
1

Welcome

to

Performance Modeling and Simulation
DVA D05

Johan Garcia

Today's Agenda

Before Lunch
• Course Introduction and Overview
• Networking refresher

After Lunch
• Performance Evaluation overview
• Metrics
• Simple statistics (time permitting)

Course Goals
• Apply appropriate statistical techniques for

performance evaluation
• Knowledge of basic experimental design
• Know and apply basic queueing theory
• Know and apply basic TCP modelling
• Perform and analyze ns-2 simulations
• Perform and analyze emulation experiments
• Practically oriented course, many labs
• Understand the trade-offs involved in using

analytical modeling, simulation and emulation.

Course Approach

• Dual focus
– General perfromance evaluation
– Network performance evaluation

• Breadth, not depth
• Theory and practice
• Masters course => student participation and

interaction expected

Course Overview

• Four major parts:
– Performance evaluaiton essentials
– Analytical perfromance evaluation
– Simulation-based performance evaluation
– Emulation-based performance evaluation

• Indepent project work

Overview / Essentials
Lecture 1: Course Introduction
Repetition of basic prerequisites in computer networking.

Lecture 2: Performance evaluation basics
Performance Metrics
Analysis vs. simulation vs. emulation vs. live experiments
Basic statistics

Lecture 3: Statistics
Error models, student-t etc

Lecture 4: Experimental Evaluation and Design
Anova, two factor experiments

Laboratory Exercise 1: Octave
Octave is a free Matlab-like program. In this laboratory excersise we will

familiarize ourselves with octave, and how to do statistical analysis using
Octave/Matlab.

2

Overview / Analytical
Lecture 5: Queuing theory introduction
Terminology and basics.

Lecture 6: M/M/c systems

Lecture 7: TCP analytical performance evaluation

Laboratory Exercise 2
Queueing systems using octave

Laboratory Exercise 3
TCP modelling using octave

Overview / Simulation
Lecture 8: Simulation introduction
Terminology and basics.

Lecture 9: ns-2 simulation

Lecture 10: ns-2 continued

Laboratory Exercise 4
ns-2 Introduction, TCP analysis

Laboratory Exercise 5
ns-2 simulation of a more complex scenario

Overview / Emulation
Lecture 11: Emulation introduction
Terminology and basics. How to setup and measure.

Lecture 12: KauNet Emulation

Lecture 13: KauNet Emulation

Laboratory Exercise 6
KauNet Introduction, TCP analysis

Laboratory Exercise 7
KauNet emulation of a more complex scenario

Independent project work

• Corresponding to at least 60 hours per person
• Groups of 1, 2 or 3 student allowed
• Theoretical work (ca 10 pg)
• Practical work (ca 3 pg)
• Possible to combine with Wireless course
• Course grading will be done on this work
• START EARLY

REQUIREMENTS TO PASS

• Pass grade on both examinations
• Pass grade on project work

Two written test will take place
These tests will cover material from the book,

the lectures and the laboratory exercises

Laboratory Exercises

• The exercises will be done in SMART-lab
• However, if you have a fast laptop it is

suggested you use that instead of the
machines in SMART

• Min 512kb / 1.5 GHz / 13 Gb free space
• Two vmware images. Use VMware player

3

Simple networking refresher

Slides adapted from

Computer Networking: A Top Down Approach,
Jim Kurose, Keith Ross

Protocol Layering
Layers

Application

Transport

Network

Link

Physical

Internet protocol stack
• application: supporting network

applications
– FTP, SMTP, STTP

• transport: host-host data transfer
– TCP, UDP

• network: routing of datagrams from
source to destination
– IP, routing protocols

• link: data transfer between neighboring
network elements
– PPP, Ethernet

• physical: bits “on the wire”

application

transport

network

link

physical

message

segment

datagram

frame

source

application
transport
network
link

physical

HtHnHl M

HtHn M

Ht M

M

destination

application
transport
network
link

physical

HtHnHl M

HtHn M

Ht M

M

network
link

physical

link
physical

HtHnHl M

HtHn M

HtHnHl M

HtHn M

HtHnHl M HtHnHl M

router

switch

Encapsulation

Four sources of packet delay

• 1. nodal processing:
– check bit errors
– determine output link

A

B

propagation

transmission

nodal
processing queueing

• 2. queueing
– time waiting at output

link for transmission
– depends on congestion

level of router

Delay in packet-switched networks

3. Transmission delay:
• R=link bandwidth

(bps)
• L=packet length (bits)
• time to send bits into

link = L/R

4. Propagation delay:
• d = length of physical link
• s = propagation speed in

medium (~2x108 m/sec)
• propagation delay = d/s

A

B

propagation

transmission

nodal
processing queueing

4

Transport services and protocols
• provide logical communication

between app processes running
on different hosts

• transport protocols run in end
systems

– send side: breaks app
messages into segments,
passes to network layer

– rcv side: reassembles
segments into messages,
passes to app layer

• more than one transport protocol
available to apps

– Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Internet transport protocols services

TCP service:
• connection-oriented: setup required

between client and server processes
• reliable transport between sending

and receiving process
• flow control: sender won’t overwhelm

receiver
• congestion control: throttle sender

when network overloaded

• does not provide: timing, minimum
bandwidth guarantees

UDP service:
• unreliable data transfer

between sending and
receiving process

• does not provide: connection
setup, reliability, flow control,
congestion control, timing, or
bandwidth guarantee

Q: why bother? Why is there a
UDP?

