Queuing Theory

Performance Modeling Lecture #5

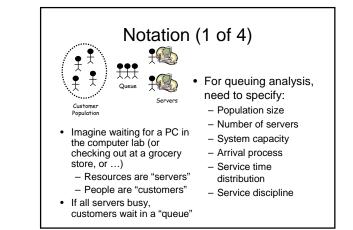
Slides adapted from Mark Claypool

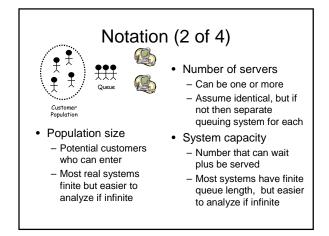
Introduction

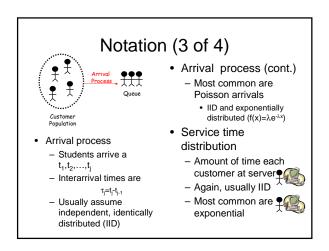
- In computers, jobs share many resources: CPU, disks, devices
- Only one can access at a time, and others must wait in queues
- Queuing theory helps determine time jobs spend in queue
 - Can help predict response time

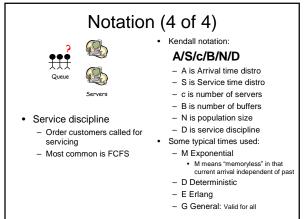
Outline

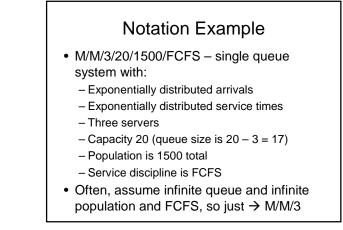
- Introduction
- Notation and Rules
- · Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

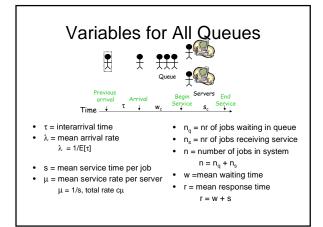










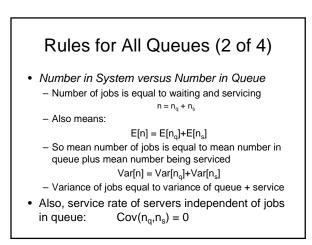


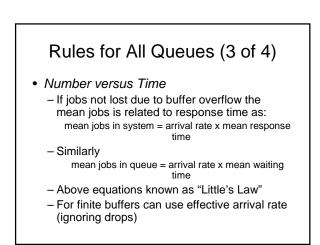
Rules for All Queues (1 of 4)

- Stability Condition
 - If the number of jobs in queue becomes infinite, the system becomes unstable. For stability, mean arrival rate less than mean service rate

λ < mμ

- Does not apply to finite queue or finite population systems
 - Finite population cannot have infinite queue
 - Finite queue drops if too many arrive so never has infinite queue





Rules for All Queues (4 of 4)

 Time in System versus Time in Queue

 Time spent in system is sum of queue and service time

r = w + s

 If service rate independent of jobs in queue Cov(w,s) = 0 Var[r] = Var[w] + Var[s]

Outline

- Introduction
- Notation and Rules
- · Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

Little's Law

Mean jobs in system = arrival rate x mean response time

- · Very commonly used in theorems
- Applies if jobs entering equals jobs serviced – No new jobs created, no new jobs lost
 - If lost, can adjust arrival rate to mean only those not lost
- Intuition: suppose monitor system and keep log of arrival and departures. If long enough, arrivals about the same as departures.
 - Let there be N arrivals in long time T. Then:
 arrival rate = total arrivals / total time = N/T

Applying Little's Law

- · Can be applied to subsystem, too
 - mean time in queue = arrival rate x waiting timemean time being serviced = arrival rate x service
- time
 Example:
 - server satisfies I/O request in average of 100 msec.
 I/O rate is about 100 requests/sec. What is the mean number of requests at the server?
 - Mean number at server = arrival rate x response time
 - = (100 requests/sec) x (0.1 sec)
 - = 10 requests

Utilization Law

- Given average arrival rate λ.
- Average utilization of a system is time busy over total time

U = b/T

U = b/T = (b/d) (d/T)

where d is number of departures and arrivals during time T

- Notice, (b/d) is average time spent servicing each of the d jobs. Call it s (s = b/d)
- Since balanced (in == out), $\lambda = d/T$

So:

· Factor into:

 $U = \lambda s$ (Utilization Law)

