet loss", "delay change", \

"bandwidth change"};

+ char *names[MAX_PATTERNS] = { "bit error", "packet loss", "delay change", \

"bandwidth change", "trigger"};

120 APPENDIX C. SOURCE CODE

for(i = 0; i < MAX_PATTERNS; i++) {

if (pipe->patterns[i] != NULL) {

if ((pipe->pipe_nr == pipe->patterns[i]->pattern_pipe_nr) && (pipe->patterns[i]->\

cast == NO_PATTERN))

printf("Pipe %d: Loading %s pattern from file %s, for %s mode.\n", pipe->\

pipe_nr, names[pipe->patterns[i]->pattern_type], pipe->patterns[i]->pattern_file\

, pipe->patterns[i]->timedriven ? "time driven" : "data driven");

else if (pipe->patterns[i]->cast != NO_PATTERN)

printf("Pipe %d: Trying to cast pattern from %s to %s\n", pipe->pipe_nr, \

names[pipe->patterns[i]->pattern_type], names[pipe->patterns[i]->cast]);

else

printf("Pipe %d: Sharing %s pattern with pipe %d, for %s mode.\n", pipe->\

pipe_nr, names[pipe->patterns[i]->pattern_type], pipe->patterns[i]->pattern_pipe_nr, \

pipe->patterns[i]->timedriven ? "time driven" : "data driven");

if (pipe->patterns[i]->timedriven && !pipe->bandwidth)

	Introduction
	Problem, Goals & Motivation
	Disposition

	Background
	Evaluation of Computer Networking Systems
	Theoretical Analysis
	Simulation
	Emulation
	Live Testing

	Dummynet
	IPFW & Packet Classifying
	Pipes & Queues
	Dummynet Usage Example

	KauNet
	Patterns
	Pattern Generation Utility
	KauNet Usage Example

	Summary

	Problem Description
	Background
	Motivating Examples
	Real-Time Emulation Updates
	Cross-layer Optimization
	Link Properties Estimation

	Design Considerations
	Summary

	Design
	Triggers
	Trigger Passing
	KauNet
	Trigger Passing Mechanism Evaluation
	KauNet Communication Module
	Adaptation Layer
	Adaptation Layer Communication Module

	Summary

	Implementation
	Dummynet/KauNet Architecture
	Trigger Patterns
	Pattern Structure
	Pattern Generation

	Trigger Passing
	KauNet
	KauNet Communication Module
	Adaptation Layer Communication Module
	Adaptation Layer

	Summary

	System Demonstration
	Theory
	Method
	Results
	Experiment 1
	Experiment 2

	Conclusions

	Conclusions & Future Work
	Future Work

	References
	IPC Evaluation
	Test Machine Specifications

	FreeBSD
	Source code
	File Difference Output
	FreeBSD Kernel (with KauNet)
	ip_dummynet.h
	ip_dummynet.c

	KauNet Communication Module
	kcm.h
	kcm.c

	Adaptation Layer Communication Module
	alcm.h
	alcm.c

	Adaptation Layer
	al.c

	Pattern Generation Utility
	patt_gen.diff

	The Internet Protocol Firewall
	dummynet.c

