Performance Evaluation

Johan Garcia

Common Goals of Performance Measurement

- Compare alternatives
- Find "optimal" parameter values
- Identify good/bad performance relative to
- Peak
- Expectations
- History (e.g. previous generations)
- Competition
- Performance debugging
- Fix performance problems
- Find bottlenecks
- System errors
- Set expectations
- Tell a customer what is reasonable
- Measure execution time for your program
- Will it meet requirements?

Solution Techniques

	Technique			
Characteristic	Analytical	Simulation	Emulation	Measurement
Flexibility	High	High	Medium	Low
Cost	Low	Medium	Medium++	High
Believability	Low	Medium	Medium++	High
Accuracy	Low	Medium	Medium++	High

Reasonable?

- Never trust results until validated with second solution technique
- Analytical model
- Good model?
- Correct solution technique?
- Simulation
- Programming errors?
- Untested corner cases?
- Are the random numbers really random?
- Measurement
- Measuring perturbs system
- \rightarrow Not really the system we want to measure!

Reasonable?

- Sometimes just intuition
- Measure memory BW
- 68 Mbyte/sec
- Clock $=4$ ns, 32 -bit bus
- Clock $\rightarrow 1000$ Mbytes/sec
- Is the measurement reasonable?

Performance Measurement "Rules of Thumb"

- Know what you are saying/reading
- Paper design?
- Simulation results only?
- Elapsed time versus CPU time? Time-sharing?
- "My Mac is faster than your Cray."
- Compiler options, OS release, hardware configuration?
- Slowest component eliminated?
- No I/O?

Performance Measurement "Rules of Thumb"

- Use the correct type of mean value

	System 1	System 2
Program 1	10 s	36 s
Program 2	250 s	100 s
Program 3	201 s	150 s
Arithmetic mean	154 s	95 s
Geometric mean	79 s	81 s

Performance Measurement "Rules of Thumb"

- Define all terms
- E.g. "\% parallelized" means
- \% of all loops parallelized?
- \% of execution time spent in parallel code?
- \% of instructions executed in parallel?
- Parallel speedup / number of processors?
- Specify all hardware and software features
- Options, release numbers, etc

Performance Measurement "Rules of Thumb"

- Know the program being tested
- Real program?
- Includes all I/O?
- Real inputs?
- Kernel program?
- Exclude I/O, loops, subroutines, ...
- Benchmark program?
- Scaled-down application?
- Synthetic behavior?

Performance Measurement "Rules of Thumb"

- Know your tools
- Timer resolution, accuracy, precision
- Background noise
- Compiler does fewer/more optimizations on instrumented code?
- Perturbations due to measurement
- Computer performance measurement uncertainty principle - "Accuracy is inversely proportional to resolution."

Performance Measurement "Rules of Thumb"

- Bottom line

Are the results reproducible by someone else using only the information you provided?

Performance metrics

-What is a performance metric?

- Characteristics of good metrics
- Standard processor and system metrics
- Speedup and relative change

What is a performance metric?

- Count
- Of how many times an event occurs
- Duration
- Of a time interval
- Size
- Of some parameter
- A value derived from these fundamental measurements

Time-normalized metrics

- "Rate" metrics
- Normalize metric to common time basis
- Transactions per second
- Bytes per second
- (Number of events) \div (time interval over which events occurred)
- "Throughput"
- Useful for comparing measurements over different time intervals

What makes a "good" metric?

- Allows accurate and detailed comparisons
- Leads to correct conclusions
- Is well understood by everyone
- Has a quantitative basis
- A good metric helps avoid erroneous conclusions

Good metrics are ...

- Reliable

- If metric $A>$ metric B
- Then, Performance A > Performance B
- Seems obvious!
- However,
- $\operatorname{MIPS}(A)>\operatorname{MIPS}(B)$, but
- Execution time $(A)>$ Execution time (B)

Good metrics are ...

- Repeatable
- Same value is measured each time an experiment is performed
- Must be deterministic
- Seems obvious, but not always true...
- E.g. Time-sharing changes measured execution time

Good metrics are ...

- Easy to use
- No one will use it if it is hard to measure
- Hard to measure/derive
- \rightarrow less likely to be measured correctly
- A wrong value is worse than a bad metric!

Good metrics are ...

- Consistent
- Units and definition are constant across systems
- Seems obvious, but often not true...
- E.g. MIPS, MFLOPS
- Inconsistent \rightarrow impossible to make comparisons

Good metrics are ...

