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Welcome

to

Performance Modeling and Simulation
DVA D05

Johan Garcia

Today's Agenda

Before Lunch
• Course Introduction and Overview
• Networking refresher

After Lunch
• Performance Evaluation overview 
• Metrics
• Simple statistics (time permitting)

Course Goals
• Apply appropriate statistical techniques for 

performance evaluation
• Knowledge of basic experimental design
• Know and apply basic queueing theory
• Know and apply basic TCP modelling 
• Perform and analyze ns-2 simulations
• Perform and analyze emulation experiments
• Practically oriented course, many labs
• Understand the trade-offs involved in using 

analytical modeling, simulation and emulation. 

Course Approach

• Dual focus
– General perfromance evaluation
– Network performance evaluation

• Breadth, not depth
• Theory and practice
• Masters course => student participation and 

interaction expected

Course Overview

• Four major parts:
– Performance evaluaiton essentials
– Analytical perfromance evaluation
– Simulation-based performance evaluation
– Emulation-based performance evaluation

• Indepent project work 

Overview / Essentials
Lecture 1: Course Introduction
Repetition of basic prerequisites in computer networking.

Lecture 2: Performance evaluation basics
Performance Metrics
Analysis vs. simulation vs. emulation vs. live experiments
Basic statistics

Lecture 3: Statistics
Error models, student-t etc

Lecture 4: Experimental Evaluation and Design
Anova, two factor experiments

Laboratory Exercise 1: Octave
Octave is a free Matlab-like program. In this laboratory excersise we will 

familiarize ourselves with octave, and how to do statistical analysis using 
Octave/Matlab.
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Overview / Analytical
Lecture 5: Queuing theory introduction
Terminology and basics.

Lecture 6: M/M/c systems

Lecture 7: TCP analytical performance evaluation

Laboratory Exercise 2
Queueing systems using octave

Laboratory Exercise 3
TCP modelling using octave 

Overview / Simulation
Lecture 8: Simulation introduction
Terminology and basics.

Lecture 9: ns-2 simulation

Lecture 10: ns-2 continued

Laboratory Exercise 4
ns-2 Introduction, TCP analysis

Laboratory Exercise 5
ns-2 simulation of a more complex scenario

Overview / Emulation
Lecture 11: Emulation introduction
Terminology and basics. How to setup and measure.

Lecture 12: KauNet Emulation

Lecture 13: KauNet Emulation

Laboratory Exercise 6
KauNet Introduction, TCP analysis

Laboratory Exercise 7
KauNet emulation of a more complex scenario

Independent project work

• Corresponding to at least 60 hours per person
• Groups of 1, 2 or 3 student allowed
• Theoretical work (ca 10 pg) 
• Practical work (ca 3 pg)
• Possible to combine with Wireless course
• Course grading will be done on this work
• START EARLY

REQUIREMENTS TO PASS

• Pass grade on both examinations
• Pass grade on project work

Two written test will take place
These tests will cover material from the book, 

the lectures and the laboratory exercises

Laboratory Exercises

• The exercises will be done in SMART-lab
• However, if you have a fast laptop it is 

suggested you use that instead of the 
machines in SMART

• Min 512kb / 1.5 GHz / 13 Gb free space
• Two vmware images. Use VMware player
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Simple networking refresher

Slides adapted from

Computer Networking: A Top Down Approach, 
Jim Kurose, Keith Ross

Protocol Layering
Layers

Application

Transport

Network

Link

Physical

Internet protocol stack
• application: supporting network 

applications
– FTP, SMTP, STTP

• transport: host-host data transfer
– TCP, UDP

• network: routing of datagrams from 
source to destination
– IP, routing protocols

• link: data transfer between neighboring  
network elements
– PPP, Ethernet

• physical: bits “on the wire”
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Encapsulation

Four sources of packet delay

• 1. nodal processing:
– check bit errors
– determine output link

A

B

propagation

transmission

nodal
processing queueing

• 2. queueing
– time waiting at output 

link for transmission 
– depends on congestion 

level of router

Delay in packet-switched networks

3. Transmission delay:
• R=link bandwidth 

(bps)
• L=packet length (bits)
• time to send bits into 

link = L/R

4. Propagation delay:
• d = length of physical link
• s = propagation speed in 

medium (~2x108 m/sec)
• propagation delay = d/s
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propagation

transmission
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processing queueing
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Transport services and protocols
• provide logical communication

between app processes running 
on different hosts

• transport protocols run in end 
systems 

– send side: breaks app 
messages into segments, 
passes to  network layer

– rcv side: reassembles 
segments into messages, 
passes to app layer

• more than one transport protocol 
available to apps

– Internet: TCP and UDP
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network
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network
data link
physicalnetwork

data link
physical

logical end-end transport

Internet transport protocols services

TCP service:
• connection-oriented: setup required 

between client and server processes
• reliable transport between sending 

and receiving process
• flow control: sender won’t overwhelm 

receiver 
• congestion control: throttle sender 

when network overloaded

• does not provide: timing, minimum 
bandwidth guarantees

UDP service:
• unreliable data transfer 

between sending and 
receiving process

• does not provide: connection 
setup, reliability, flow control, 
congestion control, timing, or 
bandwidth guarantee 

Q: why bother?  Why is there a 
UDP?

TCP seq. #’s and ACKs
Seq. #’s:

– byte stream “number” 
of first byte in 
segment’s data

ACKs:
– seq # of next byte 

expected from other 
side

– cumulative ACK

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types
‘C’

host ACKs
receipt 
of echoed

‘C’

host ACKs
receipt of
‘C’, echoes
back ‘C’

time
simple telnet scenario

TCP Round Trip Time and Timeout

Q: how to set TCP 
timeout value?

