
1

Queuing Theory

Performance Modeling Lecture #5

Slides adapted from Mark Claypool

Introduction

• In computers, jobs share many resources:
CPU, disks, devices

• Only one can access at a time, and others
must wait in queues

• Queuing theory helps determine time jobs
spend in queue
– Can help predict response time

Outline

• Introduction
• Notation and Rules

• Little’s Law
• Types of Stochastic Processes
• Analysis of a Single Queue, Single Server
• Analysis of a Single Queue, Multiple

Servers

Notation (1 of 4)

• Imagine waiting for a PC in
the computer lab (or
checking out at a grocery
store, or …)
– Resources are “servers”
– People are “customers”

• If all servers busy,
customers wait in a “queue”

• For queuing analysis,
need to specify:
– Population size
– Number of servers
– System capacity
– Arrival process
– Service time

distribution
– Service discipline

Customer
Population

Servers

Queue

Notation (2 of 4)

• Population size
– Potential customers

who can enter
– Most real systems

finite but easier to
analyze if infinite

• Number of servers
– Can be one or more
– Assume identical, but if

not then separate
queuing system for each

• System capacity
– Number that can wait

plus be served
– Most systems have finite

queue length, but easier
to analyze if infinite

Customer
Population

Queue

Notation (3 of 4)

• Arrival process
– Students arrive a

t1,t2,…,tj
– Interarrival times are

τj=tj-tj-1
– Usually assume

independent, identically
distributed (IID)

• Arrival process (cont.)
– Most common are

Poisson arrivals
• IID and exponentially

distributed (f(x)=λe-λx)

• Service time
distribution
– Amount of time each

customer at server
– Again, usually IID
– Most common are

exponential

Customer
Population

Queue

Arrival
Process

2

Notation (4 of 4)

• Service discipline
– Order customers called for

servicing
– Most common is FCFS

• Kendall notation:

A/S/c/B/N/D
– A is Arrival time distro

– S is Service time distro

– c is number of servers

– B is number of buffers
– N is population size

– D is service discipline

• Some typical times used:

– M Exponential
• M means “memoryless” in that

current arrival independent of past

– D Deterministic

– E Erlang

– G General: Valid for all

Queue

Servers

?

Notation Example
• M/M/3/20/1500/FCFS – single queue

system with:
– Exponentially distributed arrivals
– Exponentially distributed service times
– Three servers
– Capacity 20 (queue size is 20 – 3 = 17)
– Population is 1500 total
– Service discipline is FCFS

• Often, assume infinite queue and infinite
population and FCFS, so just � M/M/3

Variables for All Queues

• τ = interarrival time
• λ = mean arrival rate

λ = 1/E[τ]

• s = mean service time per job
• µ = mean service rate per server

µ = 1/s, total rate cµ

• nq = nr of jobs waiting in queue
• ns = nr of jobs receiving service

• n = number of jobs in system

n = nq + ns

• w =mean waiting time

• r = mean response time

r = w + s

Queue

Servers

Time

Previous
arrival Arrival Begin

Service
End

Serviceτ wc sc

Rules for All Queues (1 of 4)

• Stability Condition
– If the number of jobs in queue becomes

infinite, the system becomes unstable. For
stability, mean arrival rate less than mean
service rate

λ < mµ
– Does not apply to finite queue or finite

population systems
• Finite population cannot have infinite queue
• Finite queue drops if too many arrive so never has

infinite queue

Rules for All Queues (2 of 4)

• Number in System versus Number in Queue
– Number of jobs is equal to waiting and servicing

n = nq + ns

– Also means:
E[n] = E[nq]+E[ns]

– So mean number of jobs is equal to mean number in
queue plus mean number being serviced

Var[n] = Var[nq]+Var[ns]
– Variance of jobs equal to variance of queue + service

• Also, service rate of servers independent of jobs
in queue: Cov(nq,ns) = 0

Rules for All Queues (3 of 4)

• Number versus Time
– If jobs not lost due to buffer overflow the

mean jobs is related to response time as:
mean jobs in system = arrival rate x mean response

time

– Similarly
mean jobs in queue = arrival rate x mean waiting

time

– Above equations known as “Little’s Law”
– For finite buffers can use effective arrival rate