- Independent
- A lot of \$\$\$ riding on performance results
- Pressure on manufacturers to optimize for a particular metric
- Pressure to influence definition of a metric
- But a good metric is independent of this pressure

Clock rate

- Faster clock == higher performance
- 1 GHz processor always better than 2 GHz
- But is it a proportional increase?
- What about architectural differences?
- Actual operations performed per cycle
- Clocks per instruction (CPI)
- Penalty on branches due to pipeline depth
- What if the processor is not the bottleneck?
- Memory and I/O delays

Good metrics are ...

- Linear -- nice, but not necessary
- Reliable -- required
- Repeatable -- required
- Easy to use -- nice, but not necessary
- Consistent -- required
- Independent -- required

MFLOPS

- Better definition of "distance traveled"
- 1 unit of computation (~distance) $\equiv 1$ floatingpoint operation
- Millions of floating-point ops per second
- MFLOPS = $\mathrm{f} /\left(\mathrm{T}_{\mathrm{e}}\right.$ * 1000000$)$
$-f=$ number of floating-point instructions
- $\mathrm{T}_{\mathrm{e}}=$ execution time
- GFLOPS, TFLOPS,..

SPEC

- System Performance Evaluation Coop
- Computer manufacturers select "representative" programs for benchmark suite
- Standardized methodology

1. Measure execution times
2. Normalize to standard basis machine
3. SPECmark = geometric mean of normalized values

QUIPS

- Developed as part of HINT benchmark
- Instead of effort expended, use quality of solution
- Quality has rigorous mathematical definition
- QUIPS = Quality Improvements Per Second

Execution time

- Ultimately interested in time required to execute your program
- Smallest total execution time $==$ highest performance
- Compare times directly
- Derive appropriate rates
- Time $==$ fundamental metric of performance - If you can't measure time, you don't know anything

Execution time

- "Stopwatch" measured execution time Start_count = read_timer();

Portion of program to be measured
Stop_count = read_timer();
Elapsed_time = (stop_count - start_count)

* clock_period;
- Measures "wall clock" time
- Includes I/O waits, time-sharing, OS overhead, ...
- "CPU time" -- include only processor time

Performance metrics summary

	Clock	MPs	MFLOPs	SPEC	Quips	TIME
Linear					\approx	\bigcirc
Reliable						\approx
Repaatable	-	()	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { Easy to } \\ & \text { measure } \end{aligned}$	-	©	\bigcirc	$1 / 2$ ©	-	\bigcirc
Consistent	\bigcirc			\bigcirc	©	\bigcirc
Independent	-	©			©	\odot

Other metrics

- Response time
- Elapsed time from request to response
- Throughput
- Jobs, operations completed per unit time
- E.g. video frames per second
- Bandwidth
- Bits per second
- Ad hoc metrics
- Defined for a specific need

Networking metrics

- Bandwidth
- Throughput
- Goodput
- Jitter
- Delay
- Response time

Units

- Bandwidth bits/second
- Throughput bits per second or byte per second
- Note base 10 or base 2.
- 2 MB file over 2 MBps connection
-2*8*1024*1024 / 2e6

What Do All of These Means Mean?

- Indices of central tendency
- Sample mean
- Median
- Mode
- Other means
- Arithmetic
- Harmonic
- Geometric

Why mean values?

- Desire to reduce performance to a single number
- Makes comparisons easy
- Mine Apple is faster than your Cray!
- People like a measure of "typical" performance
- Leads to all sorts of crazy ways for summarizing data
$-X=f(10$ parts $A, 25$ parts $B, 13$ parts $C, \ldots)$
- X then represents "typical" performance?!

The Problem

- Systems are often specialized
- Performs great on application type X
- Performs lousy on anything else
- Potentially a wide range of execution times on one system using different benchmark programs
- Basically, people want simple performance metrics.
- How to (correctly) summarize a wide range of measurements with a single value?

