

 Computer Science

Master’s Project

E2010:05

Christian H. Becker

Using eXtreme Programming in a Student

Environment: A Case Study

© 2010 The author(s) and Karlstad University

To Steffi and Emil

 ii

 iii

Using eXtreme Programming in a Student

Environment: A Case Study

Christian H. Becker

 v

 vi

This thesis is submitted in partial fulfilment of the requirements for the

Masters degree in Computer Science. All material in this thesis which is not

my own work has been identified and no material is included for which a

degree has previously been conferred.

Christian H. Becker

Approved, 10th of June 2010

Advisor: Donald F. Ross

Examiner: Thijs Holleboom

 vii

 viii

Abstract

With the advent of shorter time to market of software products there an increasing

requirement for techniques and methods to improve the productivity levels in software

development together with a requirement for increased flexibility and the introduction of late

changes. This in turn has lead to the introduction of a set of techniques known as “Agile

methods” which include one methodology known as “eXtreme Programming”. This is a

collection of values, principles, and practices. Since these methods are becoming more

common in industry, is has become more important to introduce these ideas in the

undergraduate curriculum.

This case study analysed whether or not it is possible to teach eXtreme Programming at a

university by means of a course that presents a mixture of theory and practice within eXtreme

programming. In this context, a case study was carried out to determine which of the

practices of eXtreme Programming are more appropriate to university projects. The case

study indicates that it is worth investing the effort to teach eXtreme Programming to students

to enable them to apply eXtreme Programming or at least some of its practices in future

business and university projects.

 ix

 x

Acknowledgements

I would like to thank my supervisor Donald F. Ross for his patience, support and

continuous interest in improvement. I would like to thank my parents for giving me the

opportunity of spending an unforgettable time at Karlstad University in Sweden.

 xi

 xii

Contents

1 Introduction ...1

2 Background..3

2.1 Introduction..3

2.2 Students Programming Background..3

2.3 Evaluative Research ...5
2.3.1 Surveys and Interviews .. 7
2.3.2 Observation .. 8

2.3.3 Tools .. 9

2.4 Case Study ...9
2.4.1 History of Case Studies.. 9
2.4.2 Description of Case Studies ..10
2.4.3 Qualitative versus Quantitative Methods ..10
2.4.4 The use of Case Study in the Experiment ...10

2.5 eXtreme Programming in a nutshell..11

2.5.1 An overview of eXtreme Programming ..11
2.5.2 Applying eXtreme Programming in a Student Project Environment12

2.6 Review ...15

3 The analysis model...17

3.1 Introduction..17

3.2 Hypotheses...18

3.3 Survey 1 ...19
3.3.1 Introduction...19

3.3.2 Terms of reference for Survey 1 ...19
3.3.3 Items of Survey 1 ..20

3.3.4 Summary...23

3.4 The tools ..23

3.5 The observation protocol ..25
3.5.1 Introduction...25

3.5.2 Terms of the observation...26
3.5.3 The measurement of each observed practice...28
3.5.4 Summary...31

3.6 Survey 2 ...31
3.6.1 Introduction...31

3.6.2 The terms of reference of Survey 2...31
3.6.3 Items of Survey 2 ..32

3.6.4 Summary...36

3.7 The sample ...36

3.8 Summary ..37

4 Empirical Study ...39

4.1 Introduction..39

4.2 Survey 1 ...39

 xiii

4.2.1 Introduction...39

4.2.2 Evaluation ...39

4.2.3 Conclusion ..44

4.3 The Tools ...45
4.3.1 Introduction...45

4.3.2 Evaluation ...45

4.3.3 Conclusion ..50

4.4 The observation protocol ..50
4.4.1 Introduction...50

4.4.2 Evaluation ...50

4.4.3 Conclusion ..53

4.5 Survey 2 ...54
4.5.1 Introduction...54

4.5.2 Evaluation ...54

4.5.3 Conclusion ..63

4.6 Summary ..66

5 Result by practices...67

5.1 Introduction..67

5.2 Sit Together..67

5.3 Informative Workspace ..68

5.4 Energized Work..68

5.5 Pair Programming...69

5.6 Stories ..70

5.7 Weekly Cycle ...71

5.8 Slack ..72

5.9 Ten-Minute Build ...73

5.10 Continuous Integration ...73

5.11 Test-First Programming..74

5.12 Incremental Design...74

5.13 Shared Code ...75

5.14 Code & Test ...75

5.15 Single Code Base..76

5.16 Negotiated Scope Contract ...77

5.17 Final Comments ...77

 xiv

References...79

A Appendix List of abbreviations ...86

B Appendix The project specification ..87

C Appendix Survey 1...92

D Appendix The Observation Protocol ..94

Week 1 ..94

Week 2 ..96

Week 3 ..99

Week 4 ..100

Week 5 ..101

All 5 weeks..102

E Appendix Survey 2...104

F Appendix The CVS Log Files..106

Week 1 ..106

Week 2 ..108

Week 3 ..109

Week 4 ..111

Week 5 ..112

All 5 weeks..114

G Appendix Summary of the meeting 050309 16:00-17:45..116

 xv

 xvi

List of figures

Figure 2.1 The 2004 computer engineering curriculum at the University of Karlstad4

Figure 2.2 Six sources of evidence: Strengths and Weaknesses taken from Yin [24]6

Figure 2.3 Convergence of Evidence taken from Yin [24]..7

Figure 2.4 Non Convergence of Evidence taken from Yin [24] ..7

Figure 3.1 Project timeline and action events ...17

Figure 3.2 Distribution of the students' age ..37

Figure 4.1 Responses to survey 1 item 2 ..40

Figure 4.2 Responses to item 3 ..42

Figure 4.3 File count during the project phase..46

Figure 4.4 Average file sizes during the project phase..46

Figure 4.5 Anonymous quotas of the students’ add and modify transactions48

Figure 4.6 Responses on item 1 ...55

Figure 4.7 Responses on item 3 ...56

Figure 4.8 Responses on item 4 ...57

Figure 4.9 Responses on item 5 ...60

Figure 4.10 Responses on item 7..61

Figure 0.1 Day Commits: Week 1..106

Figure 0.2 Time Commits: Week 1 average ...107

Figure 0.3 Day Commits: Week 2..108

Figure 0.4 Time Commits: Week 2 average ...108

Figure 0.5 Day Commits: Week 3..109

Figure 0.6: Time Commits: Week 3 average ..110

Figure 0.7 Day Commits: Week 4..111

Figure 0.8 Time Commits: Week 4 average ...111

Figure 0.9 Day Commits: Week 5..112

Figure 0.10: Time Commits: Week 5 average ..113

Figure 0.11 Day Commits: Average for all weeks..114

 xvii

Figure 0.12 Time Commits: Average for all weeks ..114

 xviii

List of tables

Table 2-1 Primary practices, the aspect of the practice and whether applied or not.........13

Table 2-2 Corollary practices, the aspect of the practice and whether applied or not14

Table 3-1 Weighted Average Example...20

Table 3-2 Three Category Scale...22

Table 3-3 Evaluated practices and their evaluation method ..27

Table 4-1Weighted mean values for survey 1 item 2..40

Table 4-2 Weighted mean values for item 3 ...42

Table 4-3 Comparing the understand & the applicable mean values...............................43

Table 4-4 Responses on item 5 ..44

Table 4-5 CVS transactions ...48

Table 4-6 File types in the CVS...49

Table 4-7 Practices applied per week in words and numerical values51

Table 4-8 Survey 1 item 2 compared to the protocol of the observation and the tools.....52

Table 4-9 Mean value of item 1 ...55

Table 4-10 Mean value of item 3 ...57

Table 4-11 Comparison of Survey 2 Item 4 and, the observation and tools.....................58

Table 4-12 The mean value of item 5...60

Table 4-13 Responses on item 7...62

Table 4-14 Comparing Survey 1 with Survey 2..63

Table 0-1 Responses to Survey 1 ..93

Table 0-2 Recommended practices, used or not: Week 1..96

Table 0-3 Average hrs/day: Week 1...96

Table 0-4 Recommended practices, used or not: Week 2..97

Table 0-5 Average hrs/day: Week 2...98

Table 0-6 Recommended practices, used or not: Week 3..99

Table 0-7 Average hrs/day: Week 3...100

Table 0-8 Recommended practices, used or not: Week 4..100

 xix

Table 0-9 Average hrs/day: Week 4...101

Table 0-10 Recommended practices, used or not: Week 5..102

Table 0-11 Average hrs/day: Week 5 ...102

Table 0-12 Recommended practices, used or not: All Weeks103

Table 0-13 Average hrs/day: All Weeks...103

Table 0-14 Responses on Survey 2 ..105

 1

1 Introduction

This project is the result of a case study as to whether or not the ideas of eXtreme

Programming may be taught in the undergraduate curriculum. The increasing adoption of

agile methods [80] and eXtreme Programming [20] in industry means that these methods

should be introduced to students as part of their education. The question is how best to

achieve this.

It is a point of discussion as to how eXtreme Programming may be taught to students in a

University. This thesis addresses this question by analyzing a student lab exercise for the

Software Engineering course in the Department of Computer Science at Karlstad University

by means of a case study. The main goal of this case study was to measure certain (15)

eXtreme Programming practices realizable in a student environment [appendix G] by means

of surveys, analysis of archival information from programming tools and direct observations

of the students. However, this thesis aims further by analyzing the success or failure in

teaching the 15 eXtreme Programming practices and in giving ideas to improve this process.

This thesis consists of 4 chapters. Chapter 2 presents the background information such as

the external circumstances of the course, basics about evaluative research and case studies as

well as eXtreme Programming. Thereupon, chapter 3 defines the analysis model used in the

empirical study in chapter 4 and introduces the items set up for the study and allocates them

to the different data sources. Chapter 4 shows the students’ responses to the surveys, evaluates

all data sources and combines these results for an interpretation of this learning process.

Finally, chapter 5 compares these results with the 15 eXtreme Programming practices and to

related work in order to give recommendations for future courses in this area.

 2

 3

2 Background

2.1 Introduction

This chapter introduces topics and methods that are required to read and understand this

thesis.

In the first section the students’ background on programming skills is introduced. This is

followed by an introduction on evaluative research. The tools from the toolbox of evaluative

research which have been applied in this project are introduced. The procedure model used is

then presented. To complete the procedural overview the next section is about case studies.

The case study methods used in this dissertation are briefly introduced. Furthermore it is

explained how the evaluation tools fit into the case study research methodology. The last

section of this chapter introduces eXtreme Programming to the reader. The reader is required

to know some key facts about eXtreme Programming to be able to understand the analysis of

the course performed in this dissertation. Finally as a complement to the first section of his

chapter follows an introduction to how eXtreme Programming is taught at Karlstad University

and what the level of the students’ knowledge about eXtreme Programming was before they

attended the course.

2.2 Students Programming Background

The programming background of those students who attended the course which was

evaluated in this dissertation is introduced. This information is given in the form of the

programming courses that the students had already taken. The curriculum of the students’ first

two years is presented in Figure 2.1. This curriculum is of interest since the course evaluated

in this project is a second year course.

 4

Figure 2.1 The 2004 computer engineering curriculum at the University of Karlstad

All courses on programming are indentified by an orange rectangle. As Figure 2.1 shows

the students had 4 courses on programming before they attended the course on eXtreme

Programming (CIT B02 red rectangle on the bottom right of Figure 2.1). From this, the

students may be classified as intermediate programmers In addition to their current

knowledge, the students were required to learn an entire new infrastructure (tools the students

have not used before) as well as the ideas behind eXtreme Programming.

 5

2.3 Evaluative Research

The main methods used in this dissertation are taken from the area of evaluative research.

According to Bortz & Döring [24], Rossi & Freeman [34], Weiss [35], Wittmann [36] and

Thierau & Wottawa [37] evaluative research is a variation on empirical research methods,

applied to a particular group of questions. Modern evaluative research has its roots in the

1930s in the USA where it was applied to analyze programs, interventions and arrangements

in the health care and the education system1.

Since evaluative research is a very wide topic, this section is only about those parts, used in

the research for this thesis. During this research, some tools out of the toolbox of evaluative

research have been used. These tools were:

a) Survey; two surveys that have been filled in by the student group.

b) Observation; an observation on the student group.

c) Analysis of log files; The log files of the tools the students used in their project

Due to the fact, that these tools have the purpose to gather data they can be understood –

following Yin [23] - as data sources or, as Yin [23] calls them sources of evidence. The

strengths and weaknesses of the different data sources, according to Yin [23], can be found in

Figure 2.2 In the following sections all applied data sources are explained in detail.

1 For more information regarding the evolution of the evaluation in the USA see Mertens [38]. For information

regarding the evaluative research in Europe see Leeuw [39] and for information regarding evaluative research
in Germany see Stockmann [40]

 6

Figure 2.2 Six sources of evidence: Strengths and Weaknesses taken from Yin [24]

 7

Figure 2.3 Convergence of Evidence taken from Yin [24]

Figure 2.4 Non Convergence of Evidence taken from Yin [24]

Figure 2.3 & Figure 2.4 show that, according to Yin [23], there exist 2 different ways of

interpreting data sources that have been analysed during research. The first one – in this case

convergence of evidence – builds the evidence based on different data sources whereas the

second one derives a conclusion from every single data source. In this thesis, the way

described in Figure 2.3 has been applied. All sources of evidence – described in the next sub

sections – are used to find one fact about an item. The detailed procedure can be found in

chapter 3 where the analysis model is introduced in detail.

2.3.1 Surveys and Interviews

The Survey in this dissertation is regarded as a special kind of interview. An advantage of

the survey is that surveys are performed without interviewer control. This can be understood

as an advantage since any influence by the interviewer can be minimised. Another relevant

 8

advantage, in the context of this thesis, is that it is an economical way to perform an

interview. All disadvantages mentioned in Bortz & Döring [24] may be neglected. These

disadvantages are:

• Influence by the appearance of the interviewer (who)

• Influence due to different point of time of the interview of each respondents (when)

• Influence by different surroundings of the interview of each and every respondent

(where)

These disadvantages may appear if the respondents do not answer the survey under the

same circumstances. This means the respondents have to answer the survey at the same time

in the same room to avoid influence from other respondents and other outside influences.

The survey as a method has been chosen since surveys are meant to gather data about the

students’ state of mind regarding their knowledge about eXtreme Programming, its practices

and their interest in applying eXtreme programming during the students’ practical project.

Details about how the surveys have been set up can be found later in this document in Chapter

3 where the whole analysis model is introduced.

2.3.2 Observation

In this research the observation method was chosen as instrument with the goal of

evaluating whether the students did apply a certain practice or not. This means - according to

Bortz & Döring [24] the qualitative approach has been chosen. This corresponds to the

following criteria presented in Adler & Adler [41]

• Observation in the natural surrounding (in this case the classroom)

• Active interaction of the observer

• Focusing on larger units, systems and behaviour patterns instead of focusing on

small variables

• Open for new input and not focused on an observation schema

The last point might sometimes be hard to follow since the observers in this project had to

fill in an observation template which focused on the 15 practices used in the project. More

about these practices can be found in the section 2.5. Regarding the last point it needs to be

mentioned that not only the fixed observation schema is evaluated since the observers wrote a

small diary for every day and analysed this diary with focus on the questions, defined in

chapter 3 where the whole analysis model is introduced.

 9

2.3.3 Tools

Tools are source of evidence for every case study. According to Yin [23] the tools themselves

are not to be seen as source of evidence. The tools deliver artefacts – in this case called

archival records – that can be seen as evidence for the evaluation. According to Yin [23]

examples for archival records include:

• “Service records, such as those showing the number of clients served over a given

period of time

• Organizational records, such as organizational charts and budgets over a period of

time

• Map sand charts of the geographical characteristics or layouts of a place

• Lists of names and other relevant items”

Yin [23] states that archival records do show one criterion that is relevant for case studies,

namely that the archival records will never be similar if you run a project twice.

2.4 Case Study

Numerous definitions of a case study may be found but for this research the definition

according to Yin [23] has been applied. According to Yin [23] a case study is one of several

methods developed in social science research. Another definition according to Merriam [6] is

that a case study is an “investigation of a specific occurrence, e.g. a program, an event, a

person, an institution or a social group.” This section is giving an overview over the history of

case studies, what a case study can be, what different characteristics a case study can have.

2.4.1 History of Case Studies

Case study research is historically marked by periods of intense use and periods of disuse.

According to Tellis [7] the earliest use of this form of research can be traced to Europe,

predominantly to France. The fields of sociology and anthropology are credited with the

primary shaping of the case study concept as we know it today (see Barnes, Conrad, Demont-

Heinrich, Graziano, Kowalski, Neufeld, Zamora, and Palmquist [9]). However; case study

research has drawn from a number of other areas as well, such as:

• the clinical methods of doctors

• the casework technique being developed by social workers

• the methods of historians and anthropologists

• the qualitative descriptions provided by quantitative researchers

 10

• the techniques of newspaper reporters and novelists.

2.4.2 Description of Case Studies

Apart from the definition at the beginning of this chapter, a case study can also be

described in terms of its special properties. The properties that are relevant to this research

project are, taken from Merriam [6]:

• Particularistic: Means that a case study “focuses on a certain situation, event,

occurrence or person.” This reflects the definition of case study mentioned earlier.

• Heuristic: Means that it “can improve the readers understanding of the occurrence that

is being studied”

In contrast to other designs of experiments, surveys and history research, case studies do

not have any special methods for collecting or analyzing information (data). All types of

methods for collecting scientific data, from observation to interview and survey, can be used

in a case study.

2.4.3 Qualitative versus Quantitative Methods

According to Barnes et al. [9] qualitative and quantitative methods are usually used in

conjunction with each other. Typically qualitative data uses words and pictures while

quantitative data uses numbers to describe what the researcher has extracted from what the

researcher studied. Another major difference between the 2 is that qualitative research is

inductive, i.e. it evolves abstractions, concepts, hypotheses and theories, while quantitative

research is deductive, i.e. reaches to test already existing theories. In qualitative research, a

hypothesis is not needed to begin research. However (according to Barnes et al., [9]), “all

quantitative research requires a hypothesis before research can begin.”

2.4.4 The use of Case Study in the Experiment

It was decided to perform this experiment as a case study since this research did not require

control of behavioural events but focused on contemporary events. These characteristics are,

according to Yin [23], typical for a case study as research method. As can be seen in section

2.4.3, the boundaries between qualitative and quantitative case studies are clear, and in this

experiment both will be used.

The following data gathering methods have been used:

 11

• Observation is used here as a qualitative method. Due to the typical characteristics

of observation this makes the case study particularistic and heuristic. Particularistic

due to the investigation of the students group and heuristic due to the analysis of

the students’ understanding and acceptance of the eXtreme Programming practices.

More details about the definition of particularistic and heuristic can be found in

section 2.4.2

• Surveys: the survey is used here as a quantitative research method. It asks the same

questions of the different people in a group and delivers a variety of impressions

under the same circumstance. For instance if you ask a group of people using a 5

category response scale (++/+/0/-/--) the same question, the answers are still liable

to be different based on individual impressions.

• Archival records are used here as a qualitative research method. This is a analysis

of historical data that has been collected during the experiment. It is, according to

Bortz & Döring [24], very important to exclude interpretations as much as possible,

to ensure that only hard facts have been taken into consideration.

2.5 eXtreme Programming in a nutshell

The purpose of this section is to present a quick introduction of eXtreme Programming to

the reader. This starts with the history of the origin of eXtreme Programming, followed by an

introduction on the basic idea behind eXtreme Programming. There then follows a description

which shows the relevance of eXtreme Programming to student programming and industry

applications

The section is completed by a short walk through the points of interest of eXtreme

Programming to this research.

2.5.1 An overview of eXtreme Programming

eXtreme Programming is a lightweight programming methodology that, according to [75],

supports a team by writing software that contains fewer bugs and therefore takes shorter time.

This methodology consists of several values, principles and practices to be considered. Some

of these must be applied by the whole company, some by the team and most by each and

every member of the team. The 2 essential aspects of eXtreme Programming are

 12

1. short term and very specific programming goals

2. an awareness of the social aspects of programming

The first edition of Beck [1] was published in October 1999. In effect, eXtreme Programming

originated in this first edition. Over the years eXtreme Programming has been applied by a

number of programming teams and several books have been written on the subject. Many

companies (see [20]) applied the process given by Beck and realized that in their experience

eXtreme Programming is a very good and efficient way to create software. eXtreme

Programming is a process and has a number of practices that are used to reach a project goal.

