Comparing Alternatives and Experiental Design

Performance Modeling Lecture #4

Repetition

- Average Performance and Variability
 - Different mean values
 - Variance
- Errors in measurements – Different types of errors
 - How to deal with them
- Comparing two sets of measurements

One-Factor Analysis of Variance (ANOVA)

- Very general technique
- Look at total variation in a set of measurements
 - Divide into meaningful components
- Also called
 - One-way classification
 - One-factor experimental design
- Introduce basic concept with one-factor ANOVA
- Generalize later with design of experiments

One-Factor Analysis of Variance (ANOVA)

- Separates total variation observed in a set of measurements into:
 - 1. Variation within one system
 - Due to random measurement errors
 - 2. Variation between systems
 - Due to real differences + random error
- Is variation(2) statistically > variation(1)?

ANOVA

- Make *n* measurements of *k* alternatives
- $y_{ij} = ith$ measurment on *j*th alternative
- Assumes errors are:
- Independent
- Gaussian (normal)

	usuic	ment	5 101 /		una	1003
			Altern	atives		
Measure ments	1	2		j		k
1	<i>Y</i> ₁₁	<i>Y</i> ₁₂		<i>y</i> _{1j}		<i>Y</i> _{k1}
2	<i>Y</i> ₂₁	y ₂₂		<i>y</i> _{2j}		<i>Y</i> _{2k}
i	<i>Y</i> _{i1}	<i>Y</i> _{i2}		y _{ij}		y _{ik}
n	<i>Y</i> _{n1}	y _{n2}		y _{nj}		y _{nk}
Col	<i>Y</i> .1	У. ₂		У. _ј		<i>Y</i> .k
enfect	α,	α2		α		α

		Colu	mn I	Means	i	
			Alter	rnatives		
Measure ments	1	2		j		k
1	<i>y</i> ₁₁	<i>Y</i> ₁₂		y 1j		<i>Y</i> _{k1}
2	<i>y</i> ₂₁	y ₂₂		y _{2i}		<i>Y</i> _{2k}
i	y _{i1}	<i>Y</i> _{i2}		y ii		y _{ik}
n	<i>Y</i> _{n1}	y _{n2}		y ni		y _{nk}
Col	У _{.1}	У. ₂		y,		У. _к
enfect	α ₁	α2		α		α _k

Er	ror = Deviation From Column Mean						
			Alter	natives			
Measure ments	1	2		j		k	
1	<i>Y</i> ₁₁	<i>Y</i> ₁₂		1		<i>Y</i> _{k1}	
2	<i>Y</i> ₂₁	y ₂₂		y ₂		<i>Y</i> _{2k}	
i	<i>Y</i> _{i1}	<i>Y</i> _{i2}		Yi		y _{ik}	
n	y _{n1}	y _{n2}				y _{nk}	
Col	У _{.1}	У. ₂		У. _і		У _{.к}	
enfect	α ₁	α2		α		α _k	

Ef	fect =	= Devi	ation Mear	From	n Ove	rall
			Altern	atives		
Measure ments	1	2		j		k
1	<i>Y</i> ₁₁	<i>Y</i> ₁₂		У 1ј		<i>Y</i> _{k1}
2	<i>Y</i> ₂₁	y ₂₂		<i>Y</i> _{2j}		y _{2k}
i	<i>Y</i> _{i1}	<i>Y</i> _{i2}		y _{ij}		<i>Y</i> _{ik}
n	y _{n1}	y _{n2}		y _{nj}		y _{nk}
Col	У. ₁	У _{.2}		У _{.i}		У. _к
Enfect	-	₩2 		a Nj		

Sum of Squares of Differences $SSA = n \sum_{j=1}^{k} (\overline{y}_{.j} - \overline{y}_{..})^{2}$ $SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{..})^{2}$ $SST = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{..})^{2}$

ANOVA - Fundamental Idea

- Separates variation in measured values into:
- 1. Variation due to effects of alternatives
- SSA variation across columns
- 2. Variation due to errors
- SSE variation within a single column
- If differences among alternatives are due to real differences,
 - SSA should be statistically > SSE

Comparing SSE and SSA

- · Simple approach
 - SSA / SST = fraction of total variation explained by differences among alternatives
 - SSE / SST = fraction of total variation due to experimental error
- But is it statistically significant?

Degrees of Freedom

- df(SSA) = k 1, since k alternatives
- df(SSE) = k(n 1), since k alternatives, each with (n - 1) df
- df(SST) = df(SSA) + df(SSE) = kn 1

De	egree	s of F	reed	om fo	r Effe	cts
	U					
			Altern	atives		
Measure ments	1	2		j		k
1	<i>Y</i> ₁₁	<i>Y</i> ₁₂		<i>y</i> _{1j}		<i>Y</i> _{k1}
2	<i>Y</i> ₂₁	y ₂₂		<i>Y</i> _{2j}		<i>Y</i> _{2k}
i	<i>Y</i> _{i1}	<i>Y</i> _{i2}		y _{ij}		y _{ik}
n	y _{n1}	y _{n2}		y _{ni}		y _{nk}
Col	У _{.1}	У _{.2}		У .j		У _{.к}
enfect	-	- ⁰ 2		a _j P		α_k
	10000					