(ignoring drops)

3

Rules for All Queues (4 of 4)

• Time in System versus Time in Queue
– Time spent in system is sum of queue and

service time
r = w + s

– If service rate independent of jobs in queue
Cov(w,s) = 0

Var[r] = Var[w] + Var[s]

Outline

• Introduction
• Notation and Rules

• Little’s Law
• Types of Stochastic Processes
• Analysis of a Single Queue, Single Server
• Analysis of a Single Queue, Multiple

Servers

Little’s Law

• Very commonly used in theorems
• Applies if jobs entering equals jobs serviced

– No new jobs created, no new jobs lost
– If lost, can adjust arrival rate to mean only those not

lost

• Intuition: suppose monitor system and keep log
of arrival and departures. If long enough,
arrivals about the same as departures.
– Let there be N arrivals in long time T. Then:

arrival rate = total arrivals / total time = N/T

Mean jobs in system = arrival rate x mean response time

Applying Little’s Law
• Can be applied to subsystem, too

– mean time in queue = arrival rate x waiting time
– mean time being serviced = arrival rate x service

time

• Example:
– server satisfies I/O request in average of 100 msec.

I/O rate is about 100 requests/sec. What is the
mean number of requests at the server?

– Mean number at server = arrival rate x response
time

= (100 requests/sec) x (0.1 sec)
= 10 requests

Utilization Law

• Given average arrival rate λ.
• Average utilization of a system is time busy over total

time
U = b/T

• Factor into:
U = b/T = (b/d) (d/T)

where d is number of departures and arrivals during time
T

• Notice, (b/d) is average time spent servicing each of the
d jobs. Call it s (s = b/d)

• Since balanced (in == out), λ = d/T
• So:

U = λs (Utilization Law)

Applying Utilization Law

• Consider I/O system with one disk and
one controller. If average time required to
service each request is 6 msec, what is
maximum request rate it can tolerate?

• Maximum will occur when 100% utilized,
so U=1

• Substituting U = λs, we get:
1 = λmaxs

• So, λmax= 1 / (6 x 10-3) = 167 requests/sec

4

Utilization Law
• Notice, utilization law U= λs can be written as:

U = λ/µ

where µ is the average service rate
• Ratio λ/µ is often called traffic intensity

– Given own symbol ρ = λ/µ

• If (ρ > 1) then λ > µ (arrival rate greater than
service rate)
– Jobs arrive faster than can be processed
– Queue grows to infinity
– Unstable

• Must have (ρ < 1) for stability (so U never > 100%)

Operational Analysis

• Using Little’s Law and Utilization Law can say
things about average behavior
– Requires no assumptions about distribution times of

arrivals or servicing
– High level view

• But can not say things about, say, maximum or
worst case

• For example, cannot use it to determine needed
buffer space to enqueue incoming requests

• Will use stochastic distributions and queuing
theory to get more detailed analysis

Outline

• Introduction
• Notation and Rules

• Little’s Law
• Types of Stochastic Processes
• Analysis of a Single Queue, Single Server
• Analysis of a Single Queue, Multiple

Servers

Types of Stochastic Processes
(1 of 5)

• Number of jobs at CPU of computer
system at time t is a random variable (n(t))

• To specify such random variables, need
probability distribution function for each t
– Same with waiting time (w(t))

• These random functions of time or
sequences are called stochastic
processes

• Useful for describing state of queuing
systems

Types of Stochastic Processes
(2 of 5)

• Discrete-State and Continuous-State Process
– Depends upon values its state can take
– If finite or countable � discrete
– Ex: jobs in system n(t) can only take values 0, 1, 2 … countable,

so discrete-state process
• Also called a stochastic chain

– Ex: waiting time w(t) can take any real value, so continuous-state
process

• Markov Process
– If future states depend only on the present and are independent

of the past then called markov process
– Makes it easier to analyze since do not need past trajectory, only

present state
– Also memory-less in that don’t need length of time in current

state

Types of Stochastic Processes
(3 of 5)

• Birth-Death Process
– Markov in which transitions restricted to neighboring

states only are called birth-death process
– Can represent states by integers, s.t. process in state

n can only go to state n+1 or n-1
– Ex: jobs in queue with single server can be

represented by birth-death process
• Arrival (birth) causes state to change by +1 and departure

after service (death) causes state to change by –1

• Only if arrive individually, not in batch

5

Types of Stochastic Processes
(4 of 5)