The eXtreme Programming process also includes a philosophy of software development

which is based on 5 values, namely; communication, feedback, simplicity, courage and

respect. To integrate these values into eXtreme Programming, Beck received help from a

psychologist, Cynthia Andres. This was in order to show that eXtreme Programming is not

only a new style of programming or a new idea, but also a process that deals with the social

behaviour of the whole team and more or less of the whole company. Beside the 5 values,

eXtreme Programming uses 24 practices and 13 principles. A detailed explanation of these

values, principles and practices can be found in Beck [2]. In the second edition of eXtreme

Programming Beck [2] published in 2004 some minor and some major modifications in the

process. One major modification was that the developing team should select the practices they

really need for the project and exclude the remaining practices. This approach was new, since

in the first edition of eXtreme Programming Beck [1] Beck’s opinion was that the team has to

apply all practices. To offer the practices in a different way Beck divided the practices into

primary and corollary practices where the primary practices are independent of the corollary

practices. The corollary practices are, according to Beck, difficult to use without first

mastering the primary practices. This might be caused by the enormous change of behaviour

the corollary practices require from the whole team and in some cases even from the whole

company. Beck is not trying to give one defined way to apply eXtreme Programming into a

team; rather he wants to give some directives to the team from which the developer is able to

take what he requires to become a better team member and developer.

2.5.2 Applying eXtreme Programming in a Student Project Environment

This research shall bring up whether eXtreme Programming can be taught in a project like

the applied system construction project or not. Therefore it needs to be analysed if the

 13

teaching that took place in advance to the project was sufficient so that the students felt

prepared enough to apply certain practices of eXtreme Programming during the project.

The teaching took place in a course called “Tillampad systemkonstruktion” (Eng. Applied

System Construction) where the students were taught the basic ideas of eXtreme

Programming. As can be found in Figure 2.1 this course took place exactly before the applied

system construction project was started. For further information about the applied system

construction project see Figure 2.1

Table 2-1 and Table 2-2 all eXtreme Programming practices are listed. All these practices

where taught at the projects preparation course. The students have been asked to apply only

the practices that show a “yes” in the column named applied. That seems not to be a problem

since Beck says in [2] that there is no need to apply all given practices. The decision what

practice the students were asked to apply and what practices the students were not asked to

apply was taken by the teachers of the course. The teachers justified their decision by the

circumstances given, by a simulated project.

Practice Name Applied Aspect

1 Sit Together Yes 2

2 Whole Team No 2

3 Informative Workspace Yes 2

4 Energized Work Yes 2

5 Pair Programming Yes 1

6 Stories Yes 2

7 Weekly Cycle Yes 1

8 Quarterly Cycle No 1

9 Slack Yes 1 & 2

10 Ten-Minute Build Yes 2

11 Continuous Integration Yes 2

12 Test-First Programming Yes 2

13 Incremental Design Yes 2

Table 2-1 Primary practices, the aspect of the practice and whether applied or not

The numbers in the column called “Aspect” are to be understood as follows:

1. short term and very specific programming goals

2. an awareness of the social aspects of programming

 14

Practice Name Applied Aspect

1 Real Customer Involvement No 2

2 Incremental Deployment No 1

3 Team Continuity No 2

4 Shrinking Teams No 2

5 Root-Cause Analysis No 2

6 Shared Code Yes 1 & 2

7 Code & Test Yes 2

8 Single Code Base Yes 2

9 Daily Deployment No 1 & 2

10 Negotiated Scope Contract Yes 2

11 Pay-Per-Use No Non

Table 2-2 Corollary practices, the aspect of the practice and whether applied or not

The last question to think about is why might eXtreme Programming be interesting to

students? The authors opinion regarding this question is that there are 2 answers. The first is

to improve the quality of the students’ programming. Secondly, there is another reason why

attending such courses like the one about eXtreme Programming is interesting to students. It

is the need within industry for employees that are skilled with new methodologies and

philosophies. Usually it takes some years until a new software development philosophy enters

companies. This is caused by some kind of approval process so that the companies are able to

filter the useful innovations from non-useful methods. Whenever a company decides to start

working following new principles the whole company spirit needs to be adapted and with this

all business processes need to be changed. This is very expensive and it becomes even more

expensive when it comes to the employee training. All this is much cheaper and easier when a

company is able to speed this process up by bringing in new employees who already know the

new methodology and have some relevant experience. So the new employees become

experienced employees and are able to help the company not to make mistakes which may

occur while a methodology like eXtreme Programming is introduced.

 15

2.6 Review

The purpose of chapter 2 was to let the reader aware of the necessary background to the

methods and principles of the research and of what has been researched. Transferring this

declaration to the concrete thesis the reader should now know the relevant ideas of:

• The students background on programming

• Evaluative research

• The tools (survey, observation, archival records) that have been applied in the

research

• Case Studies

• Qualitative and quantitative methods

• eXtreme Programming

• The students background on eXtreme Programming

 16

 17

3 The analysis model

3.1 Introduction

The student project course was as follows. A lecture on eXtreme Programming was held in

the first place. The author attended this lecture to receive an impression about the content of

the student project course. Following this lecture, Survey 1 was filled in by the student group.

This first survey represents the first data source gathered for evaluating the student project

course. After the survey was filled in and in correlation to the lectures, the student project

started. The student project lasted 5 weeks and the students’ only task was to apply eXtreme

Programming. During these 5 weeks a permanent observation was carried out and recorded as

a protocol. This protocol represents the second data source analyzed for the evaluation of the

course.

Figure 3.1 Project timeline and action events

At the end of the student project, the students had to fill in the second survey. For the

evaluation, the analysis phase started. The second survey represents the third data source that

exposed the students’ view on the observation performed by the author. The last phase in this

dissertation study was the analysis of the log files generated by the tools used by the students

during the student project. These log files serve as last data source. Figure 3.1 illustrates the

 18

data sources (orange items: surveys 1 and 2, the observations and the log analysis) and other

relevant parts on the timeline.

In Chapter 3 the data sources are explained in detail with special attention to their content

and the significance. Furthermore, chapter 3 highlights how the data sources are evaluated

and how the results may be interpreted. In addition, chapter 3 introduces the hypothesis that

supports the evaluation of the course. The data analysis is presented in chapter 4.

3.2 Hypotheses

The goal of the thesis is too great to be proven by one data source. As a result of this aspect

small milestones have been developed to prove small parts and at the end put together to

create a high level view. According to that assumption, for each main data source, a

hypothesis has been derived. These hypotheses are proven by not proving the corresponding

null hypotheses. The following hypotheses and their null hypotheses have been set up:

(1) Survey 1: Hypothesis HS1

Hypothesis HS11: A student group that has attended the theoretical sessions on eXtreme

Programming understands the practices well.

Null hypothesis HS10: A student group that has attended the theoretical sessions in eXtreme

Programming does not understand the practices well.

This hypothesis reflects one of the key issues in Survey 1 and is tested in the evaluation of

Survey 1.

(2) Observation: Hypothesis HO1

Hypothesis HO1: The attitude a student has towards an eXtreme Programming practice has

an influence on how eXtreme Programming will be applied during the practical project.

Null hypothesis HO0: The attitude a student has towards an eXtreme Programming practice

has no influence on how it will be applied during the practical project.

This hypothesis – derived from the content of the project – is tested by evaluating the

observation as it is possible to see how a student applied the practices.

(3) Survey 2: Hypothesis HS21

Hypothesis HS21: The student groups’ self evaluation about the level of application of an

eXtreme Programming practice will match the groups’ real behaviour.

Null hypothesis HS20: The student groups’ self evaluation about the level of application of

an eXtreme Programming practice will not match the groups’ real behaviour.

 19

This hypothesis proves whether the students’ self evaluation matches their observed

behaviour or not. Survey 2 serves in testing this last hypothesis.

3.3 Survey 1

3.3.1 Introduction

Survey 1 collects information about the students’ standard of knowledge regarding the 15

eXtreme Programming practices after the students had attended the theoretical sessions. It

asks the students to self verify their knowledge about eXtreme Programming. This

verification has to be done in the 5 categories explained later. Survey 1 also asks the students

how well they think the certain practice is applicable in the student project and if the students

are willing to embrace eXtreme Programming in this project. These questions aim to evaluate

the students’ attitude towards eXtreme Programming and its practices. Moreover, Survey 1

takes a snapshot of the students’ attitude towards the structure of the course. The question

regarding the structure of the course is repeated in Survey 2 to see whether the students’

attitude towards the structure of the course changed after performing the student project.

3.3.2 Terms of reference for Survey 1

Since eXtreme Programming is a process that needs to be experienced by the whole project

team. The focus has been moved from the individual to the group. Keeping that in mind,

Survey 1 has been planned and executed on the assumption that the group will be analyzed as

a whole. For that reason, the group response to each of the questions is taken to be the

weighted mean [81] of the individual student responses.

In the survey, there are 2 types of response scales. The first one has 5 respective labels:

Very Well (1); Well (2); Neutral (3); Not Well (4); Not Well At All (5). The scale is based on

the Likert-Scale [31], [82] were the most equidistant style according to Rohrmann [30] and

Wyatt & Meyers [29] is chosen.

For the first scale, the 5 point scale, the weights for each category are given in parentheses

- Very Well (1); Well (2); Neutral (3); Not Well (4); Not Well At All (5). For question 1 of

survey 1 this leads to a weighted mean value of 2.3. I.e. ((1*0) + (2*7) + (3*3) + (4*0) +

(5*0))/10 where 10 is the number of responses. This value is interpreted as being a single

point value for the student group response. These values for the group response may then be

 20

interpreted within the 5 categories by defining a range for each category as shown in Table

3-1

Category Very Well Well Neutral Not Well Not well at all

Value of category 1 2 3 4 5

Range of category 1 – 1.5 1.6 – 2.5 2.6 - 3.5 3.6 – 4.5 4.6 -5

Example value 2.3

Table 3-1 Weighted Average Example

The group response to the question “How well did you understand all practices” was thus

“Well”. Note that the lower the value of the weighted average, the better the response.

The second response scale consists of the options Yes (1) and No (2). This is according to

Grosse & Wright [32] objectively analyzable if the answer is in the categories Yes or No.

This approach has been chosen according to Bortz & Döring [24], to force the students to

make an either or decision.

Survey 1 was written in English together with a native English speaker and a native

Swedish speaker in order to minimize the possibility of misunderstandings caused by

differences in culture and language. Therefore, no language or cultural support like Haeberlin

[28] mentioned in Bortz & Döring [24] was required.

3.3.3 Items of Survey 1

The items listed in this section and their purpose is presented in order to be able to explain

the relationship of the items to the experiment as a whole. The word item is chosen since

some items consist of several questions. The aim of the survey was to get a snapshot of the of

the student’s self-evaluation about their awareness of eXtreme Programming at the start of the

student project. The students’ attitude towards this project is very important to its success.

The survey contains questions to prove or not to prove the hypothesis. Question 33 in Survey

1 is repeated in Survey 2 (as Question 25) to see whether or not the students’ point of view

changed during the course of the project. The survey consisted of 32 questions which have

been consolidated into the following 5 items.

 21

Item 1 How well did you understand all practices?

The formula to calculate the mean (X) is ∑
=

=
n

i
ix

n
X

1

*
1

. As shown above, the value is 2.3

indicating that the group thought that it understood the practice well. This value may be used

as an indicator together with the mean of the weighted means in item 3 i.e. the mean value of

the group understanding for all the practices.

Item 2 How well do you think the practice "XY" is applicable during the project?

This question has been asked each time for each of the 15 practices. For the sake of

brevity, it is just listed once. This item supports the process of proving or not proving

hypothesis (HO1) as explained in section 3.5. This item directly asks the students how well

they think a certain practice is applicable in the practical project. It has been asked since it can

be checked against the observation that shows if the students applied the practice or not. This

item shows whether some students thought that a certain practice was not applicable and then

changed their point of view because the group as a whole applied it.

Three categories have been created, namely “Applicable”, “Undecided” and “Not

Applicable” to be able to evaluate this item properly. The ranges for the categories are defined

as follows:

A) The group of students who answered this question by “Well” or better (response ≤ 2.5)

thinks that practice XY is applicable in the practical project.

B) The group of students who answered this question by “Not Well” or worse (response ≥

3.5) thinks that practice XY is not applicable in the practical project.

C) The group of students who answered this question as neither category A nor B is

considered to be “undecided” (2.5 < response < 3.5).

Item 3 How well did you understand the practice "XY"?

This question has been asked for each of the 15 practices, and may be used to show the

group response for each practice. The group responses may then be averaged and used as an

indicator of how well the group understood all of the 15 practices. Item 1 also gives such an

indicator.

 22

It is interesting to see whether the mean of the mean of all questions (3itemX) in item 3

matches1 the mean value (X) of item 1. The formula to calculate the mean (3itemX) is as

follows: ∑ ∑
= =

=
n

i

m

j
nmitem x

mn
X

1 1
3)*

1
(*

1
 where m = answers within one question (team) and n =

the 15 practices;

This item is relevant for 3 reasons:

1. The first proof is the internal check of Survey 1 described in item 1.

2. The second proof is the proof of hypothesis HS11 against the response of this

item by disproving the null hypothesis. The null hypothesis HS10 can be seen as

unproved if no responses are in categories that are defined as “Not Well”. This

is numerically expressed as response ≥ 3.5.

3. The third and last proof is to check this response together with the response of

item 2 to see whether a relation exists or not.

A scale according to the scale mentioned in item 2 has been created by combining the

previous categories given in Table 3-1 to be able to measure this item properly. The scale

categories are named as “Understand”, “Undecided” and “Not Understand”. The category

ranges are defined as follows:

Category Very Well Well Neutral Not Well Not well at all

Value of category 1 2 3 4 5

Range of category 1 – 1.5 1.6 – 2.5 2.6 - 3.5 3.6 – 4.5 4.6 -5

Scale Understand Undecided Not Understand

Range of scale 1-2.5 2.6 - 3.5 3.6-5

Table 3-2 Three Category Scale

A) A Student group that answers this question by “Well” or better (response ≤ 2.5)

understood practice XY.

B) A Student group that answers this question by “Not Well” or worth (response ≥ 3.6)

not understood practice XY.

1 A response can be understood as matched when the values are in the same category. Since the categories are

from 1 to 5 it must be 1 – 1.5; 1.6 – 2.5; 2.6 - 3.5; 3.6 – 4.5; 4.6 -5.

 23

C) A Student group that answers that question neither as mentioned neither in A nor in B is

undecided (2.5 < response <= 3.5).

Item 4 Have you decided to embrace XP in the project?

This item is the only item in the first survey that has a response scale with 2 labels: Yes (1)

and No (2). This approach has been chosen since the students should be forced to decide if

they embrace eXtreme Programming or not without the possibility of a neutral category. The

response to this item will show - when calculating the mean value - if more than 75 percent of

the student group are willing to embrace eXtreme Programming in the project.

Item 5 How do you like the idea of having theoretical sessions on XP followed by

performing the theory into practical use?

This item is asked in Survey 1 and Survey 2. This item allows the evaluation if the

students’ opinion towards the structure of the course has changed while they performed the

course or not. The evaluation model can be found in section 3.6.

3.3.4 Summary

Finally, Survey 1 can be summarized as:

� Survey 1 indicates if the students understood all practices.

� Survey 1 indicates if the students think a practice is applicable well or not

applicable.

� Survey 1 indicates if the students are willing to embrace eXtreme Programming in

the project or not.

� Survey 1 indicates – together with Survey 2 - proof if the students think that the

structure of the course is good or not.

3.4 The tools

This section explains how the log files are evaluated. The evaluation of the log files

supports the evaluation done for the protocol, i.e. the record of the observations performed

during the 5 weeks of the experiment. According to Yin [23] a log file is an Archival Record

which is a very important source of evidence for a case study. The log files are recorded by

the tools used by the students while the students performed the practical project. These files

 24

are a reliable data source since there is no way of manipulating them. The only log files that

are analyzed are the files recorded from the tool CVS1 which is a maintenance tool for source

code and other files. As mentioned in Table 3-3 the practices with need to be checked by the

log file of CVS1 are:

(1) Continuous Integration: this practice requires that when a code section has been

completed the code should be immediately added to the code base so that the

automatic tests suites and builds are applied. Every time the code base has been

changed it is recommended to immediately run the code and test it against the given

test suites. Special Continuous Integration servers exist that run tests every time the

code base has been changed. However, such a server was not available for the

students and would have probably been beyond the scope of this project.

Nevertheless, the testing can be performed manually as well so that the log files

provide the information about whether the code has been checked into the base.

Only observation can show whether the tests have been performed or not. This

practice is measured by the growth of the file count and average file size over the

duration of the project. This part of the practice is counted as valid if the values of

the file count and average file size exhibit continuous increase during the project.

(2) Shared Code: this practice is about whether every member of the project group

feels responsible for the quality of the whole code base or not. This can be shown

with the log by checking whether different students worked on the same files or not

and can be measured by 2 indicators. The first one is if every student used2 CVS1.

The second one is if all students actually added and modified transactions.

(3) Code & Test: This practice means that the project team has no other documents

than those documents which may be generated from code and the tests. Since the

students were forced by the specification of the project to maintain a web page that

informs the lecturers about the status of the project they were not able to apply this

practice to its full extend. In order to measure this practice, StatCVS3 offers the

possibility of checking whether other files than code and test files existed or not.

1 Concurrent Version System - CVS is an open source tool to manage source code. For the file history CVS uses

the same structure as Revision Control System - RCS which is an successor of Source Code Control System –
SCCS. For more details about these tools see: [5], [15], [16] & [17]

2 Used in this context can be understood in the sense that the student has transactions on the log file.
3 StatCVS is a tool that is used for statistical analysis of CVS repositories. For more details see [18]

 25

(4) Single Code Base: this practice is not really applicable in a project of this extent

with only one product and one customer but CVS offers the possibility to evaluate

whether the students had different repositories or not.

Finally the purpose of the Tools can be summarized as:

� The Tools an indicator as to whether certain eXtreme Programming practices have

been applied in the practical project or not.

� The Tools represents a very resilient data source that delivers information which

helps to give an overall impression of the project.

3.5 The observation protocol

3.5.1 Introduction

The observation is one of the most relevant and interesting data sources available in this

evaluation. The reader should note that there was a possibility that the students observed felt

influenced by the observers. While setting up the observation plan, the definition according to

Laatz [25] has been taken into account. This definition of Laatz [25] clarifies the difference

between an observation in the common understanding and an observation with scientific

background. Laatz [25] says that an observation from a scientific point of view is much more

goal focused, and controlled and this is reached via tools that guarantee the self reflection and

systematic and helps to widen the borders of our perception.

Caused by timeline – five forty hour weeks - and in lack of observers – 2 observers for the

whole period – it was not possible to apply all protocol rules described in Faßnacht [27]. The

11 rules for the content of the protocol, listed by Faßnacht [27] are:

1. Observe the behaviour in relation to the situation

2. Describe all circumstances in a situation

3. Avoid interpretations

4. Report how the subject has done anything

5. Report who is interacting with the subject

6. Report the complete order of events

7. Write always from a positive perspective

8. Report the surrounding to its full extent

9. Never sum up more than one action of the subject in one sentence

 26

10. Never sum up more than one action of persons interacting with the subject in one

sentence

11. Never report while using timestamps

These rules have been defined for the observation of smaller events. In this case the

protocol would have exceeded an analysable size and the project would not have been

realizable. Therefore, the following rules found in Ingenkamp, Parey & Tent [26] have been

applied:

• Selection: in this case means that some items are defined that the observers take

care of.

• Abstraction: this rule means that the observer has to focus on the event and not to

interpret side events e.g. while asking question A the face might give indication

about the expected answer.

• Classification: this means that the selected and abstracted events need to be

classified.

• Systematization: this rule says that the classified events need to be taken into one

big high level protocol that supports the analysis and makes the observation

measurable.

• Relativization: this point says that the observers need to be able to separate events

and classify them to their relative background. This means for instance unexpected

situations that influence the observed situation.

An explanation is given on the following pages as to how the observation protocol was set

up and which criteria the focus was on.

3.5.2 Terms of the observation

Since this evaluation measures how many of and whether the practices have been applied,

the observation has been set up to take this into consideration. According to this structure, the

protocol represents a list of all evaluated practices. Table 3-3 is an enriched copy of Table 2-1

and Table 2-2 and shows which practices have been applied, how they have been evaluated

and how the impact on the influence of the observers is assumed to be. This impact

 27

assumption has 3 categories: low1, medium2 and high3. In some rows “Tool” is listed as

evaluation technique. More about these practices is mentioned in section 3.4.

