Calculating Confidence Intervals - Example I

Suppose that we want to determine how long it takes to download a specific web-page from a certain site.
We have set up an experimental environment, and we have made 8 downloads of the web-page.

The recorded times, in seconds, were $x_{i}=\{4,5,1,3,7,9,9,15\}$.
As we saw previously we can choose a confidence level, i.e. we can calculate an interval which we to a given percentage can be "sure" that the real download time exists in.

For this example, we choose a confidence level of 90%. Thus, $1-\alpha=0.90 \Rightarrow \alpha=0.10$.
We also saw previously that the confidence interval between $\left[c_{1}, c_{2}\right]$ easily can be calculated with the following equation:

$$
\begin{equation*}
c_{1,2}=\bar{x} \mp t_{1-\alpha / 2 ; n-1} \frac{s}{\sqrt{n}} \tag{1}
\end{equation*}
$$

Thus, what we need to do is simply to determine the parts of the equation above. We start with the things that are alreade given in the text:

$$
\begin{aligned}
n & =8 \\
\alpha & =0.10 \Rightarrow \\
t_{1-\alpha / 2 ; n-1} & =t_{0.95 ; 7} \\
t_{0.95 ; 7} & =1.895 \text { (tabulated value) }
\end{aligned}
$$

After this, we need to calculate the mean (\bar{x}), and the standard deviation (s) :

$$
\begin{aligned}
& \begin{aligned}
\bar{x} & =\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{8} \sum_{i=1}^{8} x_{i}= \\
& =\frac{1}{8}(4+5+1+3+7+9+9+15)=6.625 \\
s= & \sqrt{s^{2}}
\end{aligned}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\ldots=4.405759 \ldots
\end{aligned}
$$

Now it's only a matter of using inserting all the values in Equation 1:

$$
\begin{aligned}
& c_{1}=6.625-1.895 * \frac{4.405759 \ldots}{\sqrt{8}} \approx 3.67 \\
& c_{2}=6.625+1.895 * \frac{4.405759 \ldots}{\sqrt{8}} \approx 9.58
\end{aligned}
$$

Thus, there is a 90% chance that the actual mean time required to download this webpage is in the range [3.67, 9.58] seconds.

Calculating Confidence Intervals - Example II

Suppose, once again, that we want to determine how long it takes to download a specific web-page from a certain site.

We have set up the same experimental environment as in Example I, but this time we have conducted 40 downloads of the web-page.

The list of recorded times, in seconds, is too long to fit on this paper, but a really nice person has already calculated the average download time \because : which was $\bar{x}=5.82$.

As we saw previously we can choose a confidence level, i.e. we can calculate an interval which we to a given percentage can be "sure" that the real download time exists in.

For this example, we choose a confidence level of 95% instead. Thus, $1-\alpha=0.95 \Rightarrow \alpha=0.05$.
As we now have a rather large sample to play with, we can use the normal distribution instead of the student t distribution (as we approximate the sample standard deviation to equal the real standard deviation) ${ }^{1}$:

$$
\begin{equation*}
c_{1,2}=\bar{x} \mp z_{1-\alpha / 2} \frac{s}{\sqrt{n}} \tag{2}
\end{equation*}
$$

Thus, what we need to do is simply to determine the parts of the equation above. We start with the things that are alreade given in the text:

$$
\begin{aligned}
n & =40 \\
\alpha & =0.05 \Rightarrow \\
z_{1-\alpha / 2} & =z_{0.975} \\
z_{0.975} & =1.960 \text { (tabulated value) }
\end{aligned}
$$

After this, we need to calculate the standard deviation (s):

$$
s=\sqrt{s^{2}}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\ldots=4.607 \ldots
$$

Now it's only a matter of using inserting all the values in Equation 2:

$$
\begin{aligned}
& c_{1}=5.82-1.960 * \frac{4.607 \ldots}{\sqrt{40}} \approx 4.392215 \\
& c_{2}=5.82+1.960 * \frac{4.607 \ldots}{\sqrt{40}} \approx 7.247785
\end{aligned}
$$

Thus, there is a 95% chance that the actual mean time required to download this webpage is in the range [4.39, 7.25] seconds.

[^0]
[^0]: ${ }^{1}$ Note that $t_{1-\alpha / 2 ; 40}$ is approximated with $t_{1-\alpha / 2 ; \infty}$, which corresponds to $z_{1-\alpha / 2}$

