Comparing Alternatives and Experiental Design

Performance Modeling Lecture \#4

One-Factor Analysis of
Variance (ANOVA)
- Separates total variation observed in a
set of measurements into:
1. Variation within one system
. De to random measurement errors
2. Variation between systems
Due to real differences trandom error
- Is variation(2) statistically $>$ variation (1) ?

One-Factor Analysis of
Variance (ANOVA)
- Separates total variation observed in a
set of measurements into:
1. Variation within one system
. De to random measurement errors
2. Variation between systems
Due to real differences trandom error
- Is variation(2) statistically $>$ variation (1) ?

One-Factor Analysis of
Variance (ANOVA)
• Separates total variation observed in a
set of measurements into:

1. \quad Variation within one system
. Due to random measurement errors
2. \quad Variation between systems \quad Due to real differences + random error

- Is variation(2) statistically $>$ variation(1)?
One-Factor Analysis of
Variance (ANOVA)
• Separates total variation observed in a
set of measurements into:

1. \quad Variation within one system
. Due to random measurement errors
2. \quad Variation between systems \quad Due to real differences + random error

- Is variation(2) statistically $>$ variation(1)?
One-Factor Analysis of
Variance (ANOVA)
• Separates total variation observed in a
set of measurements into:

1. \quad Variation within one system
. Due to random measurement errors
2. \quad Variation between systems \quad Due to real differences + random error

- Is variation(2) statistically $>$ variation(1)?
One-Factor Analysis of
Variance (ANOVA)
• Separates total variation observed in a
set of measurements into:

1. \quad Variation within one system
. Due to random measurement errors
2. \quad Variation between systems \quad Due to real differences + random error

- Is variation(2) statistically $>$ variation(1)?

Repetition

- Average Performance and Variability
- Different mean values
- Variance
- Errors in measurements
- Different types of errors
- How to deal with them
- Comparing two sets of measurements

ANOVA

- Make n measurements of k alternatives
- $y_{i \mathrm{i}}=$ th measurment on th alternative
- Assumes errors are:
- Independent
- Gaussian (normal)

Measurements for All Alternatives						
	Alternatives					
Measure ments	1	2	\ldots	j	\ldots	k
1	y_{11}	y_{12}	\ldots	$y_{1 j}$	\ldots	$y_{k 1}$
2	y_{21}	y_{22}	\ldots	$y_{2 j}$	\ldots	$y_{2 k}$
\ldots	\ldots	\ldots	...	\ldots	...	\ldots
i	$y_{\text {i1 }}$	$y_{i 2}$	\ldots	$y_{i j}$	\ldots	$y_{\text {ik }}$
\ldots						
n	$y_{n 1}$	$y_{n 2}$	\ldots	$y_{n j}$	\ldots	$y_{n k}$
Col	y_{1}	y_{2}	...	$y_{\text {j }}$	\ldots	$y_{\text {. }}$
E7fact	α_{1}	α_{2}	\cdots	α_{j}	\cdots	$\alpha_{\text {k }}$

Overall Mean

- Average of all measurements made of all alternatives

$$
\bar{y}_{\ldots .}=\frac{\sum_{j=1}^{k} \sum_{i=1}^{n} y_{i j}}{k n}
$$

Column Means

- Column means are average values of all measurements within a single alternative
- Average performance of one alternative

$$
\bar{y}_{. j}=\frac{\sum_{i=1}^{n} y_{i j}}{n}
$$

Sum of Squares of Differences

$$
\begin{aligned}
& S S A=n \sum_{j=1}^{k}\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2} \\
& S S E=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. j}\right)^{2} \\
& S S T=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. .}\right)^{2}
\end{aligned}
$$

ANOVA - Fundamental Idea

- Separates variation in measured values into:

1. Variation due to effects of alternatives

- SSA - variation across columns

2. Variation due to errors

- SSE - variation within a single column
- If differences among alternatives are due to real differences,
- SSA should be statistically > SSE

Effects and Errors

- Effect is distance from overall mean
- Horizontally across alternatives
- Error is distance from column mean
- Vertically within one alternative
- Error across alternatives, too
- Individual measurements are then:

$$
y_{i j}=\bar{y}_{. .}+\alpha_{j}+e_{i j}
$$

Sum of Squares of Differences

- SST = differences between each measurement and overall mean
- SSA = variation due to effects of alternatives
- $\operatorname{SSE}=$ variation due to errors in measurments

$$
S S T=S S A+S S E
$$

Comparing SSE and SSA

- Simple approach
- SSA / SST = fraction of total variation explained by differences among alternatives
- SSE / SST = fraction of total variation due to experimental error
- But is it statistically significant?