Practice Name Used Automated Possible Techniques Influence

1 Sit Together Yes No Observation Low

2 Informative Workspace Yes No Observation Low

3 Energized Work Yes No Observation High

4 Pair Programming Yes No Observation Medium

5 Stories Yes No Observation High

6 Weekly Cycle Yes Partial Observation Low

7 Slack Yes No Observation Low

8 Ten-Minute Build Yes No Observation Low

9 Continuous Integration Yes Yes Tool & Observation Low

10 Test-First Programming Yes No Observation High

11 Incremental Design Yes No Observation Low

12 Shared Code Yes Yes Tool Low

13 Code & Test Yes Partial Tool & Observation Low

14 Single Code Base Yes Partial Tool & Observation Low

15 Negotiated Scope Contract Yes No Observation None

Table 3-3 Evaluated practices and their evaluation method

To be able to measure the practices and to finally prove the hypothesis HO1 the observation

results are mapped to numerical values. The 3 possible results for the observation and their

numerical equivalent (in brackets) are Yes (1), Partial (0.9 to (-0.9)) and No (-1). The

category ”Partial” is spread from + 0.9 to – 0.9 since it can have a tendency to Yes or to No.

The events that caused the decision to partial are measured, categorized and expressed in

numerical values to be able to calculate an appropriate value for partially applied practices.

These values are added or removed from the Yes (1) or No (-1) value.

1 Low – Nearly no impact. The students notice that the observers are writing a protocol but their behaviour will

not change.
2 Medium – No great impact. The students might think about applying the practice since the observers’ presence

might remind the students about the task to apply this practice.
3 High – Great influence on the students behaviour. The students categorize the observers as not belonging to the

group and by this as a control instance. Therefore, the risk of a changed behaviour is high.

 28

3.5.3 The measurement of each observed practice

(1) Sit Together

An attendance check list showing students’ attendance or absence has been used to

measure this practice. This check list enabled the observers to determine whether the students

did work / sit together or not / separately. The observers had to trust that the students calling

in sick or absent actually had a legitimate reason for their absence and were not working on

their own at home or at another place. The observers also recorded if there were features in

the room the students were sitting in that made communication less efficient, for instance

plants blocking the view so that the students could not see each other or other people that

were not involved in the project disturbing the students working on the project. Since this

information was needed on a daily basis, it has been measured several times each day.

(2) Informative Workspace

Since a scale is needed to measure how informative the student workspace was, 4 points

according to Beck’s definition (see Beck [2]) of Informative Workspace were chosen. These

points are:

• Do the students have story cards?

• Do the students have a story wall?

• Do the students have access to water and snacks?

• Do the students have a workspace that is clean and organized?

Since these 4 points could change from day to day they have been measured on a daily

basis.

(3) Energized Work

To measure this practice a table was used, storing the average working hours of the

students per week and the average working hours of the whole student group per week. This

table was recorded for the whole 5 week period and then was evaluated at the end of the

student project.

(4) Pair Programming

By using a drawing of the room and the workplaces the observers could easily mark where

the students were working from day to day. While the students were working, the observers

were not supposed to check what they were working on. The observers just observed whether

they were working in pairs or not.

 29

(5) Stories

By attending the students` design sessions, the observers could check whether if the

students wrote story cards or not and whether they stuck them on the story wall. While

checking these points, the observers did not examine which stories the students wrote, the

observers were just interested in seeing if the students wrote the story cards at all.

(6) Weekly Cycle

Since the project duration was 5 weeks, the students had the chance to perform a weekly

cycle 5 times. While the observers observed the students, the observers were checking on

whether the students followed a weekly cycle or not. Here, the observers checked whether the

group had a design meeting every Monday where the students made story and task cards

which would later be accepted a meeting with the boss. On Fridays, the observers checked

whether the students built the system and updated the document pages. The other days of the

week, the observers checked whether the team worked in coding sessions followed by system

builds on a half day basis, i.e. twice a day.

(7) Slack

On the weekly meetings, the observers asked the boss if any tasks had been dropped due to

the fact that the task was not needed to make a feature of the program to work. Therefore, the

boss asked the students which tasks they had performed and which they dropped.

(8) Ten-Minute Build

Here, the observers had to ask and trust the students how long the build took.

(9) Continuous Integration

The observers used CVS to check if the students integrated changes in the system.

Unfortunately, there is no logging option in Eclipse1 that the author was aware of to see how

often tests had been executed. So, the observers had to note whether the students tested every

2 hours

1 For details about Eclipse, see [10] & [11]

 30

(10) Test-First Programming

The students were using JUnit1 to test their classes and methods. The observers were not

fully able to see whether or not the students wrote the test cases before or after they wrote the

actual code that was tested. So, the observers would have had to compare the time stamps on

the test files with the time stamps on the corresponding code files to be able to see if the

students made the test cases first. However, this was particularly difficult since it was not

obvious which test file corresponded to which code file. So instead, the observers had to ask

and trust the students if they wrote tests before they wrote the corresponding code.

(11) Incremental Design

By observing the students on a daily basis the observers were able to see how much time

the students invested on the design each day.

(12) Shared Code

With the CVS tool the observers were able to see if the students regularly uploaded the code

to the CVS-server, thus sharing the code with the whole group.

(13) Code & Tests

The observers were not able to check if the students were uploading any files not related to

Code & Tests by just viewing the file-names. The students could possibly keep documents

and artefacts outside CVS. So, the observers needed to check the content of every file,

document and artefact of students to see if they had documents and artefacts not concerning

Code & Tests. Furthermore, the students were forced to keep statistics over the estimated time

each task took and the actual time it took to finish a task. As mentioned before in section 3.4,

the students were not able to apply this practice to its full extent but this was a result of the

definition of the project.

(14) Single Code Base

Since the students had only one customer and one product, there was no need for more

than one code base. Taking this into consideration, it made the evaluation of this practice

redundant. Nevertheless, the observers checked the CVS repository to assure that only one

code base existed.

 31

(15) Negotiated Scope Contract

To measure this practice the observers used the simple approach of asking the boss of the

project if the boss negotiated scope contracts with the project group or not.

3.5.4 Summary

� The observation protocol gives proof if the eXtreme Programming practices have

been applied in the practical project or not.

� The observation protocol gives proof of the relation between the attitude towards a

practice and its real execution.

� The observation protocol represents a very resilient data source that delivers views

which help to form the big picture.

3.6 Survey 2

3.6.1 Introduction

Survey 2 was handed out to the students after the practical project had been finished. As

before in Survey 1, the main requirement of Survey 2 is to measure the self evaluation

responses of the students. As in Survey 1, the questions in Survey 2 have been grouped into

items. This section is thus structured by these items and explains which questions belong to

which item, the purpose of each item and how it is evaluated.2

3.6.2 The terms of reference of Survey 2

Survey 2 is compared to the different data sources that have been evaluated before survey

2 has been carried out namely Survey 1, the Tools and the Observation. The difference in

response scales between the surveys (five point scale) and the observation protocol (three

point scale) needs to be addressed to be able to compare the 2 data sources. Therefore, a

formula - according to Aiken [33] – has been derived and is applied.

1 JUnit is a framework to continuously run automated test suites against source code. It is represented by a GUI

that shows the result of the test run which can either be pass or fail. For more information see: [4], [12], [13] &
[14]

2 It has to be mentioned that some questions were not analyzed in the context of this thesis. The questions might
be used for other purposes, studies or evaluations in the future. These questions are not introduced in this
thesis.

 32

The terms of Survey 2 are similar to the terms of Survey 1 in section 3.3.2. Therefore,

there are no further aspects that need to be mentioned here.

3.6.3 Items of Survey 2

The second survey has been set up to gather data regarding 8 items. These items are listed

below. The items asked in Survey 2 are:

Item 1 This item is about how the project worked out

 S2Q1 How did the project work out in your opinion?

 S2Q18 How well did the project work at all?

The questions are both asking for the same kind of information. According to that

assumption, the mean weighted values (X) of the answers of the question are compared. The

mean value (X) is calculated according to the following formula:

∑
=

=
n

i
ix

n
X

1

*
1

The evaluation shows whether the mean values are in the same category1 or not. If the 2

mean values are in the same category, this can be interpreted as a match. When it could be

seen as a match it shows that the students have a similar level of understanding for the 2

questions that are asked in different places but query the same content.

One major difference between these 2 questions is that S2Q1 asks about the students’ own

opinion and S2Q18 just asks the status. This effect can be neglected since a survey always

represents the respondents’ own opinion.

Item 2 How well do you think your team used the 15 practices?

This item refers to S2Q2 and has been asked to compare the students’ impressions about

all 15 practices with the students’ impression about every single practice (see item 4).

Therefore, the results of item 2 are evaluated together with item 4 (see below).

Item 3 This item is about applying eXtreme Programming in a student environment.

 S2Q3 Do you think eXtreme Programming is a good process to use in a

student project?

1 A response can be understood as matched when the values are in the same category. Since the categories are

from 1 to 5 it must be 1 – 1.5; 1.6 – 2.5; 2.6 - 3.5; 3.6 – 4.5; 4.6 -5.

 33

 S2Q28 How well do you think eXtreme Programming works in a student

environment?

These 2 questions are aiming for the students’ attitude towards eXtreme Programming and

how the students think about applying it in a student environment. Therefore, the mean

weighted values of the answers are presented together. The mean weighted value is calculated

as described in item 1. The item can be seen as valid if the answers are within the same

category range1. This reveals whether the students think that a student environment is a good

environment to apply eXtreme Programming or not.

Item 4 How well could you perform the practice "XY"?

This item is represented by S2Q4, Q5, Q6, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16,

Q17, Q23 &Q27 and it asks the students about their opinion of how well they were able to

apply practice XY. XY in this case stands for the 15 practices, listed in Table 3-3 the students

were asked to apply. This item is used for 2 different evaluations. The first one is a cross

check with item 2. There are 2 differences between item 2 and 4. First, item 2 asks what each

student thinks how well the team worked, whereas item 4 asks how well each student thinks

he worked. To be able to compare the 2 items some steps are needed. Hence, the mean value

of item 4 - the group response – is calculated. The second difference between item 2 and item

4 is that item 4 is asked for every single practice whereas item 2 is asked for all 15 practices.

This difference is solved by calculating the mean value of all 15 questions asked in item 4.

That makes it possible to talk about all 15 practices. Based on these 2 assumptions the 2 mean

values are calculated and compared. The mean value for item 2 is calculated as described in

item 1 and the mean value for item 4 (4itemX) can be calculated as:

∑ ∑
= =

=
n

i

m

j
nmitem x

mn
X

1 1
4)*

1
(*

1

m = answers within one question (team);

n = the 15 practices;

The second use of item 4 is that it can give proof to the hypothesis HS21 together with the

response from item 1.

1 See foot note 1 for information about the category definition.

 34

Item 5 This item is about how eXtreme Programming worked out in the students’

project.

 S2Q7 How well do you think XP worked in your project?

 S2Q19 Do you think the project would have worked out better without

eXtreme Programming?

These 2 questions were asked to evaluate the student groups’ attitude towards eXtreme

Programming in their project. The selectivity between item 5 and item 3 is just that item 3

asks about the students opinion regarding eXtreme Programming in a student environment

whereas item 5 asks whether the students felt eXtreme Programming in the concrete project

that had been performed, supportive or obstructive.

A very important point to mention in this item is that the 2 answers have different response

scales. While Q1 has the typical Not Well At All to Very Well scale (1 – 5) Q2 has the Yes / ?

/ No (1; 0; (-1)) scale. To be able to compare the answers the following transformation

formula according to Aiken [33] has been used.

Applying formula
xx

xxyy
yy wc

wLXwc
wLY

*

)5.0(*
5.0

+−
++= to the given scales

X = {1; 2; 3; 4; 5} and Y = (-1); 0; 1} means1:

Y = (-1) -0 .5 + (X-1+0.5)
5

3

Y = (-1.5) + X *
5

3
 -0 .5 *

5

3

Y = (-1.8) + X *
5

3

Y (X) = {(-1.2), (-0.6), 0; 0.6, 1.2)

In the end, the mean values of the 2 questions are compared to check whether the answers

are in the same category2 or not. The mean value is calculated as mentioned in item 1 and

item 3.

1 More information about the formula and how it is derived can be found in Aiken [33].
2 A response can be understood as matched when the values are in the same category. Since the categories are

from (-1) to 1 it must be. (-1) – (-0.5); (-0.4) - 0.4; 0.5 – 1.

 35

Item 6 Do you think you would have worked in a different way if you had not been

observed by us?

This question was asked in S2Q20 to be able to evaluate the influence that has been felt by

students while they were observed during the practical project. It helps to interpret the

gathered data. This response needs to be shown very detailed since it is very important how

the different students answered. The median, the modal value and the mean value are

calculated to analyze whether some students felt influenced or not. The item has the response

scales Yes - 1 / ? - 0 / No – (-1) where every answer that is not No can be counted as Yes

since even if a student is not sure that the observers’ presence changed his behaviour it might

have caused a change.

Item 7 Would you apply eXtreme Programming practices in the future?

 S2Q21 If you would do another project, do you think you would apply

some of the eXtreme Programming practices?

This question is followed by the following request: “If yes would you please list them on

the other side of this sheet.”

In contrast to the other items this item can be understood as a control indicating the success

for the whole course. This question gives an indicator of the success of the goal of the lecture

to show the students the software development process known as eXtreme Programming and

enable them to apply it in real world projects. The fact that the students are willing to apply a

practice is the first step in this direction. The responses of this item are analyzed in 2 ways.

The first one is that every response that is not Yes for S2Q21 which has a 3 item response

scale. The 3 items are Yes - 1 / ? - 0 / No – where (-1) counts as failure. Due to the open

response possibility that followed S2Q21 its responses are mapped to the practice – student –

list for evaluation. This list contains the information which student will apply what practices

in future projects. All additional information will be neglected.

Item 8 How do you like the idea of having theoretical sessions on XP followed by

performing the theory into practical use?

This item refers to S2Q26 and is the same as item 5 of the first survey. In the end, the 2

items are compared with each other to see whether the students’ opinions changed during the

course of the practical project or not. To compare the 2 items the mean values (X), the modal

values (MOX) and the median values (MDX) are compared with each other. Comparing all

these values will give a detailed comparison between the 2 items.

 36

The median value (MDX) returns the value where 50% of the answers are below and 50%

of the answers are above the median value. Its formula is:

2

1+= nMD XX if n is an even number of responses.

2

1
22










+

=
+nn

MD

XX

X if n is an odd number of responses.

Whereas the modal value (MOX) stands for the most frequent answer. The modal value

offers the most common answer and the frequency of the most common answer.

3.6.4 Summary

� Survey 2 indicates whether the students felt like having applied the practices of

eXtreme Programming.

� Survey 2 gives indicates whether he student group felt influenced by the observers.

� Survey 2 gives indicates whether the students are satisfied with the project.

� Survey 2 gives indicates whether the students felt eXtreme Programming as

hindering.

� Survey 2 gives indicates whether the students disliked applying the practices in a

student environment.

� Survey 2 indicates – together with Survey 1 – if the students’ attitude towards the

structure of the course, i.e. lectures followed by a practical project, changed after

they had performed the practical project.

3.7 The sample

The sample base consisted of ten students. These students were all Swedish males. Two

students were twins with each other and one student was wheelchair bound. The group’s

precise age distribution can be found in Figure 3.2

 37

Figure 3.2 Distribution of the students' age

The test whether the sample is representative or not was needless since the sample

represented the whole semester of the computer science department at Karlstad University. As

can be found in Bortz & Döring [24] the test whether a sample is representative or not is only

needed to prove that the sample is representative for the base it represents. Since in this case

the sample represents the whole base a proof is not needed.

From the second relevant point of view - the eXtreme Programming point of view - the

group can be seen as representative since the group consisted of 10 people according to

Gladwell [8] twelve is the maximum number of team members to interact comfortably with

each other.

3.8 Summary

In this chapter, the analysis model, the hypotheses, all data sources and methods to prove

or not to prove the theories have been shown. All significant metrics have been shown.

 38

The data sources have been introduced as Survey 1, Survey 2, the Tools and the

Observation. First, 2 interviews, realized as surveys (Survey 1, Survey 2), were set up that

captured the students self evaluation. Survey 1 asks about the students’ level of understanding

after finishing the theoretical lectures and the students’ attitude towards the eXtreme

Programming practices and the applicability of the practices during the practical project.

Survey 2 is a snapshot taken of the students’ self evaluation on how well they felt that they

had applied eXtreme Programming and its practices during the practical project, how the

students liked the project, how the students liked the project in a student environment and

whether the students will apply any eXtreme Programming practice in future projects.

Besides, it was shown how the 15 practices were measured while the students applied them in

the practical project with help of the Observation Protocol and the Tools.

According to Yin [23] and Bortz & Döring [24] the given variety of data sources is

sufficient to validate the hypotheses and other fact building theories. Moreover, the sample

can be considered as significant and representative in the given context.

 39

4 Empirical Study

4.1 Introduction

In this chapter, all the evaluated data is presented, analyzed and interpreted according to

the analysis model introduced in chapter 3. For each and every result the raw data, for

example the responses of the surveys, the protocol can be found in the appendix.

4.2 Survey 11

4.2.1 Introduction

This section aims in proving or disproving the hypothesis Hs11. Therefore, the items are

connected with each other as required by the model in chapter 3.

Two response scales exist in Survey 1. The first response scale has 5 labels:

1-Very Well

2-Well

3-Neutral

4-Not Well

5-Not Well At All

The other response scale is a Yes / No scale. In this section these verbal scales are

converted to numerical scales since numerical scales can be calculated more detailed.

4.2.2 Evaluation

The 5 items described in section 3.3 are evaluated below. The items have been evaluated

independently and then analysed in conjunction with other items of survey 1.

Item 1 How well did you understand all practices?

The mean value of item 1 is 2.3. The calculation of this value comes as follows: ((1*0) +

(2*7) + (3*3) + (4*0) + (5*0))/10; 1 for answers in the category Very Well, 2 for answers in

the category Well, 3 for answers in the category Neutral, 4 for answers in the category Not

 40

Well and5 for answers in the category Not Well At All. All of this is divided by 10 which is

the number of responses. Items 1 and 3 give an indication of the degree to which the students

and the group as a whole understood the practices.

Item 2 How well do you think the practice "XY" is applicable during the project?

The aim of item 2 is to evaluate whether the students have been willing to apply the

practice XY of eXtreme Programming or not. Therefore, the 3 categories “Applicable”

(response≤ 2.5), “Not Applicable” (response≥ 3.5) and “Undecided” (2.5<response<3.5) have

been set up. Figure 4.1 shows the “Undecided” category as dashed transparent area between

the “Applicable” and the “Not Applicable” areas.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.6 2.9 2.5 1.6 2.2 2.4 3.0 2.3 2.2 2.9 2.5 2.1 1.8 2.2 2.7

Table 4-1Weighted mean values for survey 1 item 2

Item 2

1,6

2,9

2,5

1,6

2,2

2,4

3

2,3
2,2

2,9

2,5

2,1

1,8

2,3

2,7

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Practices

R
es

p
o

n
se

 S
ca

le

Mean 2,3333

Not Applicable

Applicable

Figure 4.1 Responses to survey 1 item 2

1 The responses of Survey 1 can be found in appendix C.

Undecided

 41

The y-axis values of Figure 4.1 represent the response scale 1 – 5 whereas the x-axis

values of Figure 4.1 represent the following 15 practices:

1. Sit Together

2. Informative Workspace

3. Energized Work

4. Pair Programming

5. Stories

6. Weekly Cycle

7. Slack

8. Ten Minute Build

9. Continuous Integration

10. Test-First Programming

11. Incremental Design

12. Shared Code

13. Code & Test

14. Single Code Base

15. Negotiated Scope Contract

The values shown in Figure 4.1 represent the weighted mean values for every single

practice over all students asked in Survey 1. The orange line across the whole figure

represents the mean over all 15 practices. This has been shown to enable the reader to see the

relation between the mean of one practice and the mean of all practices.

As can be seen in the Figure 4.1, there are 4 mean values in the “Undecided” category

which represent the practices Informative Workspace, Slack, Test-First Programming and

Negotiated Scope Contract. This result is related to the results of item 3 below. Furthermore,

the result will be used to prove the hypothesis Ho1 in section 4.4 where the observation is

evaluated.

Item 3 How well did you understand the practice "XY"?

The responses to item 3 are illustrated in Figure 4.2. Again, the x-axis represents the 15

practices.1 The answers are divided into the 3 categories “Understand” (response ≤ 2.5),

1 To map the numbers 1-15 to the 15 practices the list of item two can be applied.

 42

“Undecided” (2.5 < response < 3.5) and “”Not Understand” (response ≥ 3.5) shown in Figure

4.2.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.7 1.8 2.4 1.5 2.1 1.9 2.7 2.4 2.1 2.3 2.2 2.1 2.2 2.6 3

Table 4-2 Weighted mean values for item 3

Item 3

1,7
1,8

2,4

1,5

2,1

1,9

2,7

2,4 2,3333 2,3
2,2

2,1
2,2

2,5

3

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Practices

R
es

p
o

n
se

 S
ca

le

Mean
2,2024

Item 1 Mean 2,3

Not Understand

Understand

Figure 4.2 Responses to item 3

As can be seen in Figure 4.2, all practices have been well understood except the practices

Slack (7) and Negotiated Scope Contract (15) in the “Undecided” category.

