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Comparing Alternatives and 
Experiental Design

Performance Modeling Lecture #4

Repetition

• Average Performance and Variability
– Different mean values
– Variance

• Errors in measurements
– Different types of errors
– How to deal with them

• Comparing two sets of measurements

Comparing More Than Two 
Alternatives

• Naïve approach
– Compare confidence intervals

One-Factor Analysis of 
Variance (ANOVA)

• Very general technique
– Look at total variation in a set of 

measurements
– Divide into meaningful components

• Also called
– One-way classification
– One-factor experimental design

• Introduce basic concept with one-factor 
ANOVA

• Generalize later with design of 
experiments

One-Factor Analysis of 
Variance (ANOVA)

• Separates total variation observed in a 
set of measurements into:

1. Variation within one system
• Due to random measurement errors

2. Variation between systems
• Due to real differences + random error

• Is variation(2) statistically > variation(1)?

ANOVA

• Make n measurements of k alternatives
• yij = ith measurment on jth alternative

• Assumes errors are:
– Independent
– Gaussian (normal)



2

Measurements for All Alternatives
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Overall Mean

• Average of all measurements made of all 
alternatives
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Column Means

• Column means are average values of all 
measurements within a single alternative
– Average performance of one alternative
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Error = Deviation From Column 
Mean

αk…αj…α2α1Effect

y.k…y.j…y.2y.1Col 
mean

ynk…ynj…yn2yn1n

…………………

yik…yij…yi2yi1i

…………………

y2k…y2j…y22y212

yk1…y1j…y12y111

k…j…21Measure
ments

Alternatives



3

Effect = Deviation From Overall 
Mean
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Effects and Errors

• Effect is distance from overall mean
– Horizontally across alternatives

• Error is distance from column mean
– Vertically within one alternative
– Error across alternatives, too

• Individual measurements are then:
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yySST
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Sum of Squares of Differences

• SST = differences between each measurement 
and overall mean

• SSA = variation due to effects of alternatives
• SSE = variation due to errors in measurments

SSESSASST +=

ANOVA – Fundamental Idea

• Separates variation in measured 
values into:

1. Variation due to effects of alternatives
• SSA – variation across columns

2. Variation due to errors
• SSE – variation within a single column

• If differences among alternatives are 
due to real differences,

• SSA should be statistically > SSE

Comparing SSE and SSA

• Simple approach
– SSA / SST = fraction of total variation 

explained by differences among alternatives
– SSE / SST = fraction of total variation due to 

experimental error

• But is it statistically significant?
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Statistically Comparing SSE 
and SSA
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Degrees of Freedom

• df(SSA) = k – 1, since k alternatives 
• df(SSE) = k(n – 1), since k alternatives, 

each with (n – 1) df
• df(SST) = df(SSA) + df(SSE) = kn - 1

Degrees of Freedom for Effects
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Degrees of Freedom for Errors
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Comparing Variances

• Use F-test to compare ratio of variances
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F-test

• If Fcomputed > Ftable

→ We have (1 – α) * 100% confidence that 
variation due to actual differences in 
alternatives, SSA, is statistically greater 
than variation due to errors, SSE.

ANOVA Summary
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Conclusions from example

• SSA/SST = 0.7585/0.8270 = 0.917
→ 91.7% of total variation in measurements is due to 

differences among alternatives

• SSE/SST = 0.0685/0.8270 = 0.083
→ 8.3% of total variation in measurements is due to 

noise in measurements

• Computed F statistic > tabulated F statistic
→ 95% confidence that differences among alternatives 

are statistically significant.

Important Points

• Use one-factor ANOVA to separate total 
variation into:
– Variation within one system

• Due to random errors

– Variation between systems
• Due to real differences (+ random error)

• Is the variation due to real differences 
statistically greater than the variation due to 
errors?

• Use contrasts to compare effects of subsets of 
alternatives
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Design of Experiments

• Goals
• Terminology
• Full factorial designs

– m-factor ANOVA

• Fractional factorial designs
• Multi-factorial designs

Generalized Design of 
Experiments

• Goals
– Isolate effects of each input variable.
– Determine effects of interactions.
– Determine magnitude of experimental error
– Obtain maximum information for given effort

• Basic idea
– Expand 1-factor ANOVA to m factors

Terminology

• Response variable
– Measured output value

• E.g. total execution time

• Factors
– Input variables that can be changed

• E.g. cache size, clock rate, bytes transmitted

• Levels
– Specific values of factors (inputs)

• Continuous (~bytes) or discrete (type of system)