• longer than RTT
– but RTT varies

• too short: premature 
timeout
– unnecessary 

retransmissions
• too long: slow reaction 

to segment loss

Q: how to estimate RTT?
• SampleRTT: measured time 

from segment transmission until 
ACK receipt
– ignore retransmissions

• SampleRTT will vary, want 
estimated RTT “smoother”
– average several recent 

measurements, not just 
current SampleRTT

TCP Round Trip Time and Timeout

EstimatedRTT = (1- αααα)*EstimatedRTT + αααα*SampleRTT

• Exponential weighted moving average
• influence of past sample decreases exponentially 

fast
• typical value: αααα = 0.125

Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T
T
 (

m
il
li
se

c
o
n
d

s)

SampleRTT Estimated RTT



5

TCP Round Trip Time and Timeout

Setting the timeout
• EstimtedRTT plus “safety margin”

– large variation in EstimatedRTT -> larger safety margin

• first estimate of how much SampleRTT deviates from 
EstimatedRTT: 

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-ββββ)*DevRTT +
ββββ*|SampleRTT-EstimatedRTT|

(typically, ββββ = 0.25)

Then set timeout interval:

TCP reliable data transfer

• TCP creates reliable 
service on top of IP’s 
unreliable service

• TCP uses single 
retransmission timer

• Retransmissions are 
triggered by:
– timeout events
– duplicate acks

Fast  Retransmit

• Time-out period  often 
relatively long:
– long delay before 

resending lost packet

• Detect lost segments 
via duplicate ACKs.
– Sender often sends 

many segments back-to-
back

– If segment is lost, there 
will likely be many 
duplicate ACKs.

• If sender receives 3 
ACKs for the same 
data, it supposes that 
segment after ACKed
data was lost:
– fast retransmit: resend 

segment before timer 
expires

• end-end control (no network 
assistance)

• sender limits transmission:
LastByteSent-LastByteAcked

≤≤≤≤ CongWin

• Roughly,

• CongWin is dynamic, function 
of perceived network 
congestion

TCP Congestion Control

How does  sender perceive 
congestion?

• loss event = timeout or 3 
duplicate acks

• TCP sender reduces rate 
(CongWin) after loss 
event

three mechanisms:
– AIMD

– slow start

– conservative after timeout 
events

rate =
CongWin

RTT
Bytes/sec

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestion
window

multiplicative decrease: cut 
CongWin in half after loss 
event

additive increase: increase  
CongWin by 1 MSS every 
RTT in the absence of 
loss events: probing

Long-lived TCP connection

TCP Slow Start

• When connection 
begins, CongWin = 1 
MSS
– Example: MSS = 500 

bytes & RTT = 200 msec
– initial rate = 20 kbps

• available bandwidth 
may be >> MSS/RTT
– desirable to quickly ramp 

up to respectable rate

• When connection 
begins, increase rate 
exponentially fast until 
first loss event
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TCP Slow Start (more)

• When connection begins, 
increase rate exponentially 
until first loss event:
– double CongWin every RTT

– done by incrementing 
CongWin for every ACK 
received

• Summary: initial rate is slow 
but ramps up exponentially 
fast

Host A

one segment

R
T
T

Host B

time

two segments

four segments

Refinement
• After 3 dup ACKs:

– CongWin is cut in half

– window then grows linearly
• But after timeout event:

– CongWin instead set to 1 
MSS; 

– window then grows 
exponentially

– to a threshold, then grows 
linearly

• 3 dup ACKs indicates 
network capable of 
delivering some segments
• timeout before 3 dup 
ACKs is “more alarming”

Philosophy:

Refinement (more)
Q: When should the 

exponential increase 
switch to linear? 

A: When CongWin gets 
to 1/2 of its value 
before timeout.

Implementation:
• Variable Threshold 

• At loss event, Threshold is set to 
1/2 of CongWin just before loss 
event

Summary: TCP Congestion Control

• When CongWin is below Threshold, sender in 
slow-start phase, window grows exponentially.

• When CongWin is above Threshold, sender is 
in congestion-avoidance phase, window grows 
linearly.

• When a triple duplicate ACK occurs, Threshold
set to CongWin/2 and CongWin set to 
Threshold.

• When timeout occurs, Threshold set to 
CongWin/2 and CongWin is set to 1 MSS.

TCP sender congestion control

CongWin and Threshold not 
changed

Increment duplicate ACK count for 
segment being acked

SS or CADuplicate ACK

Enter slow startThreshold = CongWin/2,      
CongWin = 1 MSS,
Set state to “Slow Start”

SS or CATimeout

Fast recovery, implementing 
multiplicative decrease. 
CongWin will not drop below 1 
MSS.

Threshold = CongWin/2,      
CongWin = Threshold,
Set state to “Congestion 
Avoidance”

SS or CALoss event 
detected by 
triple duplicate 
ACK

Additive increase, resulting in 
increase of CongWin by 1 
MSS every RTT

CongWin = CongWin+MSS * 
(MSS/CongWin)

Congestion
Avoidance 
(CA) 

ACK receipt 
for previously 
unacked data

Resulting in a doubling of 
CongWin every RTT

CongWin = CongWin + MSS, 
If (CongWin > Threshold)

set state to “Congestion             
Avoidance”

Slow Start 
(SS)

ACK receipt 
for previously 
unacked data 

CommentaryTCP Sender Action StateEvent 