This result can be related to the following results of item 1 and 2 in order to be evaluated.

The mean value of item 1 (2.3) and the mean value of item 3 (2.2) are both in the category

“Understand” indicating that the students have in general understood the practices well. The

students’ understanding of all the practices matches their understanding of each practice in

total.

Furthermore, item 3 can be linked to the results of item 2 since a relation between the level

of understanding and the estimation of how well practice XY would be applicable seems to be

Undecided

 43

a reasonable assumption. Therefore, Table 4-3 compares the 4 values (2, 7, 10, 15) in the

“Undecided” category of item 2 with the respective answers (2, 7, 10, 15) of item 3.

Practice

Item 2

(Applicable)

Item 3

(Understand)

2 Informative Workspace 2,9 1,8

7 Slack 3 2,7

10 Test-First Programming 2,9 2,3

15 Negotiated Scope Contract 2,7 3

Table 4-3 Comparing the understand & the applicable mean values

As Table 4-3 shows on the one hand, the students’ level of understanding is in the

“Neutral” category (range 2.6 to 3.5) for the practices Slack and Negotiated Scope Contract.

For these practices a reasonable interpretation is that the students have difficulty

understanding them since they have had little experience in these practices. On the other hand,

Table 4-3 shows that the students understood the practices Informative Workspace and Test-

First Programming but thought they were not applicable. So here, it cannot be considered that

the students had the same problems they had with the other 2 practices. The students rather

dissociated themselves from applying this practice since they had understood it. It will be

interesting to see further in this evaluation if the students’ minds changed while performing

these practices.

Finally, the results of item 3 serve in examining the hypothesis HS11. The purpose of

hypothesis HS11 is to prove whether the students understood the practices or not. The precise

wording of the hypothesis is: “A student group that has attended the theoretical sessions on

eXtreme Programming understands the practices well.” The wording of the counter

hypothesis is: “A student group that has attended the theoretical sessions in eXtreme

Programming does not understand the practices well.” HS11 is proved when HS10 is not proved.

If the response for a student group is in the category “not well”, HS10 would be proved. In item

3, “Not Understand” is defined as: response ≥ 3.5. As can be seen in Figure 4.2, there is no

response value > 3. Thus, there is no answer in the category “Not Understand” so that HS10 is

 44

unproved. This leads to the conclusion that the hypothesis HS11 is proven. Hence, a student

group that has attended the theoretical sessions understands the practice well.

Item 4 Have you decided to embrace XP in the project?

This question was significant since it is important to see whether the students wanted to

apply eXtreme Programming or not while evaluating the data. The response to this Yes / No

item was 100 percent Yes. This significant result can be seen as a very positive starting point

for the practical project where the students had to fulfil only one task: applying eXtreme

Programming for 5 weeks as much as possible. One could say that the students’ task was to

apply XP and therefore they needed to answer like this but from the authors point of view the

students had no reason to connect the answers of the survey to the attitude of the teacher since

the teacher did not receive the responses immediately.

Item 5 How do you like the idea of having theoretical sessions on XP followed by

performing the theory into practical use?

Item 5 will be evaluated together with Survey 2 item 8 in section 4.5.2. The responses from

this item can be found in Table 4-4. For now can be said that the students liked the structure

of the course. This can be said since all results are in the well category.

Question
Modal
value

Median
Mean
value

How do you like the idea of having theoretical sessions on
XP followed by performing the theory into practical use? 2 2 2,3

Table 4-4 Responses on item 5

4.2.3 Conclusion

This section about Survey 1 confirmed a number of expectations.

The first and very important step was to see whether the students understood the practices

they had to apply during the practical project or not. As the evaluation of the students’

responses shows, the students understood, except for 2 practices, all practices well. This is

supported by the verification of the hypothesis. The 2 practices the students did not

understand well are Slack and Negotiated Scope Contract. The practical project will show

whether the students finally understood the practices while performing the practical project or

not.

 45

Another goal to be reached by Survey 1 was to evaluate whether the students thought that

the practices would be applicable in their project or not. Regarding this item, the survey

revealed that the students thought that 4 practices (Informative Workspace, Slack, Test-First

Programming and Negotiated Scope Contract) are not well applicable in the practical project.

In addition to the 2 practices Slack and Negotiated Scope Contract which the students did not

understand well, the students did not believe that the practices Informative Workspace and

Test-First Programming were applicable during the practical project. For the 2 practices the

students did not understand (Slack and Negotiated Scope Contract) it seems to be consistent

that the students were not sure if these practices are applicable or not. For the other 2 practices

(Informative Workspace and Test-First Programming) the students seemed to have problems

in understanding how these practices have to be performed in this kind of practical project i.e.

in a teaching environment and not an industrial environment.

The last result from Survey 1 is that the whole student group was happy to embrace

eXtreme Programming in the practical project.

All entry criteria for the practical project have been fulfilled and the fact that the students

were suspicious about applying 4 of these, namely Informative Workspace, Slack, Test-First

Programming and Negotiated Scope Contract) of the 15 practices, can be seen rather as an

opportunity than a problem since a critical point of view is worth much more than an

indifferent attitude.

4.3 The Tools

4.3.1 Introduction

This section verifies if the 4 practices that can be evaluated by analyzing the log files have

been applied or not. These were Continuous Integration, Shared Code, Code & Test and

Single Code Base, and are evaluated in this order.

4.3.2 Evaluation

4.3.2.1 Continuous Integration

Continuous Integration is evaluated by checking whether the file count and the average file

size increased while the project was performed. Therefore, Figure 4.3 and Figure 4.4 that are

 46

generated by StatCVS provide information about the application of the practice by the student

group.

Figure 4.3 File count during the project phase

Figure 4.4 Average file sizes during the project phase

 47

As can be seen in Figure 4.3 and Figure 4.4 the file count as well as the average file size

nearly grew linearly during the 5 weeks. Based on this information this practice can be

counted - from the point of view of the tools - as applied fully.

4.3.2.2 Shared Code

Shared code means that all team members have access to the code and all team members

are working on all files of the code. The measuring point to evaluate this practice is whether

all students used CVS or not. Use in this case is defined as doing add and modify transactions.

The data - presented in Table 4-5 - has been extracted from CVS to verify that the students

used CVS.

 48

Committer Total transactions LOC 1
Student 1 418 8173
Student 2 504 7004
Student 3 5 3174
Student 4 91 1510
Student 5 54 1205
Student 6 29 1179
Student 7 95 1155
Student 8 30 1105
Student 9 39 776
Student 10 9 439
Total 1274 25720

Table 4-5 CVS transactions

As Table 4-5 shows, all students used CVS since all students performed transactions.

However, from Table 4-5 it is not shown whether the students performed both add and modify

transactions. Therefore, Figure 4.5 divides the total number of transactions per student into

add transactions and modify transactions.

Figure 4.5 Anonymous quotas of the students’ add and modify transactions

1 LOC = Lines Of Code

 49

As Figure 4.5 shows, each student performed both types of transactions. The results from

Table 4-5 and Figure 4.5 provide enough evidence to prove this practice as technically

performed.

4.3.2.3 Code & Test

The practice Code & Test is defined as not keeping other than project related files. A

report - based on the CVS repository - has been created to evaluate this practice. The

following analysis only considers files stored in the CVS. All files that are stored outside of

the CVS were not evaluated by this verification. Table 4-6 shows which file types have been

stored in the CVS file structure.

Type Files Files %
Totals 96 100.00%
*.java 73 76.00%
*.txt 1 1.00%
*.xml 6 6.30%
Others 1 1.00%

Non-Code Files 15 15.60%

Table 4-6 File types in the CVS

As shown in Table 4-6 more than 15 percent of the repository is used for non code files. It

is to be determined which files these are and why they are stored in the CVS. The repository

showed that the non-code files consisted of 3 files of database scripts, 1 RTF about how to

configure Eclipse, 8 JAR archives, 2 help files and 1 picture. The database scripts are needed.

The RTF was necessary for the students since the students are not well trained developers

who bring the knowledge about development environments. Thus, it is no problem for the

evaluation of this practice. The picture was needed for the GUI. The JAR archives do,

according to best practice approaches, not belong into a CVS repository. However, since JAR

archives contain just code, they do not break with the practice. Contrary to all these files, the

2 help files, used to explain the developed application, break the practice. According to

Beck’s definition (see Beck [2]) of Code & Test, the users’ manual does not belong into the

repository.

This leads to the conclusion that the practice has not been applied fully.

 50

4.3.2.4 Single Code Base

This practice was tested by checking the existence of just one repository. The administrator

of the CVS server was a person from the staff of the university. Therefore, it was impossible

for the students to create another repository. This practice would have been redundant in the

given context and should have been taken out of the student environment project. Considering

these circumstances, the practice has been applied fully.

4.3.3 Conclusion

Except Code & Test, all other practices, namely Continuous Integration, Shared Code and

Single Code Base, have been applied.

4.4 The observation protocol1

4.4.1 Introduction

This section presents a summary of the observation protocol and shows how the items are

verified using this summarized data. It lends proof to the hypothesis HO1 together with the

data gathered in Survey 1 and evaluated in section 4.2 as well as the results from section 4.3

for the practices Continuous Integration, Shared Code, Code & Test and Single Code Base.

4.4.2 Evaluation

Table 4-7 shows a summary of the detailed observation protocol. The table illustrates

which practices have been applied or not during the 5 weeks of practical project. The practice

Weekly Cycle was not evaluated in the first week.

1 The whole observation protocol can be found in appendix D.

 51

Practice Name Week 1 Week 2 Week 3 Week 4 Week 5 Mean

1 Sit Together Part² 0,75 Part² 0,75 Part² 0,35 Part² 0,95 Part² 0,95 0,75

2 Informative Workspace Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

3 Energized Work Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

4 Pair Programming No -1 No -1 No -1 No -1 No -1 -1,0

5 Stories Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

6 Weekly Cycle n/a n/a No -1 No -1 No -1 Yes 1 -0,5

7 Slack Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

8 Ten-Minute Build Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

9 Continuous Integration Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

10 Test-First Programming Yes 1 Part² 0,3 Part² 0,3 Part² 0,3 Part² 0,3 0,44

11 Incremental Design Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

12 Shared Code Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

13 Code & Test No -1 No -1 No -1 No -1 No -1 -1,0

14 Single Code Base Yes 1 Yes 1 Yes 1 Yes 1 Yes 1 1,0

15 Negotiated Scope Contract No -1 Yes 1 No -1 Yes 1 Yes 1 0,20

Table 4-7 Practices applied per week in words and numerical values

The numerical values are calculated according to the rules in section 3.5. The values for

the partial fields have been classified and calculated. The Sit Together values have been

calculated as follows: If the group did not go to lunch together it cost the practice 0.05 points

whereas the whole absence of one student cost 0.20 points. For the values in the Test-First

columns the following approach has been chosen: The 0.3 was determined since it represents

the borderline between the “Applied” and the “Undecided” category. 0.3 is counted as

“Applied” and this was due to 2 factors. The first one is that even the students who did not

apply Test-First Programming thought about the practice but did not see a benefit in applying

it. The second point is that some students applied Test-First Programming but since this

particular group represented less than fifty percent of the total number of students it is not

placed in the middle of the “Applied” category.

By comparing the data from Table 4-8 with the data from Survey 1, the hypothesis HO1 can

be validated. Therefore, the response given in Survey 1 item 2 is listed in Table 4-8 and

transformed to the scale of (-1; 0; 1) to be able to compare it to the results of the observation

and tools. Both results as well as their difference in absolute value are shown in Table 4-8.

 52

Practice Name Survey 1 T & O1 Difference
1 Sit Together 0,84 0,75 0,09
2 Informative Workspace 0,06 1,00 0,94
3 Energized Work 0,30 1,00 0,70
4 Pair Programming 0,84 -1,00 1,84
5 Stories 0,48 1,00 0,52
6 Weekly Cycle 0,36 -0,50 0,86
7 Slack 0,00 1,00 1,00
8 Ten-Minute Build 0,42 1,00 0,58
9 Continuous Integration3 0,48 1,00 0,52
10 Test-First Programming 0,06 0,44 0,38
11 Incremental Design 0,30 1,00 0,70
12 Shared Code3 0,54 1,00 0,46
13 Code & Test3 0,72 -1,00 1,72
14 Single Code Base3 0,42 1,00 0,58
15 Negotiated Scope Contract 0,18 0,20 0,02

Table 4-8 Survey 1 item 2 compared to the protocol of the observation and the tools

The hypothesis HO1 said that a student’s expectation about how he will apply practice XY

is in relation to how the student will apply it in the practical project. Meanwhile, the

corresponding null hypothesis HO0 says that the attitude a student has towards an eXtreme

Programming practice has no influence on how it will be applied during the practical project.

The hypothesis is proved if the null hypothesis is not proven. It can be assumed that there is

no relation between the expectation before the practical project (value of Survey 1) and the

real application (value of the tools and observation) if the difference between the 2 values is at

least 0.6. In the (1-5) scale one category has a width of 1. Transferring this value into the ((-1)

– 1) scale it will become 0.6, so that one category has a width of 0.6. Thus, if the difference

between the 2 values is at most 0.6 the answers are in the same category. Whereas a

difference that is more than 0.6 it is too great to be understood as close.

As can be seen in Table 4-8, there are 7 “Difference” values higher and 8 values lower than

0.6. This result makes it possible to prove the null hypothesis HO0 for 7 practices and by this

the hypothesis HO1 can not be proven for those practices. Nevertheless, the null hypothesis

1 Column T & O (Tools and Observation) contains the results of section 4.3 and 4.4
² Part = Partially applied
3 This practices has been measured via Tools

 53

HO0 can be disproved for 8 practices so that for these practices the hypothesis HO1 could be

proved. Eight out of 15 is more than 50 percent but far away from a significant result that

could have verified the hypothesis HO1 for all practices.

However, it is possible to conclude that a relationship between the expectation and the

appliance cannot be excluded for the following practices:

o Sit Together

o Stories

o Ten-Minute Build

o Continuous Integration

o Test-First Programming

o Shared Code

o Single Code Base

o Negotiated Scope Contract

4.4.3 Conclusion

The main purpose of the observation was to evaluate whether the students applied the

eXtreme Programming practices or not. So, the observation has been performed and recorded.

As shown in this section, the majority of practices have been applied. Only the 3 practices

Pair Programming, Weekly Cycle and Code & Test have not been used. For the practice

Weekly Cycle this is to bee seen with the exception, that it has been applied in the last week.

However, the 3 practices Sit Together, Test First Programming and Negotiated Scope

Contract have been partially applied.

Furthermore, the unproved hypothesis HO1 shows that there is no evidence for the relation

of the students’ attitude before starting a project and the students’ way of behaviour during

the project for at least 7 of 15 practices. This prepares the ground for the assumption that the

teachers do not need to convince the students about the practices. They rather need to explain

the practice very detailed to enable the students to apply the practice.

 54

4.5 Survey 21

4.5.1 Introduction

Survey 2 is very important since it supports the conclusion of the other data sources. From

a high level perspective there are 4 main issues to be verified by Survey 2:

1 the students’ attitude towards the project they had just performed,

2 their view on the structure of the course,

3 the influence the observers had on the students and a

4 learning success measurement by checking if and which practices the

students will apply in future business and university projects.

4.5.2 Evaluation

Survey 2 consists of 8 items which are evaluated below in detail.

Item 1 How did the project work?

The purpose of this item is to measure the students’ attitude towards the project. Therefore,

the following 2 questions have been asked:

 S2Q1 How did the project work out in your opinion?

 S2Q18 How well did the project work at all?

 There are 2 ways of evaluating this item: either by evaluating each question on its own or

by using the mean weighted value of the 2 questions. Figure 4.6 shows every single answer as

well as the mean values per student.

1 The original responses of Survey 2 can be found in appendix E.

 55

Item 1

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5 6 7 8 9 10

Students

R
es

p
o

n
se

 S
ca

le

How did the project work out in your opinion? How well did the project work at all? Mean value

Not Well

Well

Figure 4.6 Responses on item 1

There are 2 points that can be drawn from Figure 4.6. As can be seen in Figure 4.6, 5

students or 50 percent of the student group answered equally for all questions whereas the

other 50 percent are just separated by one scale unit. That shows that all students answered

both questions very closely. Except for one response with a mean value in the “Undecided”

category, all mean values are in the “Well” category. However, this result just gives an

answer to each individual student’s opinion. In order to evaluate the group opinion, the mean

value is needed. Therefore, this value is listed in Table 4-9.

Question Mean value
How did the project work out in your opinion? 1,5
How well did the project work at all? 1,8
Mean value 1,65

Table 4-9 Mean value of item 1

As can be seen in Table 4-9 the lowest value is 1.8 standing for the “Well” category (1-

2.5). This data suggests the assumption that the student group thought that the project went

well.

Undecided

 56

Item 2 How well do you think your team used the 15 practices?

This item is evaluated to have a reference value for item 4. Therefore, the mean value is

calculated and compared with the responses of item 4. The calculation as well as the

comparison can be found under Item 4.

Item 3 About applying eXtreme Programming in a student environment

Item 3 asks the students what they think about applying eXtreme Programming in a student

environment respectively the current practical project. It seemed to be interesting to see if the

students thought that the student environment caused problems while the students wanted to

apply the practices.

Figure 4.7 shows the students’ responses on item 3.

Item 3

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5 6 7 8 9 10

Students

R
es

p
o

n
se

 S
ca

le

Do you think XP is a good process to use in a student project?
How well do you think XP works in a student environment?
Mean value

Not Well

Well

Figure 4.7 Responses on item 3

As shown in Figure 4.7, 40 percent of the students (students 2, 3, 9, 10) answered using the

same value; 50 percent (students 1, 4, 5, 7, 8) answered with a difference of 1 in the value,

and one student (student 6) answered with a difference of 2 in the value. Figure 4.7 just shows

the answers per student and not the opinion of the student group. It is not possible to draw a

conclusion just by having a look at the single values so that the mean value needs to be

calculated (see Table 4-10).

Undecided

 57

Question
Mean
value

Do you think XP is a good process to use in a student project? 2.1
How well do you think XP works in a student environment? 2.6
Mean value of item 3 2.35

Table 4-10 Mean value of item 3

As can be seen in Table 4-11, the mean value of the whole group and item 3 is in the

“Well” category (1-2.5).

This leads to the conclusion that even though the responses of some students were in the

categories “neutral”, “not well” and “not well at all”, the student group did not see a problem

in the fact that the project had to be performed as a student project in a student environment.

Of course, the students’ replies could have been better (< 2.35). Since the value 2.35 is close

to the “neutral” category, this will be discussed in more detail in the conclusion.

Item 4 How well could you perform the practice "XY"?

Item 4 was set up for 2 reasons. First, it was meant to compare the student group’s overall

impression with each individual impression. Therefore, the mean value of item 2 is compared

to the mean value of all students of item 4. These mean values as well as the answers to item

4 of each student are illustrated in Figure 4.8.

Item 4

2,1333

2,6667

1,9333
2,0667

2,1429

2,5333

1,9333 1,9333

2,4

2,6

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5 6 7 8 9 10

Students

R
es

p
o

n
se

 S
ca

le

Mean Value 2,2343

Item 2 Mean Value 2,6

Not Applied

Applied

Figure 4.8 Responses on item 4

Undecided

 58

As can be seen in Figure 4.8, the mean values of item 2 (illustrated in orange) and item 4

(illustrated in pink) do not match. The mean value of item 2 (2.6) lies in the “Undecided”

category whereas the mean value of item 4 (2.2) lies in the “Applied” category. One possible

reason could be that each student, except for the 3 outliers in the “Undecided” category, ranks

himself better than his perceived behaviour of the group as a whole. Another possibility could

be that the students have a negative opinion about the practices in total – visible in the higher

mean value of item 2 – however, when the students think about each practice in detail they

come to the conclusion that each practice in itself has been applied better than the overall

impression for all the practices.

The second reason why item 4 was set up has been to verify hypothesis HS21. This

hypothesis said that a student groups’ self evaluation about the level of application of an

eXtreme Programming practice will match the groups’ real behaviour. Therefore, the mean

values per practice of Survey 2 are compared to the mean values of the observation protocol

for all weeks (see Table 4-11). The difference between the 2 data sources gives information

about the hypothesis HS21. The difference is calculated as │A-B│ where A stands for the

mean value of Survey 2 and B for the mean value of the observation.