Applying Utilization Law

- Consider I/O system with one disk and one controller. If average time required to service each request is 6 msec, what is maximum request rate it can tolerate?
- Maximum will occur when 100% utilized, so U=1
- Substituting U = λ s, we get:

 $1 = \lambda_{max}s$

• So, $\lambda_{max} = 1 / (6 \times 10^{-3}) = 167$ requests/sec

Utilization Law

- Notice, utilization law U= $\lambda s\,$ can be written as: $U=\lambda/\mu$
 - where $\boldsymbol{\mu}$ is the average service rate
- Ratio λ/μ is often called *traffic intensity* – Given own symbol ρ = λ/μ
- If $(\rho > 1)$ then $\lambda > \mu$ (arrival rate greater than service rate)
 - Jobs arrive faster than can be processed
 - Queue grows to infinity
 - Unstable
- Must have (ρ < 1) for stability (so U never > 100%)

Operational Analysis

- Using Little's Law and Utilization Law can say things about average behavior
 - Requires no assumptions about distribution times of arrivals or servicing
 - High level view
- But can not say things about, say, maximum or worst case
- For example, cannot use it to determine needed buffer space to enqueue incoming requests
- Will use stochastic distributions and queuing theory to get more detailed analysis

Outline

- Introduction
- Notation and Rules
- Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

Types of Stochastic Processes (1 of 5)

- Number of jobs at CPU of computer system at time t is a random variable (n(t))
- To specify such random variables, need probability distribution function for each t
 Same with waiting time (w(t))
- These random functions of time or sequences are called *stochastic processes*
- Useful for describing state of queuing systems

Types of Stochastic Processes (2 of 5)

- Discrete-State and Continuous-State Process
 - Depends upon values its state can take
 - − If finite or countable \rightarrow discrete
 - Ex: jobs in system n(t) can only take values 0, 1, 2 ... countable, so discrete-state process
 - Also called a *stochastic chain* Ex: waiting time w(t) can take any real value, so continuous-state
- process
- Markov Process
 - If future states depend only on the present and are independent of the past then called *markov process*
 - Makes it easier to analyze since do not need past trajectory, only present state
 - Also memory-less in that don't need length of time in current state

Types of Stochastic Processes (3 of 5)

Birth-Death Process

- Markov in which transitions restricted to neighboring states only are called *birth-death process*
- Can represent states by integers, s.t. process in state n can only go to state n+1 or n-1
- Ex: jobs in queue with single server can be represented by birth-death process
 - Arrival (birth) causes state to change by +1 and departure after service (death) causes state to change by -1
 - · Only if arrive individually, not in batch

Types of Stochastic Processes (4 of 5)

- Poisson Processes
 - If interarrival times are IID and exponentially distributed, then number of arrivals over interval [t,t+x] has a Poisson distribution \rightarrow Poisson Process
 - Popular because arrivals are memoryless – Also:

 - Merging k Poisson streams with mean rate λ_i gives another Poisson stream with mean rate:

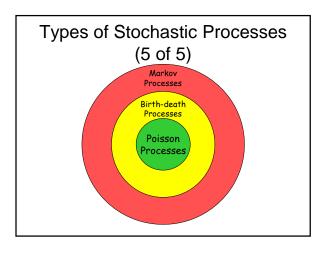
 $\lambda = \Sigma \lambda_i$

Types of Stochastic Processes (4 of 5)

Poisson Processes (continued)

– Also

- If Poisson stream split into k substreams with probability p_i, each substream is Poisson with mean rate λp_i
- If arrivals to single server with exponential service times are Poisson with mean λ . departures are also Poisson with mean λ , if ($\lambda < \mu$)
 - Same relationship holds for m servers as long as total arrival rate less than total service rate



Questions

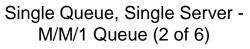
- M/D/10/5/1000/LCFS - What can you say about it?
 - What is bad about it?
- Which has better performance: M/M/3/300/100 or M/M/3/100/100?
- · During 1 hour, name server received 10.800 requests. Mean response time 1/3 second.
 - What is the mean number of queries in system?