• Poisson Processes
– If interarrival times are IID and exponentially

distributed, then number of arrivals over
interval [t,t+x] has a Poisson distribution �
Poisson Process

– Popular because arrivals are memoryless
– Also:

• Merging k Poisson streams with mean rate λi gives
another Poisson stream with mean rate:

λ = Σλi

Types of Stochastic Processes
(4 of 5)

• Poisson Processes (continued)
– Also

• If Poisson stream split into k substreams with
probability pi, each substream is Poisson with
mean rate λpi

• If arrivals to single server with exponential service
times are Poisson with mean λ, departures are
also Poisson with mean λ, if (λ<µ)

– Same relationship holds for m servers as long as total
arrival rate less than total service rate

Types of Stochastic Processes
(5 of 5)

Poisson
Processes

Birth-death
Processes

Markov
Processes

Questions

• M/D/10/5/1000/LCFS
– What can you say about it?
– What is bad about it?

• Which has better performance:
M/M/3/300/100 or M/M/3/100/100?

• During 1 hour, name server received
10,800 requests. Mean response time 1/3
second.
– What is the mean number of queries in

system?

Outline

• Introduction
• Notation and Rules

• Little’s Law
• Types of Stochastic Processes
• Analysis of a Single Queue, Single Server
• Analysis of a Single Queue, Multiple

Servers

Single Queue, Single Server -
M/M/1 Queue (1 of 6)

• Only one queue, exponentially distributed
arrivals and service time
– Ex: CPU in a system, processes in queue

• No buffer or population limitations
• Can often be modeled as birth-death process

– Jobs arrive individually (not batch)
– Changes state to n+1 (birth), n-1 (death)

• Transitions depend only on current state

0

λ

µ
1

λ

µ
2

λ

µ
…

Notation: probability
of being in state
n is Pn

6

Single Queue, Single Server -
M/M/1 Queue (2 of 6)

• At any state, probability of going up same
as probability coming down (balanced)

λPn-1 = µPn, or
Pn = (λ/µ)Pn-1 = ρPn-1

• We have: P1 = ρP0, P2 = ρP1, ..
• In general, probability of exactly n jobs in

the system is:
Pn = ρnP0

• We want a closed form for Pn (with no P0)

Single Queue, Single Server -
M/M/1 Queue (3 of 6)

• All probabilities add to 1, so:
ΣPn = ΣρnP0 = 1 n=0,1,…,∞

• Expanding:
ρ0P0+ ρ1P0+ ρ2P0+ … = 1

P0 = 1 / (ρ0+ρ1+ρ2…) = 1/Σρn

• Since ρ < 1 for stability, can be shown that sum
converges:

P0 = 1-ρ and Pn = (1-ρ)ρn

• Can now derive many useful performance
parameters for M/M/1 queue

Single Queue, Single Server -
M/M/1 Queue (4 of 6)

• Mean jobs in system
E[n] = ΣnPn = Σn(1-ρ)ρn = ρ /(1-ρ) n=0,…,∞

• Variance of jobs in system
Var[n] = E[(n – E[n])2] = E[n2] - (E[n])2

Σn2(1-ρ)ρn2
– (Σn(1-ρ)ρn)2 = ρ/(1-ρ)2

• Probability of n or more jobs
Pr (≥ n jobs in system) = ΣPj j=n,…,∞

= Σ(1-ρ)ρj = ρn

• Mean response time
– Using Little’s law

• mean jobs = mean arrv rate x mean resp time

Single Queue, Single Server -
M/M/1 Queue (5 of 6)

• Mean jobs in queue (use n-1 since at most one
serviced)

E[nq] = Σ(n-1)Pn = Σ(n-1)(1-ρ)ρn = ρ2/(1-ρ)
– When no jobs in system, idle
– When jobs in system, busy

• Utilization
– Server is busy when 1 or more jobs in system
– Average load, or average utilization

U = 1 – P0 = 1-(1-ρ) = ρ
– (Note, same as before)

Single Queue, Single Server -
M/M/1 Queue (6 of 6)

• As utilization
increases beyond
85%, queue rises
sharply
– Corresponding sharp

rise in response time

• Utilization must be
under 100%, but
often lower
– Ex: OS CPU

scheduler often has
60-80% heuristic

Example of M/M/1 Queue
Analysis (1 of 2)

• Network gateway, 4 Mbps, packet size
1000 bytes, Arrival rate of 125 packets/sec
– What is the probability of overflow with only

12 buffers?
– How many buffers are needed to keep packet

loss to 1 in 1,000,000?