Practice Name Survey 21 O & T2 Difference1
1 Sit Together 0,84 0,75 0,09
2 Informative Workspace 0,06 1,00 0,94
3 Energized Work 0,48 1,00 0,52
4 Pair Programming 0,12 -1,00 1,12
5 Stories 0,24 1,00 0,76
6 Weekly Cycle 0,24 -0,50 0,74
7 Slack 0,54 1,00 0,46
8 Ten-Minute Build 0,00 1,00 1,00
9 Continuous Integration 0,48 1,00 0,52
10 Test-First Programming 0,90 0,44 0,46
11 Incremental Design 0,48 1,00 0,52
12 Shared Code 0,84 1,00 0,16
13 Code & Test 0,18 -1,00 1,18
14 Single Code Base 0,80 1,00 0,20
15 Negotiated Scope Contract 0,72 0,20 0,52

Table 4-11 Comparison of Survey 2 Item 4 and, the observation and tools

1 The values of Survey 2 are transferred to the (-1; 0; 1) scale.
2 Column T & O (Tools and Observation) contains the results of section 4.3 and 4.4.

 59

The following assumption is needed to numerically prove the hypothesis HS21:

The hypothesis HS21 is proven if the corresponding null hypothesis HS20 is unproven. The

null hypothesis HS20 said that a student groups’ self evaluation about the level of application

of an eXtreme Programming practice will not match the groups’ real behaviour. That means

numerically if 0.6 ≤ │A-B│ the null hypothesis is unproven. In the (1-5) scale one category

has a width of 1. Transferring this value into the (-1; 0; 1) scale it will become 0.6, so that one

category has a width of 0.6. Thus, if the difference between the 2 values is at most 0.6 the

answers are in the same category, meaning the group’s self evaluation matches the group’s

real behaviour. Whereas in case the difference is more than 0.6, the 2 answers are too far apart

from each other to be counted as close.

If any field in the right-most column of Table 4-11 is shaded orange it means that the

difference between the response of the survey and the evaluation of the observation is less

than 0.6. As can be seen in Table 4-11, 9 out of 15 practices - that means nearly two thirds of

the answers to Survey 2 - are close to the value of the observed behaviour as the

corresponding value is at most 0.6. This is not sufficient to disprove the null hypothesis. As a

result, the hypothesis HS21 cannot be proven and thus, cannot be verified. As consequence, a

student groups’ self evaluation about the level of application of an eXtreme Programming

practice does not match the groups’ real behaviour.

The fact that the hypothesis cannot be proven does not support the assumption that the

students are fully aware that they have applied the eXtreme Programming practices. This

leaves space for the assumption that the students were not aware of the practices they applied.

Item 5 About how eXtreme Programming worked out in the students’ project.

The purpose of this item is to evaluate if the students felt eXtreme Programming as

supportive or obstructive while the students performed the practical project. Therefore, the

following 2 questions have been asked:

S2Q19 Do you think the project would have worked out better without XP?

S2Q7 How well do you think XP worked in your project?

The response scale of the second question needed to be transferred into the response scale

of the first question to be able to evaluate these 2 questions. Figure 4.9 shows the responses in

the same response scale.

1 The difference is represented as absolute value │difference│.

 60

Item 5

-1,5

-1,2

-0,9

-0,6

-0,3

0

0,3

0,6

0,9

1,2

1,5

1 2 3 4 5 6 7 8 9 10

Students

R
es

p
o

n
se

 S
ca

le

Do you think the project would have worked out better without XP?

How well do you think XP worked in your project?

Yes / XP worked not well

No / XP worked well

Figure 4.9 Responses on item 5

As Figure 4.9 shows, except for one response all students responded in the “No” category

when it was about if the students felt handicapped by eXtreme Programming. When it comes

to the question whether the students felt eXtreme Programming supportive, it can be said that

7 out of 10 students answered in the “XP Worked Well” category, one student answered in

the “XP Worked Not Well” category and 2 students were undecided. Table 4-12 describes the

group tendencies of item 5 by showing the mean values of the whole group.

Question Mean value
Do you think the project would have worked out better without XP? -0,9
How well do you think XP worked in your project? -0,36

Table 4-12 The mean value of item 5

As can be seen in Table 4-12 the mean values are respectively in the category “No / XP

Worked Well”. That can be interpreted as a reasonable success since the response on the first

question leads to the conclusion that the students did not feel eXtreme Programming as a

constraint. Furthermore - since the mean value of the second question is in the “XP Worked

Well” category as well – the second question can be interpreted that the students felt eXtreme

Programming as supportive.

Undecided

Yes / XP did not work well

 61

Item 6 Do you think you would have worked in a different way if you had not been

observed by us?

This item aims in appraising the influence the observers had on the student group.

Therefore, the students were asked if they felt any influence or if they think they have

behaved in a different way. The response of this item is that 100 percent of the students did

not feel influenced in their behaviour. This response leads to the conclusion that the risk of

influence can be neglected.

Item 7 Would you apply eXtreme Programming practices in the future?

The purpose of item 7 is to check the learning success of the students. Therefore, it consists

of one question followed by a request. The question checks if the students will apply eXtreme

Programming practices in future projects. The instruction offered the possibility to the

students to respond in free text which practices the students think they will apply in future

projects.

If you would do another project, do you think you would apply some of the XP practices?

90%

10%

Yes No

Figure 4.10 Responses on item 7

As can be seen in Figure 4.10 90 percent of the students responded that they would use

eXtreme Programming practices in future projects. One response was in the “Neutral"

category but according to the framework of this item this response must be counted as failure.

 62

Based on this data and the data from the practices listed by the students, Table 4-13 has been

derived.

#²
Practices Summary³ Result1

1 Sit Together 56% 0,40
2 Informative Workspace 44% 0,30
3 Energized Work 56% 0,40
4 Pair Programming 78% 0,60
5 Stories 33% 0,20
6 Weekly Cycle 33% 0,20
7 Slack 33% 0,20
8 Ten-Minute Build 44% 0,30
9 Continuous Integration 33% 0,20

10 Test-First Programming 44% 0,30
11 Incremental Design 33% 0,20
12 Shared Code 44% 0,30
13 Code & Test 33% 0,20
14 Single Code Base 44% 0,30
15 Negotiated Scope Contract 33% 0,20
16 Whole Team 33%
17 Quarterly Cycle 33%
18 Real Customer Involvement 33%
19 Incremental Deployment 33%
20 Team Continuity 33%
21 Shrinking Teams 33%
22 Root-Cause Analysis 33%
23 Daily Deployment 33%
24 Pay-Per-Use 33%

Table 4-13 Responses on item 7

As can be seen in Table 4-13, the responses provided by the students in the list in this item

are not as enthusiastic as on the first question of this item. The only practice that reached a

good result is Pair Programming. It is interesting to see that even practices - not applied

during the practical project - were listed in the response. The outcome of this item is that

nearly all students want to apply eXtreme Programming practices in future projects but most

of the students are not sure – except of Pair Programming - what practices they are going to

1 The values in the Result column are calculated as follows: for every student that has answered with Yes a (+1)

is listed for every student that has not responded a 0 is added and for every student who has responded with No
a (-1) is added. At the end the mean value has been calculated and is presented.

² The fields that are coloured orange represent the practices that were used in the student project and the fields
that are coloured in yellow represent the practices that were not used in the student project.

³The percent values are based on 9 students that have agreed on applying eXtreme Programming in future
projects.

 63

apply. This leads to the conclusion that the students were not convinced of the advantages of

most practices except for Pair Programming.

Item 8 How do you like the idea of having theoretical sessions on XP followed by

performing the theory into practical use?

This item consisted of the one question asked in both surveys. Therefore, the response of

this item is compared with item 5 of Survey 1. Since the surveys were anonymous, it is not

possible to compare the answers for each individual student and how the student’s attitude

towards the structure of the course changed. Therefore, the median, the modal value and the

mean value are compared. The mean value shows whether the student group’s average

opinion changed, the median shows where exactly the responses are divided since the mean

does include the outliers in a not transparent way. The modal value shows which answers

have mostly been given. The value inside the brackets shows how often this response has

been occurred.

Item Modal value Median Mean value
Survey 1 2[5] 2 2,3
Survey 2 2[3], 3[3] 2,5 2,5

Table 4-14 Comparing Survey 1 with Survey 2

As can be seen in Table 4-14, from the first survey to the second survey all values moved

from the well side (1 – 2.5) towards the not well side (3.5 – 5) but stayed in the well category.

The median and mean values are on the borderline to neutral but still on the well side.

However, the modal value is 2 and 3. The fact that the responses are worse in all 3 results of

Survey 2 than in Survey 1 can be seen as evidence that the students’ enthusiasm was less after

the practical project had been performed. This can be understood as a sign to improve the

practical project since the students were expected to like the structure even more after they

have performed the project.

4.5.3 Conclusion

The purpose of this section was to clarify many issues regarding the students’ attitude towards

the project, eXtreme Programming in the project and eXtreme Programming in a student

environment. It was meant to see whether the students’ attitude towards the structure of the

course changed. It was also meant to evaluate the level of influence the students felt in being

observed during the practical project. The last issue to be verified by Survey 2 (Item 7) was an

indicator of how well the goal of the course succeeded i.e. the use of eXtreme programming

as a tool.

 64

About the exit criteria, it can be said that the project went well from the students’ point of

view. The response of the appropriate items was better than well. That leads to the conclusion

that the students were relatively positive regarding the progress of the project. This could be

influenced by the fact that the student group finished the given task. This positive enthusiasm

continued in the next item number 2 regarding the students’ opinion towards eXtreme

Programming in the project. In this step, the students responded not only that they did not feel

limited while they had to apply the eXtreme Programming practices. In fact, the students

indicated that eXtreme Programming worked well in their project. This can be understood as

success since the students had a positive attitude towards eXtreme Programming. The last

issue in this context was the issue regarding applying eXtreme Programming in a student

environment. This was asked in item 3 since the students might dislike some practices

because the students thought that these practices were not applicable in a student

environment. The students’ response about this item number 3 was that they still believed

eXtreme Programming was applicable in a student environment. The fact that the response

was on the borderline to the “Neutral” category should be understood as an opportunity for

the lecturers to implement some improvements and on that way increase the efficiency of the

course. Finally, it can be said that the student group finished the practical project with a

positive attitude the relevant issues project history, the support of eXtreme Programming in

the project and the appliance of eXtreme Programming in a student environment.

Another issue to be verified by this section is if the students changed their minds regarding

the structure of the course while performing the practical project. An item has been set up that

was asked in Survey 1 (item 5) and again in Survey 2 (item 8) to evaluate this question The

issue is clarified by checking whether the attitudes became better, worse or remained the same

compared with Survey 1. Before the students performed the practical project the students’

response regarding this point was that they liked the structure of the course well. After the

students had performed the practical project the students responded that they still like the

structure of the course with respect to the theoretical sessions. This indicates that the students

did not strongly change their mind. Not strongly since the category did not change but the

actual values were higher (i.e. worse). This must not be seen as a bad sign but might be an

indicator that there is still potential left to improve the structure of the course.

 65

It is positive to see that the students did not feel influenced by the observers while they

performed the practical project. Since 100 percent of the students excluded the influence there

is no need to consider an influence on the evaluation.

In addition, Survey 2 serves to prove the hypothesis HS21 in order to see if the students

were aware of the practices they applied or not. However with regard to this point, some of

the tool based support indicated that the students did not do what they said they did.

Unfortunately, this hypothesis could not been proven for all 15 practices which means that the

students applied some practices but were not fully aware that they applied them. In some

cases, the student group did not apply practices but thought that they applied them. This is a

very tricky situation and needs to be analyzed later, when the overall result is analysed. Many

misunderstandings could cause such an effect. Just to mention some: the students could have

had trouble in deeply understanding the practice or the students interpreted the practice

different than explained.

The last issue to be tracked by Survey 2 was whether or not the course achieved its goals.

One of the purposes of the course was to open the students’ mind to eXtreme Programming

and to enable the students to apply eXtreme Programming and its practices whenever it might

be useful. The students have been asked if they could imagine applying eXtreme

Programming practices in future projects or not to be able to verify this issue. Ninety percent

of the students responded that they would apply eXtreme Programming practices in future

projects. The student group has also been asked which practices they would apply in future

projects to be able to evaluate where improvements might be useful. The most favoured

practice was Pair Programming followed by Sit Together and Energized work. These were

followed by Informative Workspace, Ten Minute Build, Test First Programming, Shared

Code and Single Code Base. Thus, there could be a chance to improve the education for the

other practices so that the level of acceptance increases.

Finally, the result of Survey 2 can be understood as a reasonable success. It delivers a lot

of evidence that supports the process of drawing the large picture.

 66

4.6 Summary

During this chapter, all the data sources have been evaluated. The data collected has been

presented, commented and interpreted. The data has become evidence to prove certain items

that are important to draw the big picture in chapter 5.

Before drawing any conclusions from the data, the conclusions of Survey 1 and Survey 2

need to be summarised.

Survey 1 shows that the students who attended the lectures understood most of the

practices well but that the students did not think that all practices were applicable in the

practical project. The reason behind this attitude was not the fact that the students did not

understand the practices, since they had understood some of them well.

The observation and the tools showed that it is not possible to substantiate a connection

between the students' attitude about how well a practice is applicable before the project

started.

Survey 2 showed that the students had a positive attitude towards eXtreme Programming

and its performance in a student environment. The students left the practical project with a

positive impression about how the project worked out. Survey 2 strengthens the observation

since the students dispelled all doubts about the influence the observers had on them. It

showed that the student groups were not fully aware about which practices they applied and

which practices they did not apply. That has been interpreted as evidence that the group was

lacking a deeper understanding of certain practices. The majority of the group wants to apply

eXtreme Programming practices in future projects although most of the students were not able

to mention which practices. The answer to S1Q33 (2.3) and S2Q28 (2.5) (the same question)

showed that the students were less enthusiastic to the idea after the practical project but

nonetheless the answer in Survey 2 was still in the “well” category but borderline “neutral”.

 67

5 Result by practices

5.1 Introduction

Though, the students left the course with a positive attitude towards eXtreme Programming

and the eXtreme Programming practices and a good understanding of the majority of the

practices, there are some improvements that can be introduced in future courses. So, this

chapter draws a short conclusion for each practice combined with a comparison to other

scientific work done regarding the appropriate practice by different researchers. Furthermore,

an outlook that could be interesting to be researched in future projects is given.

5.2 Sit Together

Sit Together can be seen as an important pillar of the eXtreme Programming portfolio.

However, on the other hand according to Trampel [42] offshore IT projects are twenty to

thirty percent cheaper than near shore projects and this is according to Deloitte & Touche [43]

a contributing factor for 82 percent of the companies that apply offshore development. This is

one reason why research about distributed eXtreme Programming is done as described by

Kircher, Corsaro, Levine [44] and Braithwaite, Joyce [45]. It appears to be clear that Sit

Together would be heavily affected in a distributed environment. This leads to the conclusion

that Sit Together needs to be adapted to be able to be applied in other contexts. Therefore,

more research will be performed in future projects. The experience found in this project can

be summarized that Sit Together has been transferred to the students successfully. The

students know in detail what Sit Together is about and how they have to apply this practice.

Thus, this practice has been taught successfully.

The outcome of the practical project shows that the benefit of Sit Together is easy to

understand and to apply in a project environment. For future research it would be interesting

to apply the changes of eXtreme Programming to become distributed eXtreme Programming

described, developed and tested by Kircher, Corsaro, Levine [44] and Braithwaite, Joyce [45].

Finding good applicable solutions for offshore projects is a very interesting field since

 68

according to Deloitte & Touche [43] offshore development will increase within the next

decades and should to be taught to computer science students as early as possible.

5.3 Informative Workspace

This practice, Informative Workspace, is a good example of a lack of information. The

students thought that they understood this practice well but considered it as not applicable.

Contrary to the observation protocol that shows that the student group applied this practice to

the full extent possible. However, after the practical project, the students were still not aware

of this as the response in Survey 2 was exactly the same level as before. This might account

for a lack of awareness about this practice on the part of the students. Further emphasis should

be placed on describing this practice in order to increase the students’ awareness.

For the same reasons - mentioned in the section about Sit Together – attempts have been

made to automate this practice in real world projects. One solution is therefore the tool

XPSwiki [47] that has been applied in eXtreme Programming research projects Gianini &

Sillitti [46] to analyze if it is possible to apply Informative Workspace in distributed project

environments. The approach of automating Informative Workspace can be motivated by

several reasons. One reason is that an Informative Workspace that is virtual is totally

independent of a physical location and therefore a member of a team can work from anywhere

in the world. It was somewhat ironic that the students’ project [19] was to implement a virtual

story wall which could be a part of a tool to support distributed Informative Workspace. It

would be interesting to see whether future courses would be able to work with virtual

Workspaces.

5.4 Energized Work

Energized Work is not only an issue in software development projects it is also a social

problem. As analyses in Canada [48] and Germany [49] show, it has been shown that

increasing working hours have negative influence on the employee’s health and by this on the

quality of the employee’s working results.

The case study showed that the students understood this practice well, applied it during the

project and consider it as applicable in future projects. For future research, it would be

interesting to evaluate if a student group that applied Energized Work feels less stressed and

 69

healthier after a project has been finished in comparison to a student group that performed the

same project with the same goal but without intentionally applying Energized Work.

5.5 Pair Programming

Pair Programming showed the highest score regarding the level of understanding. Based on

this, the students categorized it as highly applicable. However, this was followed by a nearly

total absence of application which the students have not been aware of. In the end, Pair

Programming is the leading practice when it comes to the question which practice to apply in

future projects. What could be a reason for this result? One possible answer is that –

according to Ramachandran & Shukla [71] - Pair Programming is one of the 3 most popular

practices of all eXtreme Programming practices. This could play its part as well as the lack of

knowledge about the details regarding the appliance of this practice. Perhaps the students

thought that sitting together while coding is already Pair Programming. This issue raises more

questions than can be answered with help of the data gathered in this project. However,

answers to these questions may be given in future projects that place the emphasis on such

distinctions.

It should be noted about Pair Programming, that much research exists on whether Pair

Programming improves quality of code enough to legitimise the cost intensive practice or not.

As described by Williams, Kessler, Cunningham & Jeffries [72], Pair Programming helps to

produce a better software quality in less time than with the common one programmer coding

method. This is supported by Cockburn & Williams [76] who showed 3 projects with fewer

lines of code but with the same functionality. The fact that all 3 projects needed fewer lines of

code leads to the conclusion that Pair Programming results in a much more sophisticated

design. Furthermore Williams & Upchurch [73], Nagappan, Williams, Ferzli, Wiebe, Yang,

Miller & Balik [78] and Williams [75] describe that Pair Programming can be supportive in a

students’ course as well. They mentioned that the students had greater learning experience in

a shorter time. Nagappan, Williams, Ferzli, Wiebe, Yang, Miller & Balik [78] summarize it as

follows:

• “Pair programming helps in the retention of more students in the introductory

computer science stream.

• Students in paired labs have a more positive attitude toward working in

collaborative environments; this should ultimately help the student in his/her

professional life.

 70

• Pair programming in an academic environment reduces the burden on the LI1

because the pairs helped each other, enabling the LI to perform more efficiently.

• From the results we have obtained regarding the tests and the projects, we can

conclude significantly that pair programming among students is in no way a

deterrent to student performance.”

Another interesting observation has been made by Williams & Kessler [74], Williams &

Kessler [77], who noted the fact that programmers are usually used to working alone. This

needs to be mentioned while talking about Pair Programming since for some programmers it

might be difficult to work in pairs. Williams & Kessler come to the conclusion that most

programmers enjoy working in pairs after they committed themselves to doing so. Pair

Programming offers possibilities for all circumstances e. g. partner picking principles (see

[79]). Finally, advantages of pair programming can be summarized as follows (see [76]):

• “many mistakes get caught as they are being typed in rather than in QA test or in

the field (continuous code reviews);

• the end defect content is statistically lower (continuous code reviews);

• the designs are better and code length shorter (ongoing brainstorming and pair

relaying);

• the team solves problems faster (pair relaying);

• the people learn significantly more, about the system and about software

development (line of-sight learning);

• the project ends up with multiple people understanding each piece of the system;

• the people learn to work together and talk more often together, giving better

information flow and team dynamics;

• people enjoy their work more;”

5.6 Stories

More than all other practices Stories had to be internalized by the student group as the goal

of the student project (appendix B) was that the students had to build a virtual story wall with

virtual story cards on it. This practice has been understood well and has been well performed.

However, after the project, the students thought that they applied this practice less than well.

1 LI stand for Lab Instructors. See [78] for more details.

 71

It is not obvious why the students changed their minds regarding this practice. One possible

reason could be that the students developed a deeper sense for this practice since the goal of

the students’ project was to develop a tool that represented a virtual story board.