Statistically Comparing SSE and SSA

Variance $=$ mean square value

$$
\begin{aligned}
& =\frac{\text { total variation }}{\text { degreesof freedom }} \\
s_{x}^{2} & =\frac{S S x}{d f}
\end{aligned}
$$

Degrees of Freedom for Effects
Degrees of Freedom for Errors

Variances from Sum of Squares (Mean Square Value)

$$
\begin{aligned}
& s_{a}^{2}=\frac{S S A}{k-1} \\
& s_{e}^{2}=\frac{S S E}{k(n-1)}
\end{aligned}
$$

Comparing Variances

- Use F-test to compare ratio of variances

$$
\begin{aligned}
F & =\frac{s_{a}^{2}}{s_{e}^{2}} \\
F_{[1-\alpha ; d f(\text { num }), d f(\text { denom })]} & =\text { tabulated critical values }
\end{aligned}
$$

F-test

- If $F_{\text {computed }}>F_{\text {table }}$
\rightarrow We have $(1-\alpha)$ * 100% confidence that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE.

ANOVA Example				
Alternatives Measurement \mathbf{s} $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ Overall mean $\mathbf{1}$ 0.0972 0.1382 0.7966 $\mathbf{2}$ 0.0971 0.1432 0.5300 $\mathbf{3}$ 0.0969 0.1382 0.5152 $\mathbf{4}$ 0.1954 0.1730 0.6675 $\mathbf{5}$ 0.0974 0.1383 0.5298 Column mean 0.1168 0.1462 0.6078 Effects -0.1735 -0.1441 0.3175				

Conclusions from example

- SSA/SST $=0.7585 / 0.8270=0.917$
$\rightarrow 91.7 \%$ of total variation in measurements is due to differences among alternatives
- $\operatorname{SSE} / S S T=0.0685 / 0.8270=0.083$
$\rightarrow 8.3 \%$ of total variation in measurements is due to noise in measurements
- Computed F statistic > tabulated F statistic
$\rightarrow 95 \%$ confidence that differences among alternatives are statistically significant.

ANOVA Summary

Variation	Alternatives	Error	Total
Sum of squares	$S S A$	$S S E$	$S S T$
Deg freedom	$k-1$	$k(n-1)$	$k n-1$
Mean square	$s_{a}^{2}=S S A /(k-1)$	$s_{e}^{2}=S S E /[k(n-1)]$	
Computed F	s_{a}^{2} / s_{e}^{2}		
Tabulated F	$F_{[1-\alpha ;(k-1), k(n-1)]}$		

ANOVA Example

Variation	Alternatives	Error	Total
Sum of squares	$S S A=0.7585$	$S S E=0.0685$	$S S T=0.8270$
Deg freedom	$k-1=2$	$k(n-1)=12$	$k n-1=14$
Mean square	$s_{a}^{2}=0.3793$	$s_{e}^{2}=0.0057$	
Computed F	$0.3793 / 0.0057=66.4$		
Tabulated F	$F_{[0.95 ; 2,12]}=3.89$		

Important Points

- Use one-factor ANOVA to separate total variation into:
- Variation within one system
- Due to random errors
- Variation between systems
- Due to real differences (+ random error)
- Is the variation due to real differences statistically greater than the variation due to errors?
- Use contrasts to compare effects of subsets of alternatives

Design of Experiments

- Goals
- Terminology
- Full factorial designs
- m-factor ANOVA
- Fractional factorial designs
- Multi-factorial designs

Terminology

- Response variable
- Measured output value
- E.g. total execution time
- Factors
- Input variables that can be changed
- E.g. cache size, clock rate, bytes transmitted
- Levels
- Specific values of factors (inputs)
- Continuous (~bytes) or discrete (type of system)

Two-factor Experiments

- Two factors (inputs)
- A, B
- Separate total variation in output values into:
- Effect due to A
- Effect due to B
- Effect due to interaction of A and $B(A B)$
- Experimental error

Generalized Design of Experiments

- Goals
- Isolate effects of each input variable.
- Determine effects of interactions.
- Determine magnitude of experimental error
- Obtain maximum information for given effort
- Basic idea
- Expand 1-factor ANOVA to m factors

