Laboratory Assignment 1 - Octave \& Statistics - Answers

DAVD05 - Performance Modelling \& Simulation

2008-01-28

The following document contains all the answers to the first laboration. If you suspect errors in this document, please inform me. // Per (per.hurtig@kau.se)

Exercise A: The "torrent" assignment

1. mean([4 7 6], ' h '')/3 $=1.7872$ hours.
2. mean([29 2526 100 \quad) $) * 4 * 3600=648000$ Kbyte.

Exercise B: The ping assignment

1. $x=$ load labdata.dat; $\operatorname{mean}(x) / 2=56.89 \mathrm{~ms}$, if the end-to-end delays are symmetric.
2. $\operatorname{mode}(x)=108 \mathrm{~ms}$.

3 . $\operatorname{std}(x)=6.8382 \mathrm{~ms}$.
4. Display it in some appropriate graphical way (e.g. hist(x)).
5. Your own interpretation of 4 (e.g. the RTT samples in the set are relatively stable).
6. $\operatorname{tput}(\operatorname{mean}(x), 0.01) * 1000=107.64 \mathrm{pkts} / \mathrm{s}$, when tput(RTT, p$)$ is defined as:
function [tp] = tput (rtt, p)
tput = 1./rtt .* sqrt(3./(2.*p));
endfunction
7. tput([mean(x)+std(x), mean(x)-std(x)], 0.01)*1000 = [101.54;114.53] pkts/s.
8. For example: xrange $=[1: 10] / 100 ;$ plot (xrange, tput(mean(x), xrange)).

Exercise C: The TCP assignment. Start by loading the data: load labdata2.dat; x1=labdata2 (: , 1) ; x2=labdata2 $(:, 2)$; Then create a function similar to this:
function [c1, c2] = confFunc(x, clevel)
alpha = 1 - clevel;
p = 1-alpha/2;
if length(x) > 29
df = inf;
else
df = length(x) - 1;
end
$c 1=\operatorname{mean}(x)-\operatorname{tinv}(p, d f) *(\operatorname{std}(x) / \operatorname{sqrt}(\operatorname{length}(x))) ;$
$c 2=\operatorname{mean}(x)+\operatorname{tinv}(p, d f) *(\operatorname{std}(x) / s q r t(l e n g t h(x))) ;$
endfunction

1. $[c 1, c 2]=\operatorname{confFunc}(x, 0.90)=[113.42 ; 114.13]$.
2. $[c 1, c 2]=\operatorname{confFunc}(x, 0.95)=[113.35 ; 114.20]$.
3. The probability that a certain number lies within a larger interval is higher.
4. $[c 1, c 2]=$ confFunc (x1, 0.95) $=[5437.6 ; 6900.3]$.
5. numTry $(x 1,0.03,0.95)=1095.6$, where numTry(x, error, clevel) is defined as:
function $n=$ numTry (x,err, clevel)
alpha = 1 - clevel;
p = 1 - alpha/2;
err = err/2;
$\mathrm{a}=\operatorname{tinv}(\mathrm{p}, \inf) * \operatorname{std}(\mathrm{x})$;
$\mathrm{b}=$ err*mean (x);
$\mathrm{n}=(\mathrm{a} / \mathrm{b})^{\wedge} 2$
endfunction
6. $[c 1, c 2]=\operatorname{confFunc}((x 2-x 1), 0.95)=[-249.19 ; 61.687]$. Interval contains zero. Thus, no statistical significance.

Exercise D: The ANOVA assignment

1. Use the built-in anova function to check your answer.

Exercise E: The Fibonacci assignment
Have not calculated this one. Inform me! :D