The practice Stories is – according to Beck and Fowler [51] - an interesting and completely

different way of gathering Use Cases. This comparison has been also drawn by Paulk [50]

who compared or mapped eXtreme Programming to the Capability Maturity Model (CMM)

and the practice Stories to the CMM Level 2, Requirements Management. For future research

it could be very interesting if the different style a story has from a Use Case – according to the

UML [52] definition of Use Case – makes it easier to fully gather requirements. Therefore,

metrics for good requirements need to be defined and 2 project teams could gather

requirements in different ways.

5.7 Weekly Cycle

Based on the level of understanding the students had towards this practice, they should

have been able to apply it. However, during the practical project, the practice Weekly Cycle

had just been performed in one week. After the practical project was finished, the students’

feeling about their level of appliance was still higher than the value that has been measured in

the observation. One possible conclusion drawn on the given result is that the students

thought applying this practice was performing the project in 5 weeks.

Weekly Cycle can also be seen as responsible for one very interesting effect eXtreme

Programming has on the project group. It helps the team members – who consist in this

particular case of students - in a project to move the emphasis away from the deliverables and

by doing this, aim for the goal of the project, see Noll & Atkinson [53]. Another very

interesting result was obtained by Abrahamsson & Koskela [54] who adapted the

development cycles1 to the project flow. During the first 3 weeks the cycle was on a 2 weeks

basis and for the last 2 weeks it has been applied on a weekly basis. In the last part of the

project the developed LOC decreased whereas the post release defect rate increased. This is a

very interesting approach to be able to fix bugs found in the post release stage. An interesting

future task could be to compare the 2 different project workflows. One of the projects with

1 According to the Rational Unified Process [83] a development cycle consists of the four phases: Requirements,

Analysis & Design, Implementation, Test and Deployment. In iterative software development this cycle needs
to be repeated as many times as needed until the deployments meets the final requirements of the customer.

 72

fixed iteration cycles of 1 or 2 weeks and the other one with adapting intervals like in

Abrahamsson & Koskela [54].

5.8 Slack

There has been a special attention on this practice as it is one of the 2 practices the students

considered as not understood. Maybe the majority of the students did really not understand

this practice and this caused the low expectation regarding the application in the practical

project. Surprisingly, as arose during the practical project, this practice has been applied to its

full extent. As can be seen in appendix D, the students were, at the beginning of the project,

not fully aware of that fact. This raises the possibility of assuming that some students

understood this practice, performed it and by this taught it to the rest of the group. This is the

way the information should flow and why the practical project was set up in the first place.

The group explains the practices to itself. A detailed lecture on Slack should be given in

future lessons since it is important that enough students have a deeper sense of understanding

when the whole group leaves the course, knowing the advantages of the practice Slack.

Slack can become very important in the release planning process as described by McDaid,

Greer, Keenan, Prior, Taylor & Coleman [55]. It is useful to add slack but it is also important

to not plan too much slack per release so as to be able to guarantee a commitment from the

developers. McDaid, Greer, Keenan, Prior, Taylor & Coleman [55] say that up to 70% of the

scope, planned for one release is usually realized. This leads to the conclusion that Slack

supports the productivity since it puts more pressure on the operative project team. Anderson

[56] goes a bit further and constructs the following scenario: A Design-Test-Unit is able to

test ten units per day. According to bottlenecks in the previous process steps for one week

only thirty testable units exist. One possibility could be to reduce the group to 6 Test-Units

per day to perform the units in one week. The second approach, which is recommended by

Anderson, is to stay in the ten Test-Unit mode and give the team 2 days off. He justifies this

approach by the explanation that the team might develop problems in the future when it gets

used to the 6 Test-Units per day.

McDaid, Greer, Keenan, Prior, Taylor & Coleman [55] as well as Anderson [56] offer very

interesting approaches but should be analyzed much more detailed. An interesting point to be

analyzed would be if a group becomes more efficient when the pressure is increased and if

yes when the maximum level of pressure is reached. The maximum load in this case can be

seen as the point where a resignation arises in the project team.

 73

5.9 Ten-Minute Build

This practice has been understood well by the students. This might have contributed the

good attitude towards applying Ten-Minute Build during the practical project, justified by its

full appliance caused by the auto build function provided by Eclipse. The fact that the

students had nothing to do on their own to apply this practice, made applying this practice

passive, and thus easier, and by this it moved out of the students’ minds. From the author’s

point of view, it could be discussed whether applying this practice makes sense or not. A

larger project would be needed to exceed the given time period of ten minutes but that could

not be managed within 5 weeks.

5.10 Continuous Integration

As the section about Survey 1 has shown, the students understood this eXtreme

Programming practice well and performed it to its full extent during the practical project.

However, the acceptance level is quite low. There are different reasons to explain this

outcome. Firstly, it can be seen as a problem in understanding the benefit of this practice.

Secondly, there could be a lack of knowledge as this practice could not be performed 100%

due to the student environment. Excluding this eXtreme Programming practice from the

practical project or enlarging the project so that it makes more sense to apply it could be

possible solutions to solve that problem.

According to Fowler & Foemmel [57], every time source code is committed to the code

base a complete build needs to be performed. In the paper a complete build is defined as:

• All the latest sources are checked out of the configuration management system.

• Every file is compiled from scratch.

• The resulting object files (Java classes in our case) are linked and deployed for

execution (put into jars).

• The system is started and suite of tests (in our case, around 150 test classes) is run

against the system.

All these tasks can be performed by an automated build server like Apache ANT1, Apache

Maven1 [58] or a continuous integration server as mentioned in Fowler [21] or a sanitized

build machine as mentioned in Appleton, Konieczka & Berczuk [22]. However in the

1 See http://ant.apache.org/ for more information about Apache ANT

 74

particular student project used in this study, that would have exceeded the scope of the

project. The students had to learn a number of new methods and technologies and if the

students would have had to learn how to set up ANT or Maven to do automate build-jobs –

including system tests – it would have been too many tasks for the given time.

5.11 Test-First Programming

Even though the students were not sure if they will be able to apply this practice during the

practical project they applied it well at the end and consider it as well applicable in future

projects. Therefore, the lecture on Test-First Programming can be seen as an absolute success.

It managed to convey the benefit of writing test cases before writing the code.

According to Kaufmann & Janzen [59], Test-First Programming and Test-Driven-

Development (TDD) can be seen as comparable or familiar. Unfortunately, they do not come

to a clear conclusion if a project applying TDD or Test-First Programming is better than a

project without applying TDD or Test-First Programming. A completely different conclusion

was drawn by George & Williams [60] who found out that applying TDD needs more time

but delivers better quality. There is still potential for more research in this context, since

clarifying if Test-First Programming delivers better software quality while investing the same

resources or not would be very interesting.

5.12 Incremental Design

The study shows that this practice can be seen as success. The only response – given by the

students – that clouds the expectations is that only very few students are willing to apply

Incremental Design in future projects.

In the first version of eXtreme Programming, this practice was part of the practice called

Planning Game. According to Williams & Upchurch [61], Planning Game is - especially in

the educational context - very useful for the students to reflect their last delivery and to

receive feedback. Incremental Design is an essential part of the Planning Game since it is

responsible for the implementation made during the following iteration. Another point

regarding incremental design is mentioned by Müller & Tichy [62]. They state that it is hard

to follow this practice in huge project groups which occur in real world software projects. As

1 See http://maven.apache.org/ for more information about Apache Maven

 75

mentioned in Beck [2], twelve team members shall be in one eXtreme Programming project

team which might be a bit less for major software projects. Müller & Tichy [62] split the team

up so that some worked on the design whereas others worked on other parts of the

incremental process. This is not the basic idea of eXtreme Programming but is applied as

solution for the problems mentioned by them Müller & Tichy [62]. It could be interesting in

this field to establish a model that enables large project groups to apply eXtreme

Programming efficiently.

5.13 Shared Code

The results of the study indicate that the students understood this practice, considered it as

applicable, applied it and were absolutely aware of the fact that they had applied it. Some of

the students (4 out of 9) considered it as applicable in future projects. This leads to the

conclusion that the students have not been fully convinced about the advantages offered by

Shared Code.

As mentioned before, distributed eXtreme Programming becomes more and more

interesting according to the growing popularity of offshore development, projects with greater

complexity and increasing energy costs. Schümmer & Schümmer [63] mention that Shared

Code does not appear to be a problem regarding the distribution of a project team. Tools like

CVS that have been applied in the current project are developed to enable project teams to

work on the same source code from all over the world. Watkins [64] gives a good and detailed

overview about the state of the art systems for version control systems.

5.14 Code & Test

This practice is kind of interesting. The students understood this practice well and

considered it as applicable. However, this practice could not been performed by the group

since the project specification forced the students to break this practice so that it was

impossible for the students to apply Code & Test during the practical project. Strangely, the

students did not apply Code & Test but were not sure about how well they applied it. Several

points regarding this evaluation show that the students did not develop a deeper understanding

of this practice. Firstly, they thought that it would be applicable in the practical project. One

reason could be that the students did not really study the requirements of the project.

Secondly, the students have not been aware of the situation that they did not apply it. This is

represented by the movement from a good value in the well section to the neutral section. The

 76

last point to mention is that the level of future appliance decreased to a value in the neutral

section which appears to be absolutely appropriate.

According to Card, McGarry & Page [65], Lientz & Swanson [66] and Rombach & Basili

[67], software documentation is a key component of software quality. Software

documentation in this case means technical documentation and not end user documentation.

The studies show that documentation that is poor, out of date or completely missing is a major

cause for problems in software maintenance and development. Cook & Visconti [68] goes

somewhat further by showing that working on a higher documentation level decreases the

amount of defects contained in the software. These studies just take up partially a contrary

position to the practice Code & Test. The studies reveal that a number of defects are already

included while the requirements are captured and the design is defined. eXtreme

Programming prevents this by offering the practices Real Customer Involvement and

Incremental Design. It would be interesting to see a direct comparison between eXtreme

Programming and the maturity process mentioned by Cook & Visconti [68]. This comparison

would probably exceed the possibilities of a university project but could be realized with the

support of a business partner.

5.15 Single Code Base

Single Code Base reflected a major aim of the course, since there was no possibility for

multiple code bases. When the students finished the lecture, they were not sure how well they

understood Single Code Base and how well they think Single Code Base would be applicable.

During the practical project, the students seemed to realize that there was no way for them to

break this practice since they were not able to start another code bases. This was a result of

the fact that they only had one project and no administrative access to the CVS server. After

the project was finished, this learning procedure was reflected in their responses as they

considered the application of Single Code Base as very well. This revealed itself when the

students responded; that Single Code Base is considered to be applicable in future projects.

For the future labs it can be said that the teachers should place the emphasis on showing

the advantages of Single Code Base so that the students are aware of these advantages. This is

motivated by the result that shows that the majority (5 out of 9) of the students are not going

to apply Single Code Base in future projects. One reason for this result could be that the

students did not develop a deeper understanding for the practice since they had no choice.

 77

5.16 Negotiated Scope Contract

Negotiated Scope Contract can be seen as a total failure. After the lecture, none of the

practices had such a low level of understanding as Negotiated Scope Contract. This led to the

result that the students considered this practice not as well applicable. During the project, the

students applied it only during some weeks. After finishing, the students did not even see their

failure and voted Negotiated Scope Contract as well applied. The only gleam of hope is that

the students did not really feel interested in applying this practice in future projects.

In the case of Negotiated Scope Contract the lecturers should rethink the methods and put

the emphasis more on the benefit of Negotiated Scope Contract to enable the students –

technically and mentally - to apply this practice in future projects.

Negotiated Scope Contract is a very interesting practice since Beck[3] says that the major

difference in applying Negotiated Scope Contract is, that the customer gets what he wants at

the end of a project instead of getting it at the beginning of a project. According to Coldewey

[69], the practice Negotiated Scope Contract delivers the kind of standard contracts that

capture the essence of how an agile process runs. This can be understood in the way that this

practice is absolutely matching the idea behind agile software development. From a

completely different point of view Negotiated Scope Contract is discussed by Favaro &

Robertson [70] who say that “…the purpose of the requirements process should not be to

“cover all eventualities,” or to “limit the damage,” or to “minimize risk,” or even to “satisfy

the customer.” The purpose of the requirements process is to add business value.” It delivers

Negotiated Scope Contract as a solution for that problem. It includes the customer into the

development process instead of capturing all relevant data before the design is started. In that

way the customer is able to change items without great impact.

It would be interesting to compare 2 software projects and the level of satisfaction the

customer has at the end. One project should be performed in the common way by defining all

requirements in the beginning and then build the artefacts. The other project should be

performed following the eXtreme Programming practices. The requestor should be the same

and the projects should have about the same complexity to be able to compare them. At the

end, the timeline, costs, usability, quality and customer satisfaction should be measured.

5.17 Final Comments

In a world where requirements become more and more complex while lifecycles become

shorter and shorter software development processes are needed that are able to adapt to

 78

changing requirements quickly and efficiently while guaranteeing good quality and

maintainability. According to Kent Beck, eXtreme Programming is one answer. Even if

eXtreme Programming as a whole might be difficult to apply for some companies it delivers a

tool box to meet the challenges of our decade. However, this tool box needs to be under

permanent evolution in order to deliver tools and answers to new and frequently upcoming

questions. Therefore, it is challenged by researchers all around the world. As has been showed

in this thesis, researchers are even working on the issue of offshore development which is

clearly in opposition to some practices of eXtreme Programming.

It is up to the universities to enable software developers, requirement engineers, test

managers, designers and project leaders to be able to apply eXtreme Programming in their

future projects. Motivated by this task this thesis traces if eXtreme Programming can already

be taught to students at the university and how to arrange it as efficiently as possible. As a

result, this thesis delivers the proof that it is possible and worth to open students’ minds to

different approaches of software development and to give them the possibility to choose the

fitting approach for every single challenge that might come up during their professional

careers.

Nevertheless, this case study revealed that not all practices of eXtreme Programming are

suitable for university projects. Whereas the practices: Whole Team, Quarterly Cycle, Ten-

Minute Build, Continuous Integration, Real Customer Involvement, Incremental Deployment,

Team Continuity, Shrinking Teams, Root-Cause Analysis, Code & Test, Single Code Base,

Daily Deployment and Negotiated Scope Contract are not ideal for practical university

projects, the practices Sit Together, Energized Work, Pair Programming, Informative

Workspace, Stories, Weekly Cycle, Slack, Test-First Programming, Incremental Design and

Shared Code are very well applicable in practical university projects. Therefore, the practices

not qualified for practical projects should be emphasised in the theoretical lectures.

Finally can be said that teaching eXtreme Programming in a practical project is a very

interesting approach and it will show whether it supports the way of eXtreme Programming

into software development projects or not.

 79

References

[1] Kent Beck. eXtreme Programming Explained. Addison-Wesley, First edition, 1999

[2] Kent Beck. eXtreme Programming Explained: Embrace Change. Addison-Wesley,

Second edition, 2004

[3] Kent Beck First Class Software Dave Cleal. Optional Scope Contracts 2003

[4] Stefan Edlech and Martin Backschat. J2EE Entwicklung mit Open Source Tools.

Spektrum Akademischer Verlag, First edition, 2004

[5] David MacKenzie, Paul Eggert, and Richard Stallman. Comparing and Merging

Files. 2.8.1 edition, April 2002

[6] Sharan B Merriam. Fallstudien som forskningsmetod. Studentlitteratur, 1994

[7] Winston Tellis. Introduction to case study. The Qualitative Report, vol. 3, 1997

[8] Malcolm Gladwell, The Tipping Point: How Little Things Can Make a Big Difference.

Back Bay Books, 2002

[9] Jeffrey Barnes, Kerri Conrad, Christof Demont-Heinrich, Mary Graziano, Dawn

Kowalski, Jamie Neufeld, Jen Zamora, and Mike Palmquist. (2005). Generalizability

and Transferability. Writing@CSU. Colorado State University Department of English.

Retrieved 03/2010 from http://writing.colostate.edu/guides/research/gentrans/

[10] eclipse.org The Eclipse project's webside http://www.eclipse.org (link worked

02.2008)

[11] Die Eclipse-Architektur http://www.fh-

wedel.de/~si/seminare/ws02/Ausarbeitung/ 7.eclipse/ eclipse2.htm (link worked

02.2008)

[12] The JUnit Framework and all it’s components can be found under:

http://www.junit.org (link worked 02.2008)

[13] junit.2.png http://www.adictosaltrabajo.com/tutoriales/junit/junit.2.jpg (link

worked 02.2008)

[14] junit.png http://tejasconsulting.com/images/junit.png (link worked 02.2008)

 80

[15] CVS - Concurrent Versions System http://www.gnu.org/software/cvs/ (link

worked 02.2008)

[16] Online Catalog: CVS Pocket Reference http://www.oreilly.com/catalog/cvspr/

(link worked 02.2008)

[17] GNU http://cssc.sourceforge.net/ (link worked 02.2008)

[18] statcvs http://statcvs.sourceforge.net/ (link worked 02.2008)

[19] CIT B01 - Projektinformation

http://www.cs.kau.se/cs/education/courses/citb01/vt2005 /index.php?projectinfo=true

(link worked 04.2005) Added to the appendix B

[20] List of Extreme Programming projects around the world http://c2.com/cgi/wiki?

ExtremeProgrammingProjects (link worked 02.2008)

[21] Continuous Integration by Martin Fowler

http://www.martinfowler.com/articles/continuousIntegration.html (link worked

04.2008)

[22] Brad Appleton, Steve Konieczka & Steve Berczuk Continuous Integration – Just

another buzz word? http://www.cmcrossroads.com/articles/agilesep03.pdf (link

worked 04.2008)

[23] Robert K. Yin Case Study Research: Sage Publications, Inc; Third Edition (18

Feb 2003)

[24] Jürgen Bortz & Nicola Döring; Forschungsmethoden und Evaluation; Springer;

4. Auflage 2006

[25] Wilfried Laatz; Empirische Methoden: Ein Lehrbuch für Sozialwissenschaftler;

Harri Deutsch; 1973

[26] Karlheinz Ingenkamp, Evelore Parey & Lothar Tent; Schätzen und Messen in

der Unterrichtsforschung; Beltz; 1984

[27] Gerhard Faßnacht; Systematische Verhaltensbeobachtung; UTB für

Wissenschaft; 1979

[28] Urs Haeberlin; Wortschatz und Sozialstruktur; Benziger Verlag GmbH; 1982

[29] Randall C. Wyatt & Lawrence S. Meyers; Psychometric Properties of Four 5-

Point Likert Type Response Scales ; SAGE Publications; 1987

 81

[30] Bernd Rohrmann; Empirische Studien zur Entwicklung von Antwortskalen für

die sozialwissenschaftliche Forschung ; Zeitschrift für Sozialpsychologie 9, 222-45 ;

1978

[31] Rensis Likert; A technique for the measurement of attitudes; Archives of

Psychology. 1932 Vol 22 No. 140 55; 1932

[32] Martin E. Grosse & Benjamin D. Wright; Validity and Reliability of True-False

Tests ; SAGE Publications; 1985

[33] Lewis R. Aiken; Formulas for Equating Ratings on Different Scales;

Educational and Psychological Measurement; 1987

[34] Peter H. Rossi & Howard E. Freeman; Evaluation: A Systematic Approach;

SAGE Publications Inc; Edition 5th (14. March 1993)

[35] Carol H. Weiss; Evaluierungsforschung. Methoden zur Einschätzung von

sozialen Reformprogrammen; VS Verlag für Sozialwissenschaften; 1974

[36] Werner W. Wittmann; Evaluationsforschung. Aufgaben, Probleme und

Anwendungen; Springer-Verlag GmbH; 1985

[37] Heike Thierau & Heinrich Wottawa; Lehrbuch Evaluation; Huber, Bern; 3.

Edition (October 2003)

[38] Donna M. Mertens in Reinhard Stockmann (Herausgeber);

Evaluationsforschung: Grundlagen und ausgewählte Forschungsfelder

(Institutionalizing Evaluation in the United States of America); Waxmann; Auflage: 3.