De	gree	s of F	reed	lom f	or Err	ors
			Alterr	natives		
Measure ments	1	2		j		k
1	<i>Y</i> ₁₁	<i>Y</i> ₁₂				<i>Y</i> _{k1}
2	<i>Y</i> ₂₁	y ₂₂		1 Y2		<i>Y</i> _{2k}
i	<i>Y</i> _{i1}	y ₁₂		y .		<i>Y</i> _{ik}
n	<i>y</i> _{n1}	y _{n2}		y _{ni}		y _{nk}
Col	У. ₁	У. ₂		У. _і		<i>Y</i> .k
Enfect	-	Ψ ⁴ 2		-		

Variances from Sum of Squares
(Mean Square Value)
$$s_a^2 = \frac{SSA}{k-1}$$
$$s_e^2 = \frac{SSE}{k(n-1)}$$

F-test

• If $F_{computed} > F_{table}$ \rightarrow We have $(1 - \alpha) * 100\%$ confidence that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE.

A	NOVA SI	ummary	
Variation	Alternatives	Error	Total
Sum of squares	SSA	SSE	SST
Deg freedom	k-1	k(n-1)	<i>kn</i> −1
Mean square	$s_a^2 = SSA/(k-1)$	$s_e^2 = SSE/[k(n-1)]$	
Computed F	s_{a}^{2}/s_{e}^{2}		
Tobulated F	F		

	ANO	VA Exa	ample	
		Alternative	es	
Measurement s	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	0.1168	0.1462	0.6078	0.2903
Effects	-0.1735	-0.1441	0.3175	
				1

	ANOVA Ex	kample	
Variation	Alternatives	Error	Total
Sum of squares	SSA = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(n-1) = 12	kn - 1 = 14
Mean square	$s_a^2 = 0.3793$	$s_e^2 = 0.0057$	
Computed F	0.3793/0.0057 = 66.4		
Tabulated F	$F_{[0.95;2,12]} = 3.89$		
	[0.95,2,12]		

Conclusions from example

- SSA/SST = 0.7585/0.8270 = 0.917
 → 91.7% of total variation in measurements is due to
 - differences among alternatives
- SSE/SST = 0.0685/0.8270 = 0.083

 → 8.3% of total variation in measurements is due to noise in measurements
- Computed F statistic > tabulated F statistic
 → 95% confidence that differences among alternatives are statistically significant.

Important Points

- Use one-factor ANOVA to separate total variation into:
 - Variation within one system
 - Due to random errors
 Variation between systems
 - Due to real differences (+ random error)
- Is the variation due to real differences *statistically* greater than the variation due to errors?
- Use contrasts to compare effects of subsets of alternatives

Design of Experiments

- Goals
- Terminology
- Full factorial designs – *m*-factor ANOVA
- Fractional factorial designs
- Multi-factorial designs

Generalized Design of Experiments

- Goals
 - Isolate effects of each input variable.
 - Determine effects of interactions.
 - Determine magnitude of experimental error
 - Obtain maximum information for given effort
- Basic idea
 - Expand 1-factor ANOVA to m factors

Terminology

- · Response variable
 - Measured output value
 - E.g. total execution time
- Factors
 - Input variables that can be changed
 - E.g. cache size, clock rate, bytes transmitted
- Levels
 - Specific values of factors (inputs)
 - Continuous (~bytes) or discrete (type of system)

Terminology

- Replication
 - Completely re-run experiment with same input levels
 - Used to determine impact of measurement error
- Interaction
 - Effect of one input factor depends on *level* of another input factor

Two-factor Experiments

- Two factors (inputs)
 - A, B
- Separate total variation in output values into:
 - Effect due to A
 - Effect due to B
 - Effect due to interaction of A and B (AB)
 - Experimental error

Example – User Response Time

- A = degree of multiprogramming
- B = memory size
- AB = interaction of memory size and degree of multiprogramming

	B (Mbytes)				
A	32	64	128		
1	0.25	0.21	0.15		
2	0.52	0.45	0.36		
3	0.81	0.66	0.50		
4	1.50	1.45	0.70		

Two-factor ANOVA

- Factor A a input levels
- Factor B b input levels
- *n* measurements for each input combination
- abn total measurements

SST = SSA + SSB + SSAB + SSE

• Degrees of freedom

- df(SSA) = a - 1

- df(SSB) = b 1
- df(SSAB) = (a-1)(b-1)
- df(SSE) = ab(n-1)
- df(SST) = abn 1

Need for Replications

- If n=1
 - Only one measurement of each configuration
- Can then be shown that
- SSAB = SST SSA SSB
- Since
 - SSE = SST SSA SSB SSAB
- We have
 - SSE = 0

Need for Replications

- Thus, when n=1
 - -SSE = 0
 - $\rightarrow \text{No}$ information about measurement errors
- Cannot separate effect due to interactions from measurement noise
- Must *replicate* each experiment at least twice

	Exan	nple	
		B (Mbytes)	
Α	32	64	128
1	0.25	0.21	0.15
	0.28	0.19	0.11
2	0.52	0.45	0.36
	0.48	0.49	0.30
3	0.81	0.66	0.50
	0.76	0.59	0.61
4	1.50	1.45	0.70
	1.61	1.32	0.68

A Problem

- Full factorial design with replication
 - Measure system response with all possible input combinations
 - Replicate each measurement *n* times to determine effect of measurement error
- *m* factors, *v* levels, *n* replications
 → *n v^m* experiments
- m = 5 input factors, v = 4 levels, n = 3
 - $\rightarrow 3(4^5) = 3,072$ experiments!