7

Example of M/M/1 Queue Analysis (2 of 2)

• Arrival rate λ=125 pps
• Service rate:

4000000/8
= 500000 Mbytes/sec

500000/1000 = 500 pps
So, µ=500 pps

• Utilization (traffic intensity):
ρ = λ/µ = 125/500 = .25

• Mean packets in gateway:
ρ/(1-ρ) = .25/.75 = .33

• Probability of n packets in
gateway
Pr(n) = (1-ρ)ρn=.75(.25)n

• Mean time in gateway:
(1/µ) / (1-ρ)
= (1/500)/(1-.25) = 2.66ms

• Prob of overflow = Pr(13+)
= ρ13 = .2513 = 1.49x10-8

≈ 15 packets/billion

• To limit to less than 10-6

ρn≤10-6

n > log(10-6)/log(.25)
> 9.96

– So, 10 buffers

Another Example of M/M/1
Queue Analysis (1 of 2)

• Web server. Time between requests
exponential with mean time between 8 ms.
Time to process exponential with average
service time 5 ms.
A) What is the average response time?
B) How much faster must the server be to halve

this average response time?
C) How big a buffer so only 1 in 1,000,000,000

requests are lost?

Another Example of M/M/1
Queue Analysis (2 of 2)

• Request rate
λ = 1000 / 8 = 0.125

requests per ms

• Service rate
µ = 1000 / 5 = 0.2

requests per ms

• Utilization
ρ = λ/µ= .125/.2 = .625
– So, 62.5% of capacity

A) Avg response time
(1/µ) / (1-ρ)

= (1/.2)/(1-.625)
= 13.33 ms

• To halve, want
(1/µ) / (1-ρ) = 6.665

– Assume λ fixed, so
change µ

µ = 1/6.665 + 0.125 = .257
B) So, (.275-.2)/.2 * 100

= 37.5% faster
• 1 in 1 billion errors

– Buffer size k:
Pr(k) ≤ 10-9

ρk ≤ 10-9

C) So,
k > log(10-9) / log(.625)
k ≈ 44

Outline

• Introduction
• Notation and Rules

• Little’s Law
• Types of Stochastic Processes
• Analysis of a Single Queue, Single Server
• Analysis of a Single Queue, Multiple

Servers

Single Queue, Multiple Servers
- M/M/c Queue (1 of 4)

• Model multiple servers
– Model multiprocessor (SMP) systems

• All “ready to run” processes in one queue

– Model Web server “farm”
– Model grocery store with single queue

• ‘c’ is the number of servers (Jain uses ‘m’)
• Assume arrival rate λ is the same
• Each server now can serve µ jobs per time

– Mean service rate cµ
– Note, assumes no “cost” for determining server

• If any server idle (fewer than c jobs in system, say n), job
serviced immediately

• If all c servers are busy, job waits in queue

Single Queue, Multiple Servers
- M/M/c Queue (2 of 4)

• From above:
λn= λ n=0,…,∞
µn=nµ n=1,…,c-1
µn=cµ n=c,…,∞

• Using balanced
equations:
Pn = [(cρ)n/n!]P0 n=1,…,c
Pn = [(cρ)n/(c!cn-c)]P0 n>c

• Where ρ is traffic intensity
– Also, utilization of each

server

• Find P0 since sum must be
1

• ΣPn= Σ[(cρ)n/n!]P0 (1 to c)
+ Σ[(cρ)n/(c!cn-c)]P0 (c+1 to

∞)
= 1

• Solve for P0 =
__________1_________

Σ[(cρ)n/n!] + (cρ)c/(c!(1-ρ))
(n=1 to c in first term)