(Dezember 2006)

[39] Frans L. Leeuw in Reinhard Stockmann (Herausgeber); Evaluationsforschung:

Grundlagen und ausgewählte Forschungsfelder (Evaluation in Europe); Waxmann;

Auflage: 3. A. (Dezember 2006)

[40] Reinhard Stockmann (Herausgeber & Autor); Evaluationsforschung:

Grundlagen und ausgewählte Forschungsfelder (Evaluation in Deutschland);

Waxmann; Auflage: 3. A. (Dezember 2006)

[41] Adler P. & Adler P. in Norman K. Denzin & Yvonna S. Lincoln (publisher) ;

The Sage Handbook of Qualitative Research (Observational Techniques) ; Sage Pubn

Inc; Third.Edition (27. April 2005)

 82

[42] Julia Trampel; Offshoring oder Nearshoring von IT-Dienstleistungen? - Eine

transaktionskostentheoretische Analyze; ARBEITSPAPIERE des Instituts für

Genossenschaftswesen der Westfälischen Wilhelms-Universität Münster; Nr 39 März

2004

[43] Deloitte & Touche UK LLP; Outsourcing und Offshoring mit indischen IT-

Unternehmen - Die IT-Welt im Wandel; Deloitte & Touche UK LLP; 2003

[44] Michael Kircher, Prashant Jain Angelo Corsaro, David Levine; Distributed

eXtreme Programming; Second international conference on eXtreme Programming

and Agile Processes in Software Engineering; 2001

[45] Keith Braithwaite and Tim Joyce; XP Expanded: Distributed Extreme

Programming; In XP 2005: Proceedings of the 6th International Conference on

Extreme Programming and Agile Processes in Software Engineering

[46] Gabriele Gianini, Alberto Sillitti; Sharing experiences on agile methodologies

in open source software developmen; Polimetrica s.a.s.; 2006

[47] Sandro Pinna, Simone Mauri, Paolo Lorrai, Michele Marchesi and Nicola

Serra; XPSwiki: An Agile Tool Supporting the Planning Game; Springer Berlin /

Heidelberg; Volume 2675/2003

[48] Margot Shields; Long working hours and health; Canada's National Statistical

Agency; March 8, 2000

[49] Alfred Oppolzer; 42 Stunden sind längst üblich – NRW-Umfrage belegt längere

und flexible Arbeitszeiten; AiB-Verlag GmbH; Arbeit & Ökologie-Briefe im Jahr 2004

Heft 5/2004

[50] Mark C. Paulk; Extreme Programming from a CMM Perspective; Paper for XP

Universe, Raleigh, NC, 23-25 July 2001

[51] Kent Beck, Martin Fowler; Planning Extreme Programming; Addison-Wesley

Longman, Amsterdam; Oktober 2000

[52] Unified Modelling Language (UML) http://www.uml.org/ is administrated by

the Object Management Group. http://www.omg.org/ Links worked 05.2010

 83

[53] John Noll and Darren C. Atkinson; Comparing Extreme Programming to

Traditional Development for Student Projects: A Case Study; Springer Berlin /

Heidelberg; Volume 2675/2003

[54] Pekka Abrahamsson and Juha Koskela; Extreme Programming: A Survey of

Empirical Data from a Controlled Case Study;ACM-.IEEE International Symposium

on Empirical Software Engineering (ISESE 2004), Redondo Beach CA, USA

[55] K. McDaid, D. Greer, F. Keenan, P. Prior, P. Taylor, G. Coleman; Managing

Uncertainty in Agile Release Planning; ; Agility in the Software Process 04.2008

[56] David J. Anderson; The Four Roles of Agile Management; Cutter IT Journal

July 2004

[57] Martin Fowler, Mathew Foemmel; Continuous Integration; Though Works;

2005

[58] Erik Drolshammer; Improved Backward Compatibility and API Stability with

Advanced Continuous Integration; Norwegian University of Science and Technology

Department of Computer and Information Science June 2007

[59] Reid Kaufmann, David Janzen; Implications of Test-Driven Development A

Pilot Study; OOPSLA 2003

[60] Boby George, Laurie Williams; A Structured Experiment of Test-Driven

Development; Information and Software Technology; Volume 46, Issue 5, 15 April

2004, Pages 337-342; Special Issue on Software Engineering, Applications, Practices

and Tools from the ACM Symposium on Applied Computing 2003

[61] Laurie Williams and Richard Upchurch; EXTREME PROGRAMMING FOR

SOFTWARE ENGINEERING EDUCATION?; 2001 IEEE; October 10 - 13, 2001

Reno, NV

[62] Matthias M. Müller, Walter F. Tichy; Case Study: Extreme Programming in a

University Environment; Computer Science Department Universität Karlsruhe; IEEE

Computer Society; International Conference on Software Engineering; Proceedings of

the 23rd International Conference on Software Engineering; Toronto, Ontario,

Canada; Pages: 537 - 544; Year of Publication: 2001

 84

[63] Till Schümmer, Jan Schümmer; Support for Distributed Teams in eXtreme

Programming; Addison-Wesley Longman Publishing Co., Inc in Extreme

programming examined; Pages: 355 - 377; Year of Publication: 2001

[64] Ellis Rowland Watkins; Trusted Collaboration in Distributed Software

Development; UNIVERSITY OF SOUTHAMPTON Faculty of Engineering, Science

and Mathematics School of Electronics and Computer Science; June 2007

[65] Card,., McGarry, Frank E. and Page, Gerald T.; Evaluating software

engineering technologies; IEEE Transactions on Software Engineering; Vol. Se-13,

No. 7, 1987

[66] Bennet P. Lientz, and E. Burton, Swanson; Problems in applications software

maintenance; Communications of the ACM; November 1981

[67] Rombach, H.D. and Basili, V.R.; Quantitative assessment of maintenance: an

industrial case study; IEEE Proceedings of Conference on Software Maintenance;

City Press, 1987

[68] Curtis Cook and Marcello Visconti; DOCUMENTATION IS IMPORTANT;

CrossTalk, 1994

[69] Jens Coldewey, Senior Consultant, Cutter Consortium; Contracting Agile

Projects; Cutter Consortium; Agile Project Management Advisory Service Executive

Update Vol. 7, No. 17 ;2006

[70] John Favaro and Suzanne Robertson; Managing Requirements for Business

Value; The Atlantic Systems Guild; 2002

[71] Vinay Ramachandran and Anuja Shukla; Circle of Life, Spiral of Death: Are XP

Teams Following the Essential Practices? ; Verlag Springer Berlin / Heidelberg ;

Buch Extreme Programming and Agile Methods — XP/Agile Universe 2002 Volume

Volume 2418/2002 Pages 173-246

[72] Laurie Williams, Robert R. Kessler, Ward Cunningham and Ron Jeffries;

Strengthening the Case for Pair-Programming; Publisher Addison-Wesley Longman

Publishing Co., Inc. Boston, MA, USA; Year of Publication: 2001; Pages: 223 – 243;

The costs and benefits of pair programming

[73] Laurie Williams, Richard L. Upchurch; In support of Student Pair-

Programming; Technical Symposium on Computer Science Education; Proceedings of

 85

the thirty-second SIGCSE technical symposium on Computer Science Education; 2001

, Charlotte, North Carolina, United States

[74] Laurie A. Williams, Robert R. Kessler; Experimenting with Industry's "Pair-

Programming" Model in the Computer Science Classroom; Computer Science

Education, Vol.. 11, No. 1, pp. 7-20, March 2001

[75] L. A. Williams; Pair programming and pair trading: effects on learning and

motivation in a CS2 course; Consortium for Computing in Small Colleges; May 2003

[76] Alistair Cockburn and Laurie Williams; The Costs and Benefits of Pair

Programming; Addison Wesley, 2001

[77] Laurie A. Williams and Robert R. Kessler; All I Really Need to Know about Pair

Programming I Learned In Kindergarten; Communications of the ACM; 1999

[78] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang,

Carol Miller, Suzanne Balik; Improving the CS1 Experience with Pair Programming;

SIGCSE’03, February 19-23, 2003

[79] Laurie Williams and Robert Kessler; Pair Programming Illuminated; Addison-

Wesley Longman, Amsterdam; (Juli 2002)

[80] P. Abrahamsson, O. Salo, J. Ronkainen, and J. Warsta; Agile software

development methods: Review and Analysis; Espoo, Finland: Technical Research

Centre of Finland, VTT Publications 478; 2002

[81] http://en.wikipedia.org/wiki/Weighted_mean (Link worked 10.05.2010)

[82] http://en.wikipedia.org/wiki/Likert_scale (Link worked 10.05.2010)

[83] Stefan BergStröm, Lotta Raoberg; Adopting the Rational Unified Process;

Addison-Wesley; December 2004P

 86

A Appendix List of abbreviations

• AWT - Abstract Windowing Toolkit

• CMM - Capability Maturity Model®

• CVS - Concurrent Version System

• DXP – Distributed eXtreme Programming

• GUI - Graphical User Interface

• HTML - Hyper Text Markup Language

• IP - Internet Protocol

• IT - Information Technology

• JAR – Java™ Archive

• LOC – Lines Of Code

• RCS - Revision Control System

• RTF – Rich Text Format

• SCCS - Source Code Control System

• SDK - Software Development Kit

• SQL - Structured Query Language

• SWT - Standard Widgeting Toolkit

• TDD - Test-Driven Development

• UML – Unified Modelling Language

• VCM - Version and Configuration Management

• XML - eXtensible Markup Language

• XP - eXtreme Programming

 87

B Appendix The project specification

During this chapter we copied the project specification specified under [19]

Project information

In the project you should (1) develop a software system and (2) continously document the

project. The idea of the course is that the students of CITB02 are team of XP programmers at

a company DevForYou. The company DevForYou accepted the proposition of another

company EduForYou to develop a software system.

Apart from the team of XP programmers, the following people are involved in the project:

Customer (EduForYou) The customer is responsible for the requirements and for the

deployment on the customer’s equipment (e.g. database system). The customer is represented

by Mari Göransson. Please contact her by following this link.

Chef (DevForYou) The chef is responsible for the supervision (e.g. time protocols, steering

committee meetings, story card acceptance) and for your equipment (e.g. cvs). The chef is

Mari Göransson. Please contact her by following this link.

Web consultant (DevForYou) The web consultant is hired to help the team of XP

programmers with their project documentation pages. The consultant is Katarina Asplund.

Please contact her by following this link.

Experts Various experts from other parts of DevForYou are available for specific parts of the

software system and the documentation respectively. Please contact them by following this

link.

Further down on this page you find more information on what and how to develop as well as

on what and how to document.

 88

Software development

Process

The management and the programmers of DevForYou have not been happy with previous

software development approach and jointly decided to try a recent approach, namely eXtreme

Programming (XP). In particular, everybody agreed to follow the following practices: sit

together, informative workspace, energized work, pair programming, stories, weekly cycle,

slack, ten-minute build, continuous integration, test-first programming, incremental design,

shared code, Code & Tests, single code base, and negotiated scope contract.

• Monday (i.e., first day of week):

Monday is planning day. The team should write story and task cards, distribute them

and estimate them. The cards have to be accepted by the customer and the chef. The

team visits Mari Göransson on Monday afternoon between 15 and 16 o’clock and gets

the cards accepted. The chef provides the team with cards and magnets and the team

should put their ”stories on a wall”.

In addition, on Mondays the team should follow up last week.

• Friday afternoon (i.e., last day of week):

Friday afternoon is release day. The system is build and the project documentation

pages are updated.

• Other working days of the week:

Each half day the team has a coding session followed by a build of the system.

The management and the programmers of DevForYou discussed the equipment which should

be used and arrived to the following agreement. The management provides the eclipse

integrated development environment (under MS-Windows). Moreover, the management

provides a cvsserver for the code repository. The programmers agree to use eclipse with JUnit

and cvs. In addition the programmers agreed to use a common style guide, e.g. Sun’s code

conventions for Java.

Program

 89

The customer EduForYou requested a client-server-database (see the figure below) software

system for the maintenance of XP ”story cards”.

Obviously the system should provide functionality to handle story cards (an example of a

story card can be found on page 45 in Beck’s book). The system should provide the following

functionality:

• creation of story cards according to a template

• modification of story cards

• deletion of story cards

A story card template defines which fields are available on a story card, where they are

located and how big are. Fields are for example: story name, priority, source (author),

estimate, description, et cetera. The system should provide the following functionality:

• creation of story card templates

• modification of story card templates

• deletion of story card templates

Story cards should be organized according to the picture on page 40 in Beck’s book. The

system should provide the following functionality:

• graphical presentation of the ”wall” (page 40)

• automatic mouse over story card zooming

• manual zooming in and out

• mouse controlled movement of story cards

• automatic update of the wall (e.g. if another user moves a story card)

• creation of story card areas

• modification of story card areas

• deletion of story card areas

• hierarchical story card areas

• overlapping story card areas

 90

The software system should come as close as possible to the ”real thing”, i.e. real paper cards

and a real wall.

Apart from the requirements above, the customer as a couple of non-functional requirements

concerning the environment in which the software is supposed to operate:

• the software has to be written in Java. The IT support department at EduForYou is

familiar with the Java programming language and thus able to maintain the software

after delivery.

• the software has to store its data in a mySQL database. The customer EduForYou

already has other software using a mySQL database and does not want to maintain

several different database systems.

Documentation

The customer is very concerned about the project’s costs with respect to its progress. To be

able to easily access the latest builds of the software and the current cost of the project, the

project group agreed to provide several web pages that are updated every Friday.

The agreement between EduForYou and DevForYou proposes the following requirements for

project documentation web pages and the underlying server. The should be one web page for

each programmer and one main web page for the whole project. The main web page should

contain 3 sections, one section with links to the page of each individual programmer, one

section describing the project’s cost so far, and one section allowing the download of the

latest build of the developed software.

Individual programmer’s page Each individual programmer’s page should contain a short

description of the programmer, the accumulated spend time for that programmer, and a field

to request contact information for that programmer. No contact information should be

provided directly on the web page to prevent spammers to exploit that information. The

contact information request should work as follows. The web page contains a field to enter an

email address. After entering an email address and pressing a ”commit” button the contact

information is mailed to the entered email address if and only if the computer which was used

to enter the email address is within Karlstad university’s network. The IP address, the

 91

hostname, and the number of requests for each IP address is recorded in a database on the web

server side.

The chef of DevForYou sees the development of these kind of services as potential future

enterprise and wants all programmers to have the knowledge and ability to develop these kind

of service and requests therefore that each programmer develops and maintains such a page

by herself.

Moreover, since the team is new to the XP paradigm, the chef wants to be able to follow the

quality of the XP development. To do so, each individual programmer’s page should show for

each iteration the probability that the programmer fulfills the time estimates for her tasks. An

expert, Catrin Bergkvist, is available for questions concerning the statistics involved.

Project’s cost The main page should present the accumulated cost of the project for the

completed iterations.

The chef of DevForYou delegated the tasks to identify and present relevant factors for the

calculation of project’s cost to the team itself. Two experts, Anette Hedbern and Margareta

Bjurklo, are available for questions concerning the economics involved.

Download Links to all releases (1 jar file for the client and 1 jar file for the server) should be

provided on the main web page. The download should be secured by a login. The login

information has to be communicated to the customer and within DevForYou.

 92

C Appendix Survey 1

The value in each field represents the number of responses in the given category.

This survey is part of our (Christian and Mathias) level D dissertation "Case Study on teaching XP". Since this survey is only for
evaluation it has no influences on your grade and is strictly anonymous. After every question there is short space to comment your
answers if you want. In the case that the space is not enough you can continue on the last page. You can answer in Swedish, English or
German.

Question

Not
Well
At
All

Not
Well Neutral Well Very

Well

1. How well did you understand all practices? 3 7

2. How well do you think the practice "sit together" is applicable during the project? 1 4 5

3. How well did you understand the practice "sit together"? 1 5 4

4. How well do you think the practice "informative workspace" is applicable during the project? 3 4 2 1

5. How well did you understand the practice "informative workspace"? 1 6 3

6. How well do you think the practice "energized work" is applicable during the project? 5 5

7. How well did you understand the practice "energized work"? 5 4 1

8. How well do you think the practice "pair programming" is applicable during the project? 1 4 5

9. How well did you understand the practice "pair programming"? 5 5

10. How well do you think the practice "stories" is applicable during the project? 4 4 2

11. How well did you understand the practice "stories"? 1 3 2 4

12. How well do you think the practice "weekly cycle" is applicable during the project? 2 2 4 2

13. How well did you understand the practice "weekly cycle"? 2 5 3

14. How well do you think the practice "slack" is applicable during the project? 2 6 2

15. How well did you understand the practice "slack"? 3 1 6

16. How well do you think the practice "ten minute build" is applicable during the project? 1 3 4 2

17. Have you decided to embrace XP in the project? 0 10

18. How well did you understand the practice "ten minute build"? 1 4 3 2

 93

19. How well do you think the practice "continuous integration" is applicable during the project? 1 3 3 3

20. How well did you understand the practice "continuous integration"? 1 3 3 2

21. How well do you think the practice "test-first programming" is applicable during the project? 2 5 3

22. How well did you understand the practice "test-first programming"? 1 4 2 3

23. How well do you think the practice "incremental design" is applicable during the project? 1 4 4 1

24. How well did you understand the practice "incremental design"? 3 6 1

25. How well do you think the practice "shared code" is applicable during the project? 4 3 3

26. How well did you understand the practice "shared code"? 1 2 4 3

27. How well do you think the practice "code and test" is applicable during the project? 1 6 3

28. How well did you understand the practice "code and test"? 4 4 2

29. How well do you think the practice "single code base" is applicable during the project? 4 4 2

30. How well did you understand the practice "single code base"? 1 1 2 5 1

31. How well do you think the practice "negotiated scope contract" is applicable during the
project?

 1 6 2 1

32. How well did you understand the practice "negotiated scope contract"? 1 1 6 1 1

33. How do you like the idea of having theoretical sessions on XP followed by performing the
theory into practical use?

 2 1 5 2

Table 0-1 Responses to Survey 1

 94

D Appendix The Observation Protocol

Week 1

In the first week the students familiarized themselves with the room, the equipment and the

software. On the first day of the week, the students had a planning day were they made story

cards which they put on the story wall; hence an informative workspace began to take shape.

The students also talked about writing some extra story cards that they might drop later on,

consequently integrating slack into their planning. The integration of slack was made without

any of the students actually being aware of that they performed the practice “Slack”, mainly

because none of the students even mentioned the practice “Slack”. This became even more

obvious later the same day when they had a design meeting with the boss and the customer.

The boss asked the students if they thought about implementing slack into their system and

they all agreed that they should, so they put two stories “on hold” to make use of the practice

“Slack”. During the project the students had all their documentation on a common homepage

together with personal homepages. During the first day some of the students worked on the

homepages, some tried to learn how Eclipse worked and some did activities not related to the

project at all. The students decided that they should break for lunch in two groups so that

some students were always present in the room. This made the practice “Sit Together” hard to

follow since the communication path between the two groups was stretched and the whole

team did not sit together. From the other point of view the students did separate into two

groups so that they are able to take lunch and stay in groups.

The second day started with a design meeting; hence they made use of the practice

“Incremental Design”. After the meeting it seemed that the students had a clear view on their

roles in the project and on what had to be done. A group of students went for a meeting with

an expert regarding their homepages and the database they were going to use in their project.

The boss showed up before lunchtime and a small project meeting commenced where they

talked about the database design, once again they made use of the “Incremental Design”

practice. After the meeting new story and task cards were created. Some of the students began

working on the database using the Eclipse development environment together with JUnit and

CVS. The students working on the database wrote tests before they wrote the code. The rest

 95

of the students worked on the homepages. None of the students made use of the practice “Pair

Programming”, instead two students worked alone, some in a group of four students and the

rest in a group of 3.

On the third day the students installed a meeting table in front of the story board, hence

enhancing their “Informative Workspace”. After setting up the meeting table the students

began the day with a design meeting (incremental design), followed by a coding session. On

this occasion the students programmed in pairs with the exception of one group who consisted

of 3 students because only 9 students were present. This was a sign that the students had

thought about the practice “Pair Programming” but they did not follow the practice fully since

they did not switch pairs during their coding session. Since the students who were working on

the database created tests before they wrote the actual code, they used the practice “Test-First

Programming” and since they used CVS they automatically used the practice “Continuous

Integration”, “Shared Code” and “Single Code Base”. In Eclipse they used the “automatic

build” function and when they timed the build together with the tests, it took about 3 seconds,

therefore they did not break the ten minute limit for the practice “Ten-Minute Build”. Some of

the students quit earlier that day because the felt that they had a lack of inspiration, thus they

made use of the practice “Energized Work”.

The fourth day was a holiday so none of the students was present.

During the fifth day only 6 students were present since the rest of them had taken an

extended holiday. By doing so the students broke the practice “Sit Together”. Two of the

students worked together on the homepages and four on the code for the project. The two

students who worked on the homepages were spending most of their time doing non-project-

related work. On every Friday the students should have made a release, but since the students

more or less had concentrated on getting acquainted on the project during the week, no release

was made.