Terminology

- Replication
- Completely re-run experiment with same input levels
- Used to determine impact of measurement error
- Interaction
- Effect of one input factor depends on level of another input factor

Example - User Response Time

- $\mathrm{A}=$ degree of multiprogramming
- $B=$ memory size
- $\mathrm{AB}=$ interaction of memory size and degree of multiprogramming

	B (Mbytes)		
\mathbf{A}	32	64	128
$\mathbf{1}$	0.25	0.21	0.15
$\mathbf{2}$	0.52	0.45	0.36
$\mathbf{3}$	0.81	0.66	0.50
$\mathbf{4}$	1.50	1.45	0.70

Two-factor ANOVA

- Factor A - a input levels
- Factor B - binput levels
- n measurements for each input combination
- abn total measurements

Recall: One-factor ANOVA

- Each individual measurement is composition of
- Overall mean
- Effect of alternatives
- Measurement errors
$y_{i j}=\bar{y}_{. .}+\alpha_{i}+e_{i j}$
$\bar{y}_{\text {.. }}=$ overall mean
$\alpha_{i}=$ effect due to A
$e_{i j}=$ measurement error

Two-factor ANOVA

- Each individual measurement is composition of
- Overall mean
- Effects
- Interactions
- Measurement errors
$y_{i j k}=\bar{y}_{. .}+\alpha_{i}+\beta_{j}+\gamma_{i j}+e_{i j k}$
$\bar{y}_{\mathrm{t}}=$ overall mean
$\alpha_{i}=$ effect due to A
$\beta_{j}=$ effect due to B
$\gamma_{i j}=$ effect due to interaction of A and B
$e_{i j k}=$ measurement error

Sum-of-Squares

- As before, use sum-of-squares identity
SST = SSA + SSB + SSAB + SSE
- Degrees of freedom
$-d t(S S A)=a-1$
$-d f(\mathrm{SSB})=b-1$
- $d f($ SSAB $)=(a-1)(b-1)$
$-d f(\mathrm{SSE})=a b(n-1)$
$-d f(S S T)=a b n-1$

Need for Replications

- If $n=1$
- Only one measurement of each configuration
- Can then be shown that
- SSAB = SST - SSA - SSB
- Since
- SSE = SST - SSA - SSB - SSAB
- We have
- SSE = 0

Need for Replications

- Thus, when $\mathrm{n}=1$
- SSE = 0
$-\rightarrow$ No information about measurement errors
- Cannot separate effect due to interactions from measurement noise
- Must replicate each experiment at least twice

Example

- Output = user response time (seconds)
- Want to separate effects due to
- A = degree of multiprogramming
- $B=$ memory size
- $A B=$ interaction
- Error
- Need replications to separate error

	B (Mbytes)		
\mathbf{A}	32	64	128
$\mathbf{1}$	0.25	0.21	0.15
$\mathbf{2}$	0.52	0.45	0.36
$\mathbf{3}$	0.81	0.66	0.50
$\mathbf{4}$	1.50	1.45	0.70

Example

	A	B	AB	Error
Sum of squares	3.3714	0.5152	0.4317	0.0293
Deg freedom	3	2	6	12
Mean square	1.1238	0.2576	0.0720	0.0024
Computed F	460.2	105.5	29.5	
Tabulated F	$F_{[0.95 ; 3,12]}=3.49$	$F_{[0.95 ; 2,12]}=3.89$	$F_{[0.95 ; 6,12]}=3.00$	

Example

	B (Mbytes)		
\mathbf{A}	$\mathbf{3 2}$	$\mathbf{6 4}$	$\mathbf{1 2 8}$
$\mathbf{1}$	0.25	0.21	0.15
	0.28	0.19	0.11
$\mathbf{2}$	0.52	0.45	0.36
	0.48	0.49	0.30
$\mathbf{3}$	0.81	0.66	0.50
	0.76	0.59	0.61
$\mathbf{4}$	1.50	1.45	0.70
	1.61	1.32	0.68

Conclusions From the Example

- 77.6% (SSA/SST) of all variation in response time due to degree of multiprogramming
- 11.8\% (SSB/SST) due to memory size
- 9.9% (SSAB/SST) due to interaction
- 0.7% due to measurement error
- 95% confident that all effects and interactions are statistically significant

A Problem

- Full factorial design with replication
- Measure system response with all possible input combinations
- Replicate each measurement n times to determine effect of measurement error
- m factors, v levels, n replications
$\rightarrow n v^{m}$ experiments
- $m=5$ input factors, $v=4$ levels, $n=3$
$-\rightarrow 3\left(4^{5}\right)=3,072$ experiments!