0

λ

µ
1

λ

2µ
2

λ

3µ
… c

λ

cµ
c+1

λ

cµ
c+2

λ

cµ
…

λ

(c-1)µ

8

Single Queue, Multiple Servers
- M/M/c Queue (3 of 4)

• Newly arriving job will wait if all servers
are busy. Happens if more than c jobs.
Pr(>c jobs) = ρc+ ρc+1+ ρc+2+… = ΣPn (n from

c+1 to ∞)

= P0(cρ)c/c! x Σρn-c (n from c+1 to ∞)

= [(cρ)c]/[c!(1-ρ)] P0

– Known as Erlang’s C formula (κ)

• Mean jobs in system
E[n] = ΣnPn = [P0(cρ)c]/[c!(1-ρ)2] + cρ

= cρ + ρκ/(1-ρ)

Single Queue, Multiple Servers
- M/M/c Queue (4 of 4)

• Mean jobs in queue
E[nq] = Σ(n-c)Pn = P0(cρ)c/c! x Σ(n-c)ρn-c

= [P0ρ(cρ)c]/[c!(1-ρ)2] = ρκ/(1-ρ)

• Mean response time
– Using Little’s law

• mean jobs = mean arrv rate x mean resp time

E[n] = λE[r]
E[r] = E[n]/ λ

E[r] = 1/µ + κ/[cµ(1-ρ)]

• Mean waiting time E[w] = E[nq]/ λ
= [ρκ/(1-ρ)]/λ = κ/[cµ(1-ρ)]

M/M/c Example (1 of 2)

• How does response time for previous
M/M/1 Web server change if number of
servers increased to 4?
– Can model as M/M/4

M/M/c Example (2 of 2)

• Request rate λ=0.125
• Service rate µ=0.2
• Traffic intensity

– ρ = µ/(cλ) = 0.1563

• Probability of idle
• P0 =

____1_________
Σ[(cρ)n/n!] +
(cρ)c/(c!(1-ρ)) P0

= 0.532

• Erlang’s C formula
– κ = (4x0.1563)4 (0.5352)

4!(1-.01563)
= .0040326

• So, average response
time:

E[r] = 1/µ + κ/cµ(1-ρ)
= 1/.2 + .004326/(4)(.2)(1-

.1563)
= 5.01 ms

• Thus, increasing servers
by 4 reduces response
time by appx 62%

Another M/M/c Example (1 of 2)

• Students arrive at computer lab, 10 per
hour. Spend 20 minutes at a terminal
(assume exponentially distributed) and
then leave. Center has 5 terminals.
A) How many terminals can go down and still

be able to service the students?
B) What is the probability all terminals are

busy?
C) How long is the average student in center?

Another M/M/c Example (2 of 2)
• Arrival rate λ=.167 per min, µ=.05 per min
• Utilization = λ/(µc) = .167/(.05x5) = .67
A) Find c s.t. U > 1, so 1 > λ/(µc) � c > λ/u ≈ 4

– One terminal only can go down

• Prob all idle, P0
= [1 + (5x.67)5/[5!(1-.67)] + (5x.67)1/1!

+ (5x.67)2/2! + (5x.67)3/3! + + (5x.67)4/4!]-1

= 0.0318

B) Prob busy � Erlang’s C formula (κ)
Pr(>c jobs) = [(cp)c]/[c!(1-ρ)] P0

= [(5x.67)5] / [5!(1-.67)] x .0318 = .33
– So, 1/3 of the time you’ll need to wait upon arriving

C) Time to wait: E[w] = κ/[mµ(1- ρ)]
= .33/(5x.05x(1-.67)) = 4 minutes

9

M/M/c versus M/M/1 (1 of 2)

• Consider what would happen if the
terminals were distributed in separate
labs, one per lab, across campus.
A) Would you wait longer?

• Can model as separate M/M/1 systems
and compare to M/M/c system

M/M/c versus M/M/1 (2 of 2)

• For M/M/1 λ=.167 / 5 = .0333 and µ=.05
– ρ=.0333/.05 = .67

• Expected waiting time:
E[w] = E[nq]/λ = [ρ2 / (1-ρ)] / λ

= [(.67)2/(1-.67)] / (.033)

≈ 41 minutes
A) Yes. A lot longer.

• What is the model ignoring that may make
the answer seem better?