Fractional Factorial Designs: n2^m Experiments

- Special case of generalized *m*-factor experiments
- Restrict each factor to two possible values
 High, low
 - On, off
- · Find factors that have largest impact
- · Full factorial design with only those factors

	р	AD	Emor
A SSA	D CCD		SSE
1	1	1	$2^{m}(n-1)$
2 554/1	-2 CCD/1	1 -2 554 D/1	2(n-1)
$s_a = SSA/1$	$s_b = 33B/1$	$s_{ab} = SSAB/1$	$s_e = SSE/[2 (n-1)]$
$F_a = s_a^2 / s_e^2$	$F_b = s_b^2 / s_e^2$	$F_{ab} = s_{ab}^2 / s_e^2$	
$F_{[1-\alpha;1,2^{m}(n-1)]}$	$F_{[1-\alpha;1,2^m(n-1)]}$	$F_{[1-\alpha;1,2^m(n-1)]}$	
	$\frac{A}{SSA}$ 1 $s_a^2 = SSA/1$ $F_a = s_a^2/s_e^2$ $F_{[1-\alpha;1,2^m(n-1)]}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

- Experimental design is used to
 - Isolate the effects of each input variable.
 - Determine the effects of interactions.
 - Determine the magnitude of the error
 - Obtain maximum information for given effort
- Expand 1-factor ANOVA to m factors
- Use *n*2^{*m*} design to reduce the number of experiments needed
 - But loses some information

Summary

- Design of experiments
 - Isolate effects of each input variable.
 - Determine effects of interactions.
 - Determine magnitude of experimental error
- *m*-factor ANOVA (*full factorial design*)
 - All effects, interactions, and errors

Summary

- n2^m designs
 - Fractional factorial design
- · All effects, interactions, and errors
- · But for only 2 input values
 - high/low
 - on/off

Contrasts

- ANOVA tells us that there is a statistically significant difference among alternatives
- But it does not tell us where difference is
- Use method of contrasts to compare subsets of alternatives
 - A vs B

Etc.

Contrasts • Contrast = linear combination of *effects* of alternatives $c = \sum_{j=1}^{k} w_j \alpha_j$ $\sum_{j=1}^{k} w_j = 0$

Contrasts • E.g. Compare effect of system 1 to effect of system 2 $w_1 = 1$ $w_2 = -1$

$$w_2 = -1$$

$$w_3 = 0$$

$$c = (1)\alpha_1 + (-1)\alpha_2 + (0)\alpha_3$$

$$= \alpha_1 - \alpha_2$$

Construct confidence interval for contrasts

- Need
 - Estimate of variance
 - Appropriate value from *t* table
- Compute confidence interval as before
- If interval includes 0
 - Then no statistically significant difference exists between the alternatives included in the contrast

Variance of random variables Recall that, for independent random variables X₁

- Recall that, for independent random variables $X_1 \\ \text{ and } X_2$

$$\operatorname{Var}[X_1 + X_2] = \operatorname{Var}[X_1] + \operatorname{Var}[X_2]$$
$$\operatorname{Var}[aX_1] = a^2 \operatorname{Var}[X_1]$$

Variance of a contrast *c*

$$Var[c] = Var[\sum_{j=1}^{k} (w_j \alpha_j)] \qquad s_c^2 = \frac{\sum_{j=1}^{k} (w_j^2 s_e^2)}{kn}$$

$$= \sum_{j=1}^{k} Var[w_j \alpha_j] \qquad s_e^2 = \frac{SSE}{k(n-1)}$$

$$df(s_c^2) = k(n-1)$$
• Assumes variation due to errors is equally distributed among *kn* total measurements

Confidence interval for contrasts

$$(c_{1}, c_{2}) = c \mp t_{1-\alpha/2;k(n-1)}s_{c}$$

$$s_{c} = \sqrt{\frac{\sum_{j=1}^{k} (w_{j}^{2}s_{e}^{2})}{kn}}$$

$$s_{e}^{2} = \frac{SSE}{k(n-1)}$$

Example
• 90% confidence interval for contrast of [Sys1-
Sys2]

$$\alpha_1 = -0.1735$$

 $\alpha_2 = -0.1441$
 $\alpha_3 = 0.3175$
 $c_{1-21} = -0.1735 - (-0.1441) = -0.0294$
 $s_c = s_e \sqrt{\frac{1^2 + (-1)^2 + 0^2}{3(5)}} = 0.0275$
90% : $(c_1, c_2) = (-0.0784, 0.0196)$