TCP seq. #’s and ACKs
Seq. #’s:

– byte stream “number”
of first byte in
segment’s data

ACKs:
– seq # of next byte

expected from other
side

– cumulative ACK

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt
of echoed

‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

• longer than RTT
– but RTT varies

• too short: premature
timeout
– unnecessary

retransmissions
• too long: slow reaction

to segment loss

Q: how to estimate RTT?
• SampleRTT: measured time

from segment transmission until
ACK receipt
– ignore retransmissions

• SampleRTT will vary, want
estimated RTT “smoother”
– average several recent

measurements, not just
current SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

• Exponential weighted moving average
• influence of past sample decreases exponentially

fast
• typical value: αααα = 0.125

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T
T
 (

m
il
li
se

c
o
n
d

s)

SampleRTT Estimated RTT

5

TCP Round Trip Time and Timeout

Setting the timeout
• EstimtedRTT plus “safety margin”

– large variation in EstimatedRTT -> larger safety margin

• first estimate of how much SampleRTT deviates from
EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +
ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:

TCP reliable data transfer

• TCP creates reliable
service on top of IP’s
unreliable service

• TCP uses single
retransmission timer

• Retransmissions are
triggered by:
– timeout events
– duplicate acks

Fast Retransmit

• Time-out period often
relatively long:
– long delay before

resending lost packet

• Detect lost segments
via duplicate ACKs.
– Sender often sends

many segments back-to-
back

– If segment is lost, there
will likely be many
duplicate ACKs.

• If sender receives 3
ACKs for the same
data, it supposes that
segment after ACKed
data was lost:
– fast retransmit: resend

segment before timer
expires

• end-end control (no network
assistance)

• sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

• Roughly,

• CongWin is dynamic, function
of perceived network
congestion

TCP Congestion Control

How does sender perceive
congestion?

• loss event = timeout or 3
duplicate acks

• TCP sender reduces rate
(CongWin) after loss
event

three mechanisms:
– AIMD

– slow start

– conservative after timeout
events

rate =
CongWin

RTT
Bytes/sec

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease: cut
CongWin in half after loss
event

additive increase: increase
CongWin by 1 MSS every
RTT in the absence of
loss events: probing

Long-lived TCP connection

TCP Slow Start

• When connection
begins, CongWin = 1
MSS
– Example: MSS = 500

bytes & RTT = 200 msec
– initial rate = 20 kbps

• available bandwidth
may be >> MSS/RTT
– desirable to quickly ramp

up to respectable rate

• When connection
begins, increase rate
exponentially fast until
first loss event

6

TCP Slow Start (more)

• When connection begins,
increase rate exponentially
until first loss event:
– double CongWin every RTT

– done by incrementing
CongWin for every ACK
received

• Summary: initial rate is slow
but ramps up exponentially
fast

Host A

one segment

R
T
T

Host B

time

two segments

four segments

Refinement
• After 3 dup ACKs:

– CongWin is cut in half

– window then grows linearly
• But after timeout event:

– CongWin instead set to 1
MSS;

– window then grows
exponentially

– to a threshold, then grows
linearly

• 3 dup ACKs indicates
network capable of
delivering some segments
• timeout before 3 dup
ACKs is “more alarming”

Philosophy:

Refinement (more)
Q: When should the

exponential increase
switch to linear?

A: When CongWin gets
to 1/2 of its value
before timeout.

Implementation:
• Variable Threshold

• At loss event, Threshold is set to
1/2 of CongWin just before loss
event

Summary: TCP Congestion Control

• When CongWin is below Threshold, sender in
slow-start phase, window grows exponentially.

• When CongWin is above Threshold, sender is
in congestion-avoidance phase, window grows
linearly.

• When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to
Threshold.

• When timeout occurs, Threshold set to
CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control

CongWin and Threshold not
changed

Increment duplicate ACK count for
segment being acked

SS or CADuplicate ACK

Enter slow startThreshold = CongWin/2,
CongWin = 1 MSS,
Set state to “Slow Start”

SS or CATimeout

Fast recovery, implementing
multiplicative decrease.
CongWin will not drop below 1
MSS.

Threshold = CongWin/2,
CongWin = Threshold,
Set state to “Congestion
Avoidance”

SS or CALoss event
detected by
triple duplicate
ACK

Additive increase, resulting in
increase of CongWin by 1
MSS every RTT

CongWin = CongWin+MSS *
(MSS/CongWin)

Congestion
Avoidance
(CA)

ACK receipt
for previously
unacked data

Resulting in a doubling of
CongWin every RTT

CongWin = CongWin + MSS,
If (CongWin > Threshold)

set state to “Congestion
Avoidance”

Slow Start
(SS)

ACK receipt
for previously
unacked data

CommentaryTCP Sender Action StateEvent