Terminology

• Replication
– Completely re-run experiment with same input 

levels
– Used to determine impact of measurement 

error

• Interaction
– Effect of one input factor depends on level of 

another input factor

Two-factor Experiments

• Two factors (inputs)
– A, B

• Separate total variation in output values 
into:
– Effect due to A
– Effect due to B
– Effect due to interaction of A and B (AB)
– Experimental error

Example – User Response 
Time

• A = degree of 
multiprogramming

• B = memory size
• AB = interaction of 

memory size and 
degree of 
multiprogramming

0.701.451.504

0.500.660.813

0.360.450.522

0.150.210.251

1286432A

B (Mbytes)
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Two-factor ANOVA

• Factor A – a input levels
• Factor B – b input levels

• n measurements for each input 
combination

• abn total measurements

Two Factors, n Replications
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Recall:  One-factor ANOVA

• Each individual 
measurement is 
composition of
– Overall mean
– Effect of 

alternatives
– Measurement 

errors errort measuremen 
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Two-factor ANOVA

• Each individual 
measurement is 
composition of
– Overall mean
– Effects
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– Measurement 
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Sum-of-Squares

• As before, use sum-of-squares identity

SST = SSA + SSB + SSAB + SSE

• Degrees of freedom
– df(SSA) = a – 1
– df(SSB) = b – 1
– df(SSAB) = (a – 1)(b – 1)
– df(SSE) = ab(n – 1)
– df(SST) = abn - 1

Two-Factor ANOVA
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Need for Replications

• If n=1
– Only one measurement of each configuration

• Can then be shown that
– SSAB = SST – SSA – SSB

• Since
– SSE = SST – SSA – SSB – SSAB

• We have
– SSE = 0

Need for Replications

• Thus, when n=1
– SSE = 0
– → No information about measurement errors

• Cannot separate effect due to interactions 
from measurement noise

• Must replicate each experiment at least 
twice

Example

• Output = user 
response time 
(seconds)

• Want to separate 
effects due to
– A = degree of 

multiprogramming
– B = memory size
– AB = interaction
– Error

• Need replications to 
separate error
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Conclusions From the Example

• 77.6% (SSA/SST) of all variation in 
response time due to degree of 
multiprogramming

• 11.8% (SSB/SST) due to memory size
• 9.9% (SSAB/SST) due to interaction
• 0.7% due to measurement error
• 95% confident that all effects and 

interactions are statistically significant
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A Problem

• Full factorial design with replication
– Measure system response with all possible 

input combinations
– Replicate each measurement n times to 

determine effect of measurement error

• m factors, v levels, n replications
→ n vm experiments

• m = 5 input factors, v = 4 levels, n = 3
– → 3(45) = 3,072 experiments!

Fractional Factorial Designs:  
n2m Experiments

• Special case of generalized m-factor 
experiments

• Restrict each factor to two possible values
– High, low
– On, off

• Find factors that have largest impact

• Full factorial design with only those factors

n2m Experiments
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Important Points

• Experimental design is used to
– Isolate the effects of each input variable.
– Determine the effects of interactions.
– Determine the magnitude of the error
– Obtain maximum information for given effort

• Expand 1-factor ANOVA to m factors
• Use n2m design to reduce the number of 

experiments needed
– But loses some information

Summary

• Design of experiments
– Isolate effects of each input variable.

– Determine effects of interactions.
– Determine magnitude of experimental error

• m-factor ANOVA (full factorial design)
– All effects, interactions, and errors

Summary

• n2m designs 
– Fractional factorial design

• All effects, interactions, and errors
• But for only 2 input values

– high/low 
– on/off



10

Contrasts

• ANOVA tells us that there is a statistically 
significant difference among alternatives

• But it does not tell us where difference is
• Use method of contrasts to compare 

subsets of alternatives
– A vs B
– {A, B} vs {C}
– Etc.

Contrasts

• Contrast = linear combination of effects of 
alternatives
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• E.g. Compare effect of system 1 to effect of 
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Construct confidence interval for 
contrasts

• Need 
– Estimate of variance
– Appropriate value from t table

• Compute confidence interval as before
• If interval includes 0

– Then no statistically significant difference 
exists between the alternatives included in the 
contrast

Variance of random variables

• Recall that, for independent random variables X1
and X2
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• Assumes variation due to errors is equally 
distributed among kn total measurements
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Confidence interval for contrasts

)1(

)(

),(

2

1

22

)1(;2/121

−
=

=

=

∑ =

−−

nk

SSE
s

kn

sw
s

stccc

e

k

j ej

c

cnkαm

Example

• 90% confidence interval for contrast of [Sys1-
Sys2]
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