Indices of Central Tendency

- Sample mean
- Common "average"
- Sample median
- $1 / 2$ of the values are above, $1 / 2$ below
- Mode
- Most common

Index of Central Tendency

- Tries to capture "center" of a distribution of values
- Use this "center" to summarize overall behavior
- Not recommended for real information, but ...
- You will be pressured to provide mean values
- Understand how to choose the best type for the circumstance
- Be able to detect bad results from others

Indices of Central Tendency

- "Sample" implies that
- Values are measured from a random process on discrete random variable X
- Value computed is only an approximation of true mean value of underlying process
- True mean value cannot actually be known
- Would require infinite number of measurements

Sample mean

- Expected value of $X=E[X]$
- "First moment" of X
$-x_{i}=$ values measured
$-p_{i}=\operatorname{Pr}\left(X=x_{i}\right)=\operatorname{Pr}\left(\right.$ we measure $\left.x_{i}\right)$

$$
E[X]=\sum_{i=1}^{n} x_{i} p_{i}
$$

Sample mean

- Without additional information, assume
$-p_{i}=$ constant $=1 / n$
- $\mathrm{n}=$ number of measurements
- Arithmetic mean
- Common "average"

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Potential Problem with Means

- Sample mean gives equal weight to all measurements
- Outliers can have a large influence on the computed mean value
- Distorts our intuition about the central tendency of the measured values

Median

- Index of central tendency with
- $1 / 2$ of the values larger, $1 / 2$ smaller
- Sort n measurements
- If n is odd
- Median = middle value
- Else, median = mean of two middle values
- Reduces skewing effect of outliers on the value of the index

Potential Problem with Means

Example

- Measured values: 10, 20, 15, 18, 16
- Mean = 15.8
- Median = 16
- Obtain one more measurement: 200
- Mean = 46.5
- Median $=1 / 2(16+18)=17$
- Median give more intuitive sense of central tendency

Potential Problem with Means

Mode

- Value that occurs most often
- May not exist
- May not be unique
- E.g. "bi-modal" distribution
- Two values occur with same frequency

Mean, Median, or Mode?

- Mean
- If the sum of all values is meaningful
- Incorporates all available information
- Median
- Intuitive sense of central tendency with outliers
- What is "typical" of a set of values?
- Mode
- When data can be grouped into distinct types, categories (categorical data)

Mean, Median, or Mode?

- Size of messages sent on a network
- Number of cache hits
- Execution time
- MFLOPS, MIPS
- Bandwidth
- Speedup
- Cost

Different types of means -The Pythagorean means

- Arithmetic mean
- Often called just "mean"
- Suitable when averaging directly proportional relationships (e.g. average time (s))
- Harmonic mean
- Suitable when averaging inversely proportional relationships (e.g. rate (something/s))
- Geometric mean
- Suitable when averaging factors contributing to a product (e.g. interest rates)

Arithmetic Mean

To average a directly proportional relationship, the arithmetic mean should be used:

$$
\bar{x}_{A}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Example: Eight measurements of the execution time of a program have been made, and the corresponding times are $\{2,1,3,2,4,5,2,2\}$ seconds.

What was the average execution time?

$$
\bar{x}_{A}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{8}(2+1+3+2+4+5+2+2)=2.625 \mathrm{~s}
$$

Harmonic mean
To calculate means of inversely proportional relationships, we can use the harmonic mean instead:

$$
\bar{x}_{H}=\frac{n}{\sum_{i=1}^{n} 1 / x_{i}}
$$

For example, let's say that we travel 20 km with a car. The first 10 km we have a speed of $70 \mathrm{~km} / \mathrm{h}$, and the last $90 \mathrm{~km} / \mathrm{h}$, what is the average speed?

$$
\bar{x}_{H}=\frac{n}{\sum_{i=1}^{n} 1 / x_{i}}=\frac{2}{1 / 70+1 / 90}=78.75 \mathrm{~km} / \mathrm{h}
$$

[^0]
Geometric mean

The last mean we will consider is the geometric mean:

$$
\bar{x}_{G}=\sqrt[n]{x_{1} x_{2} \cdots x_{i} \cdots x_{n}}=\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}
$$

The geometric mean can be used when calculating the average factor of a product.

When dealing with interest rates, for example, the geometric mean can be used with. Suppose you have an investment that earns 10% the first year, 20% the second, and 5% the third. What is the average rate of return?

$$
\bar{x}_{G}=\sqrt[n]{x_{1} x_{2} \cdots x_{i} \cdots x_{n}}=\sqrt[3]{1.1 * 1.2 * 1.05} \approx 1.115
$$

Weighted means	
$\sum_{i=1}^{n} w_{i}=1$	- Standard definition of mean assumes all measurements are equally important - Instead, choose weights to represent relative importance of measurement $/$
$\bar{x}_{A}=\sum_{i=1}^{n} w_{i} x_{i}$	enery to miss! Check out correction in the errata of the book!
$\sum_{i=1}^{n} \frac{w_{i}}{x_{i}}$	

[^0]: Why does not the arithmetic mean work here?