Fractional Factorial Designs: $n 2^{m}$ Experiments

- Special case of generalized m-factor experiments
- Restrict each factor to two possible values
- High, low
- On, off
- Find factors that have largest impact
- Full factorial design with only those factors

Summary

- Design of experiments
- Isolate effects of each input variable.
- Determine effects of interactions.
- Determine magnitude of experimental error
- m-factor ANOVA (full factorial design)
- All effects, interactions, and errors

Important Points

- Experimental design is used to - Isolate the effects of each input variable.
- Determine the effects of interactions.
- Determine the magnitude of the error
- Obtain maximum information for given effort
- Expand 1-factor ANOVA to m factors
- Use $n 2^{m}$ design to reduce the number of experiments needed
- But loses some information

Contrasts

- ANOVA tells us that there is a statistically significant difference among alternatives
- But it does not tell us where difference is
- Use method of contrasts to compare subsets of alternatives
- A vs B
- $\{\mathrm{A}, \mathrm{B}\}$ vs $\{C\}$
- Etc.

Contrasts

- Contrast = linear combination of effects of alternatives

$$
\begin{aligned}
& c=\sum_{j=1}^{k} w_{j} \alpha_{j} \\
& \sum_{j=1}^{k} w_{j}=0
\end{aligned}
$$

Contrasts

- E.g. Compare effect of system 1 to effect of system 2

$$
\begin{aligned}
w_{1} & =1 \\
w_{2} & =-1 \\
w_{3} & =0 \\
c & =(1) \alpha_{1}+(-1) \alpha_{2}+(0) \alpha_{3} \\
& =\alpha_{1}-\alpha_{2}
\end{aligned}
$$

Variance of random variables

- Recall that, for independent random variables X_{1} and X_{2}

$$
\begin{aligned}
\operatorname{Var}\left[X_{1}+X_{2}\right] & =\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right] \\
\operatorname{Var}\left[a X_{1}\right] & =a^{2} \operatorname{Var}\left[X_{1}\right]
\end{aligned}
$$

Construct confidence interval for contrasts

- Need
- Estimate of variance
- Appropriate value from t table
- Compute confidence interval as before
- If interval includes 0
- Then no statistically significant difference exists between the alternatives included in the contrast

Variance of a contrast c

$$
\begin{aligned}
\operatorname{Var}[c] & =\operatorname{Var}\left[\sum_{j=1}^{k}\left(w_{j} \alpha_{j}\right)\right] & & s_{c}^{2}=\frac{\sum_{j=1}^{k}\left(w_{j}^{2} s_{e}^{2}\right)}{k n} \\
& =\sum_{j=1}^{k} \operatorname{Var}\left[w_{j} \alpha_{j}\right] & & s_{e}^{2}=\frac{S S E}{k(n-1)} \\
& =\sum_{j=1}^{k} w_{j}^{2} \operatorname{Var}\left[\alpha_{j}\right] & & d f\left(s_{c}^{2}\right)=k(n-1)
\end{aligned}
$$

- Assumes variation due to errors is equally distributed among kn total measurements

Confidence interval for contrasts

$$
\begin{aligned}
& \left(c_{1}, c_{2}\right)=c \mp t_{1-\alpha / 2 ; k(n-1)} s_{c} \\
& s_{c}=\sqrt{\frac{\sum_{j=1}^{k}\left(w_{j}^{2} s_{e}^{2}\right)}{k n}} \\
& s_{e}^{2}=\frac{S S E}{k(n-1)}
\end{aligned}
$$

Example

- 90% confidence interval for contrast of [Sys1Sys2]

$$
\begin{aligned}
\alpha_{1} & =-0.1735 \\
\alpha_{2} & =-0.1441 \\
\alpha_{3} & =0.3175 \\
c_{[1-2]} & =-0.1735-(-0.1441)=-0.0294 \\
s_{c} & =s_{e} \sqrt{\frac{1^{2}+(-1)^{2}+0^{2}}{3(5)}}=0.0275 \\
90 \% & :\left(c_{1}, c_{2}\right)=(-0.0784,0.0196)
\end{aligned}
$$