Practice Name Used Comments

1 SitTogether Partial Lunch at different hours, not all students
present on the last day

2 Informative Workspace Yes
3 EnergizedWork Yes See Table 0-3

4 PairProgramming No This practice was only used on 1 day of the
week and they did not switch pairs

5 Stories Yes

 96

6 WeeklyCycle n/a Could not be measured during the first week
7 Slack Yes
8 Ten-MinuteBuild Yes
9 ContinuousIntegration Yes

10 Test-FirstProgramming Yes
11 IncrementalDesign Yes
12 SharedCode Yes

13 Code&Test No
Documentation on statistics that did not concern
code and tests were made on their personal
homepages

14 SingleCodeBase Yes

15 NegotiatedScopeContract No The boss and customer did not discuss this
practice with the students

Table 0-2 Recommended practices, used or not: Week 1

Student 1 2 3 4 5 6 7 8 9 10 Group
Average 7.7 7.4 4.7 4.7 7.0 0.8 7.1 7.0 7.2 5.8 6.0

Table 0-3 Average hrs/day: Week 1

As can be see in Table 0-3, the average working hours for each student were below the

recommended average of 8 hours per day which is the standard Swedish work model.

Week 2

On the morning of the first day, the students had a design meeting where they talked about

what had to be done and what they did the previous week. After the meeting a coding session

commenced with some of the students finishing their personal homepages and the rest were

coding on the project. The students did not program in pairs with one exception. Once again

the students divided up into to groups when it was time to break for lunch, although they used

the same room when they were working, the observers believe that the practice “Sit Together”

was used to its full extent because it can be neglected that not all of the students were present

at the same time, such as when they broke for lunch two groups took turn working in a two

hour period. It is hard to decide whether the students followed the practice “Sit Together” or

not. In the afternoon the students had a meeting with the boss and the customer. They talked

with the customer about what they had finished and what to do for the second week. The

students seemed to be on schedule even though they had had performance problems with the

network connection at the university. They also talked with the boss about adding tasks that

could be dropped or implemented if the students would have free time on their hands. The

boss, customer and the students all orally agreed on the time, cost and quality to be spend on

each of the tasks. This meant that they made use of the practice “Negotiated Scope Contract”.

 97

After the meeting the students continued with a coding session, once again some of the

students worked alone and some in pairs. During the coding sessions all students used Eclipse

and its support for CVS. This meant that they made use of the practices “Continuous

Integration” and “Shared Code”. These practices were used automatically throughout all the

weeks the project took place. Since the students made use of the “build automatically” feature

of Eclipse, the students continuously checked if their build took “a long time” or not. At this

point the build took under 5 seconds and was hardly noticeable. The students who had little or

no knowledge of Java-programming did not write test-cases before they wrote the actual code.

The observers think that this was understandable since they wanted to concentrate on how

Java worked before they could get into the more technical aspects of Java such as writing test-

cases. The test-cases should also be made in Java. All students left a bit earlier due to fatigue.

Since they stopped working when they ran out of energy, it meant that they made use of the

practice “Energized Work”.

Practice Name Used Comments

1 SitTogether Yes Lunch at different hours, one student worked
at home

2 InformativeWorkspace Yes
3 EnergizedWork Yes See Table 0-5

4 PairProgramming No Not switching pairs, some worked alone,
some in groups

5 Stories Yes

6 WeeklyCycle No
The activities on the second week did not
correspond to the activities on the first week

7 Slack Yes
8 Ten-MinuteBuild Yes
9 ContinuousIntegration Yes

10 Test-FirstProgramming Partial
Students working on the Graphical User
Interface (GUI), found it impossible to write
test before writing code

11 IncrementalDesign Yes
12 SharedCode Yes
13 Code&Test No Documentation on statistics
14 SingleCodeBase Yes
15 NegotiatedScopeContract Yes

Table 0-4 Recommended practices, used or not: Week 2

Day two started with a coding session followed by a design meeting. Here the observers

think that it is clear that the students did not follow a certain pattern. We had thought that they

would begin every day with a meeting, but instead they had meetings when the students

 98

themselves thought it was necessary. After the meeting the coding session continued where

they worked in a “3-2-2-2-1” programming fashion, this means that one student worked

alone, 6 students worked in pairs and 3 students formed one group where they worked

together. The coding session continued until lunch. After lunch the students worked together

in a “3-3-2-2” programming fashion. All throughout their coding sessions this day, only two

pairs used “Test-First Programming”. The rest of the students wrote code before they wrote

the tests. Five of the students went home about an hour earlier, 3 students left about 30

minutes earlier and one student left at the end of the day.

On the third day the students once again began with a coding session followed by a design

meeting. On this design meeting only 5 students attended while the rest continued coding in a

“2-2-1” fashion. All throughout the day, the coding was made in a “3-2-2-2-1” fashion with

no switching between the “pairs”. Again most of the students left earlier.

Student 1 2 3 4 5 6 7 8 9 10 Group

Average 6.0 6.2 6.1 6.1 6.0 5.2 6.8 6.1 6.5 6.3 6.1

Table 0-5 Average hrs/day: Week 2

Day four started with only two students programming, the rest of the students were

conducting activities not connected to the project. Not until two hours into the day was every

student working on the project. When all the students were programming, they worked in a

“3-2-2-2-1” fashion. Five students left 3 hours early, while the remaining students had a small

design meeting followed by a coding session. The remaining students worked in a “3-2”

fashion. Half an hour before the day ended the remaining students left.

On the last day of the week, one student had taken the day off, one student was working

from home (which clearly was in conflict with the practice “Sit Together”) and the rest

worked in a “4-4” fashion. After the students had made their first release available for the

customer to download from their project homepage, 3 of the students left four hours early.

The rest of the students left for about three hours early. Since the students who worked on the

Graphical User Interface (GUI) were using a graphical tool to build the GUI, they found it

impossible to write tests before they wrote the code since the code was automatically

generated. One way to conduct testing on the GUI would be to create classes that simulate

buttons being pressed, menu options being chosen etc, but the students thought that the time

for creating such classes would be greater than testing out the functionality of the GUI

manually.

 99

Week 3

On the first day only four people showed up due to confusion about whether it was a

Swedish holiday or not. The students that were present decided to tidy the code and organize

the story wall. No meeting with the customer and the boss was held during the day and the

students all left at lunch time. The second, third and fourth day, the students programmed in a

“3-2-2-2-1” fashion without switching “pairs”. The students had design meetings when they

felt it was necessary, thus making use of the practice “Incremental Design”, and “as usual”

they left early all of the days. The meeting with the boss and customer was held on the second

day. New story and task cards were made and they also negotiated scope contracts. On the last

day of the week, three of the students began the day with doing non project related work.

Practice Name Used Comments

1 SitTogether Partial Not all present on the first day, lunch at
different hours

2 InformativeWorkspace Yes
On the second day the workspace was a bit
unorganized, but on th next day the
workspace was organized again

3 EnergizedWork Yes See Table 0-7

4 PairProgramming No No pair switching, some worked alone and
some in groups

5 Stories Yes

6 WeeklyCycle No Week three did not correspond to the
previous week(s)

7 Slack Yes
8 Ten-MinuteBuild Yes
9 ContinuousIntegration Yes

10 Test-FirstProgramming Partial
Students working on the Graphical User
Interface (GUI), found it impossible to write
tests before the code

11 IncrementalDesign Yes
12 SharedCode Yes
13 Code&Test No Documentastion on statistics
14 SingleCodeBase Yes

15 NegotiatedScopeContract No No meeting with the boss or the customer
this week

Table 0-6 Recommended practices, used or not: Week 3

The rest of the students were working in a “2-2-2-1” fashion to make a release. After the

release was made, two students were optimizing the code and test so that the build and tests

would go as fast as possible. The total time for the tests and the build to run was about 13

seconds, well within the “Ten-Minute Build” practice. After lunch no work was done on the

 100

project and two students even went home for the week. The rest of the students went a quarter

earlier than the recommended 8 hour working day.

Student 1 2 3 4 5 6 7 8 9 10 Group
Average 5.7 5.9 4.9 4.9 5.1 6.0 6.2 5.0 6.0 2.8 5.3

Table 0-7 Average hrs/day: Week 3

Week 4

On the first day the students had a meeting with the boss and the customer where all parties

agreed on new story and task cards. The students raised a voice of concern regarding the 200

working hours that they must have to complete the course. Due to the “Energized Work”

practice, the students found it nearly impossible to work for 200 hours and still follow the

practice “Energized Work”.

Practice Name Used Comments

1 SitTogether Partial
The students were usually working together
in the room, but broke for lunch in different
hours

2 InformativeWorkspace Yes
3 EnergizedWork Yes See Table 0-9

4 PairProgramming No Not switching pairs, some orked alone and
some in groups

5 Stories Yes

6 WeeklyCycle No Week four did not correspond to the previous
week(s)

7 Slack Yes
8 Ten-MinuteBuild Yes
9 ContinuousIntegration Yes

10 Test-FirstProgramming Partial
Students working on the Graphical User
Interface (GUI), found it impossible to write
tests before the code

11 IncrementalDesign Yes
12 SharedCode Yes
13 Code&Test No Documentation on statistice
14 SingleCodeBase Yes

15 NegotiatedScopeContract Yes Decided on the meeting with the boss and
customer

Table 0-8 Recommended practices, used or not: Week 4

The boss answered that the students could add time if they thought about project solutions

when they were at home. This is in direct conflict with the practice “Sit Together” (i.e in the

 101

same workspace). After the meeting the students had a coding session where they

programmed in a “3-3-2-2” fashion. Once again the students took lunch in two groups at

different hours.

Student 1 2 3 4 5 6 7 8 9 10 Group
Average 7.4 7.5 6.7 2.8 5.2 6.9 6.9 6.8 6.7 7.1 6.4

Table 0-9 Average hrs/day: Week 4

When all the students had come back from lunch, they programmed in a “3-3-1-1-1-1”

fashion. On this day the students left after working for a full day (8 hours). The second, third

and fourth day were more or less the same. One student was absent all three days. The

students had coding and testing sessions with automatic builds. No real “Pair Programming”

was done in the sense that they were not switching pairs and that some worked alone and

some in groups of three or more. They took lunch at different hours and all of the days the

students left a bit earlier. On the fifth day a release was made. After the release had been

made available on the project homepage, the students spent their time on doing non project

related work until they left for home an hour earlier than the recommended 8 hour work day.

Week 5

The first day of the last week began with a coding session. The coding session continued

until lunch where the students again divided themselves into two groups who took lunch one

hour apart. The coding session continued after lunch until the boss and customer showed up

for a meeting. During the meeting a small demo of the product that the students had been

working on, was shown to the customer. The customer suggested some minor changes and

new story and task cards were written to meet the customer’s demands. During the meeting

with the boss, they all talked about slack and performing tasks that had been “put on hold”.

They also negotiated scope contracts orally for the new story and task cards. After the

meeting the students continued coding and applying the changes that the customer had

suggested. During the second, the third and the fourth day, the students had coding sessions

followed by short design meetings. On the last day the students had a presentation and a demo

of their product for the customer, boss and some of the experts.

Practice Name Used Comments

1 SitTogether Partial
The students were usually working together
in the room, but broke for lunch in different
hours

2 InformativeWorkspace Yes

 102

3 EnergizedWork Yes See Table 0-11

4 PairProgramming No Not switching pairs, some worked alone and
some in groups

5 Stories Yes
6 WeeklyCycle Yes Compareable to week four
7 Slack Yes
8 Ten-MinuteBuild Yes
9 ContinuousIntegration Yes

10 Test-FirstProgramming Partial
Students working on the Graphical User
Interface (GUI), found it impossible to write
tests before the code

11 IncrementalDesign Yes
12 SharedCode Yes
13 Code&Test No Documentation on statistics
14 SingleCodeBase Yes
15 NegotiatedScopeContract Yes

Table 0-10 Recommended practices, used or not: Week 5

All parties were pleased about the product and only a couple of minor changes were made

before the students could put their final release up on their webpage for downloading

purposes. After the presentation and the demo, the students answered questions about the

project. All students thought it had gone well with no major problems. The students also said

that they did not experience any major difficulties working with XP. One question about XP

that we found particularly interesting was: “Do you think you would have followed XP

differently if you had not made a product that used some of the XP practices?” And the

students reply was: “Not likely, since we did not really think that much about following the

XP practices during the project. Eclipse with CVS and JUnit helped us perform some of the

practices automatically so that we did not even have to think about some of the practices” In

Table 0-11 can be seen that the students worked very few hours..

Student 1 2 3 4 5 6 7 8 9 10 Group
Average 5.7 5.6 6.0 6.0 3.8 5.9 6.0 5.7 5.4 6.5 5.7

Table 0-11 Average hrs/day: Week 5

All 5 weeks

Practice Name Used Comments

1 SitTogether Partial

The students were usually working together
in the room, but broke for lunch in different
hours and at one time one student worked at
home

 103

2 InformativeWorkspace Yes

3 EnergizedWork Yes
 See Table 0-13, Table 0-3, Table 0-5, Table
0-7, Table 0-9 & Table 0-11

4 PairProgramming No Not switching pairs, some worked alone and
some in groups

5 Stories Yes
6 WeeklyCycle No Only the last two weeks were comparable
7 Slack Yes
8 Ten-MinuteBuild Yes
9 ContinuousIntegration Yes

10 Test-FirstProgramming Partial

Students working on the Graphical User
Interface (GUI), found it impossible to write
tests before the code, others did the tests
before the code

11 IncrementalDesign Yes
Started out with designs meetings every
morning, changed to having design meetings
when the students felt it necessary

12 SharedCode Yes

13 Code&Test No
Documentation on statistics was kept, hence
the students had documentation not
regarding code and tests

14 SingleCodeBase Yes

15 NegotiatedScopeContract Yes This practice was only not used during the
first week

Table 0-12 Recommended practices, used or not: All Weeks

Student 1 2 3 4 5 6 7 8 9 10 Group
Average 6.5 6.5 5.7 4.9 5.4 5.0 6.6 6.1 6.4 5.9 5.8

Table 0-13 Average hrs/day: All Weeks

 104

E Appendix Survey 2

In this appendix the real survey sheet can be found. The numeracy that can be found in the

fields represents the amount of responses in the equivalent category.

This survey is part of our (Christian and Mathias) level D dissertation "Case Study on teaching XP". Since this survey is only for
evaluation it has no influence on your grade and is strictly anonymous. After every question there is short space to comment your

answers if you want. In the case that the space is not enough you can continue on the last page. You can answer in Swedish, English
or German.

Question

Not
Well
At
All

Not
Well

Neut
ral

Well Very
Well

1. How did the project work out in your opinion? 1 3 6

2. How well do you think your team used the 15 practices? 1 3 6

3. Do you think XP is a good process to use in a student project? 3 5 2

4. How well could you perform the practice "informative workspace"? 2 2 6

5. How well could you perform the practice "energized work"? 1 3 2 2 2

6. How well could you perform the practice "pair programming"? 1 2 5 2

7. How well do you think XP worked in your project? 1 2 6 1

8. How well could you perform the practice "weekly cycle"? 8 2

9. How well could you perform the practice "slack"? 2 5 3

10. How well could you perform the practice "ten minute build"? 2 2 1 5

11. How well could you perform the practice "continuous integration"? 3 5 2

12. How well could you perform the practice "test first programming"? 1 1 5 3

13. How well could you perform the practice "incremental design"? 4 4 2

14. How well could you perform the practice "shared code"? 5 5

15. How well could you perform the practice "code and test"? 4 4 2

16. How well could you perform the practice "single code base"? 1 4 5

17. How well could you perform the practice "negotiated scope contract"? 7 3

18. How well did the project work at all? 2 5 3

19. Do you think the project would have worked out better without XP? 0 1 9

 105

20. Do you think you would have worked in a different way if you had not been observed by
us?

0 0 10

21. If you would do another project, do you think you would apply some of the XP practices? 9 1 0

22. If yes would you please list them on the other side of this sheet.

23. How well could you perform the practice "sit together"? 1 1 1 6

24. How well do you think the work load was balanced between the members of your team? 3 4 2 1

25. Are you happy with the way the project worked 9 1

 2 3 3 2 26. How do you like the idea of having theoretical sessions on XP followed by performing the
theory into practical use?

27. How well could you perform the practice "stories"? 1 6 3

28. How well do you think XP works in a student environment? 1 5 3 1

Table 0-14 Responses on Survey 2

Answers given on the request with the number 22 in Survey2:

• 10mbuild, pair programming, eg work, info workspace, single code base, shared

code

• Pair programming, Energized Work, Sit Together

• It's no use to list them, but the style in which XP relies on with communication and

ownership by all is the most valuable asset XP has.

• All of the practices, I like XP

• I believe that most parts will be of use. Many are natural while some such as test

first, slack, 10-minute build are a little more difficult to absorb. However I would

use most of the parts.

• Pair programming = good, testing = good

• As many as possible

• No answers

• Student did not respond that he will apply any practice

• Sit together, pair programming

 106

F Appendix The CVS Log Files

Week 1

Figure 0.1 Day Commits: Week 1

 107

Figure 0.2 Time Commits: Week 1 average

The number of commits made to the CVS repository indicates the activity made by the

students on writing tests and code. The figures showing the commits do not show other

activities concerning the project such as design meetings, since no documentation regarding

design was made and kept in the CVS repository. The figures are an indication of the project

activity performed by the student group. In the first week, commits to the CSV repository

were only made on Tuesday and Wednesday (see Figure 0.1 and the biggest average number

of commits per hour on these two days were at 15:00 hours (Figure 0.2).

 108

Week 2

Figure 0.3 Day Commits: Week 2

Figure 0.4 Time Commits: Week 2 average

On the second week, commits to the CVS repository were made from Monday until

Thursday (Figure 0.3). As we can see in Figure 0.4, the average number of commits varies

 109

from the different hours of the week. The low number of commits between 8:00 and 9:00

hours is due to design meetings and the low number at 12:00 and 13:00 hours is due to lunch

breaks.

Week 3

Figure 0.5 Day Commits: Week 3

 110

Figure 0.6: Time Commits: Week 3 average

During week three, commits were made from Tuesday until Thursday. In Figure 0.5 can be

seen that the number of commits descend and in Figure 0.6 that the highest average number of

commits per hour, was between 8:00 and 9:00 hours.

 111

Week 4

.

Figure 0.7 Day Commits: Week 4

Figure 0.8 Time Commits: Week 4 average

 112

In Figure 0.7 we see that the number of commits is irregularly distributed over the week and

the average number of commits distributed over the hours is also irregularly distributed

(Figure 0.8). One possible explanation for the irregular distribution over the hours may be due

to the fact that the students had design meetings when they felt it to be necessary instead of

having an hour at the beginning of each day.

Week 5

Figure 0.9 Day Commits: Week 5

 113

Figure 0.10: Time Commits: Week 5 average

In Figure 0.9 can be seen that the most commits were made on the first day of the week to

later drop for the other days. In Figure 0.10 can be seen that most commits were made in the

morning and then to even out for the rest of the hours.

 114

All 5 weeks

Figure 0.11 Day Commits: Average for all weeks

Figure 0.12 Time Commits: Average for all weeks

 115

In Figure 0.11 we see that someone had worked on a Saturday, this was the boss testing out

the CVS repository so it has nothing to do with the students. The same goes for Figure 0.12,

where the boss made commits at midnight and after 18:00 hours to test the CVS repository.

 116

G Appendix Summary of the meeting 050309 16:00-17:45

Present: Christian Becker, Mathias Wagnsson (“Consultants”)
 Tim Heyer, Mari Göransson (“Customers”)
 Donald F. Ross (Supervisor)

Project: Measurement of certain (15) XP practices in student lab exercises for the

Software Engineering course in the Department of Computer Science at
Karlstad University.

1. The project will be carried out as a case study (specification requirement).
2. The current version of the specification needs to be added to the project web page

– see http://www.cs.kau.se/cs/education/courses/davd22/VT05/CBMW/
3. The project consists of 3 phases

� a pre-survey of the students to ascertain their “beliefs and conception”
of the 15 XP practices to be studied

� measurements (in the lab/using s/w tools) of what the students actually
do

� conclusions from the survey and a comparison of the measurements
with the “beliefs” (expected behaviour) from the pre-study

4. The 15 practices (of 24) which form the basis for the measurements are listed on
the course home page – see ???.

5. Measurement may be automatic (using s/w tools or manual) – the consultants
have to decide which are feasible and how the measurements are to be made.
Several alternatives should be presented. The customers will make the final
decision.

6. Lectures start week 17 and the students start work week 18 – the consultants
should present their proposals sufficiently ahead of time that the measurement
processes are agreed upon before then.

7. Points in the case study to note are
� The pros and cons of case studies – these aspects should be clearly

documented in the report.
� The level of “intrusion” caused by the measurements
� The risks of affecting the results involved in measuring
� There is no compulsion on the students to use the recommended XP

practices.
8. Mari G. should be present at each meeting between the consultants and the

supervisor
9. For the next meeting (050323) the consultants are required to produce

� A table describing the 15 practices in detail (as well as a textual
description of each practice)

� A new time plan showing expected milestones.

Donald F. Ross