Outline

- Introduction
- Notation and Rules
- · Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- · Analysis of a Single Queue, Multiple Servers

Single Queue, Single Server -M/M/1 Queue (1 of 6)

- · Only one queue, exponentially distributed arrivals and service time
- Ex: CPU in a system, processes in queue
- · No buffer or population limitations
- · Can often be modeled as birth-death process - Jobs arrive individually (not batch) - Changes state to n+1 (birth), n-1 (death)
- · Transitions depend only on current state



• At any state, probability of going up same as probability coming down (balanced)

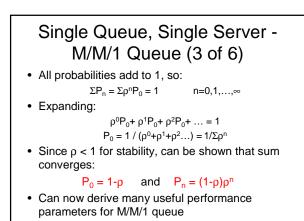
 $\lambda P_{n-1} = \mu P_n$, or $P_n = (\lambda/\mu)P_n = \rho P_n$

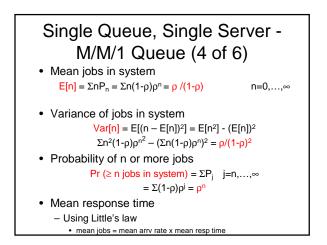
$$P_n = (N \mu) P_{n-1} = \rho P_{n-1}$$

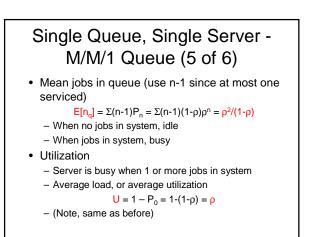
- We have: $P_1 = \rho P_0$, $P_2 = \rho P_1$, ...
- In general, probability of exactly n jobs in the system is:

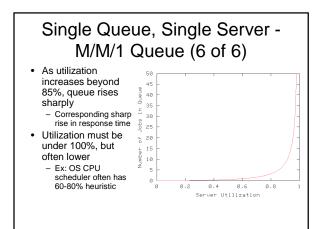
 $P_n = \rho^n P_0$

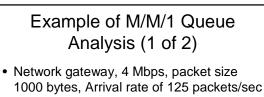
• We want a closed form for P_n (with no P₀)











- What is the probability of overflow with only 12 buffers?
- How many buffers are needed to keep packet loss to 1 in 1,000,000?

Example of M/M/1 Queue Analysis (2 of 2)

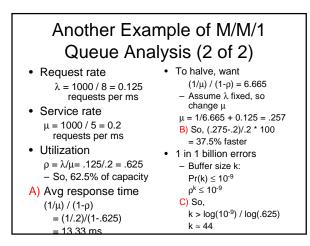
- Arrival rate λ=125 pps
 Service rate:
- 4000000/8 = 500000 Mbytes/sec 500000/1000 = 500 pps So, μ=500 pps
- Utilization (traffic intensity): $\rho = \lambda/\mu = 125/500 = .25$
- Mean packets in gateway: ρ/(1-ρ) = .25/.75 = .33
- Probability of n packets in gateway
- Pr(n) = $(1-\rho)\rho^{n}$ =.75(.25)ⁿ • Mean time in gateway: $(1/\mu) / (1-\rho)$ = (1/500)/(1-.25) = 2.66ms
- Prob of overflow = Pr(13+)= ρ^{13} = .25¹³ = 1.49x10⁻⁸
- $\approx 15 \text{ packets/billion}$ To limit to less than 10^{-6} $\rho^{n \le 10^{-6}}$ $n > \log(10^{-6})/\log(.25)$

> 9.96

So, 10 buffers

Another Example of M/M/1 Queue Analysis (1 of 2)

- Web server. Time between requests exponential with mean time between 8 ms. Time to process exponential with average service time 5 ms.
 - A) What is the average response time?
 - B) How much faster must the server be to halve this average response time?
 - C) How big a buffer so only 1 in 1,000,000,000 requests are lost?



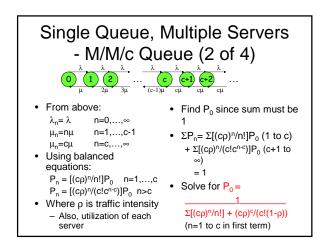
Outline

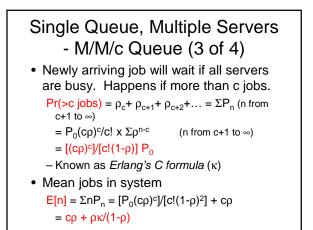
- Introduction
- · Notation and Rules
- · Little's Law
- Types of Stochastic Processes
- · Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

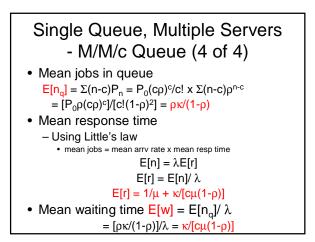
Single Queue, Multiple Servers - M/M/c Queue (1 of 4)

Model multiple servers

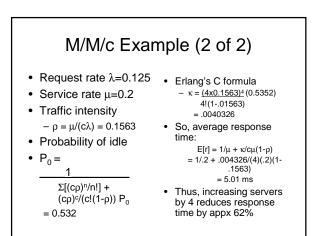
- Model multiprocessor (SMP) systems
 All "ready to run" processes in one queue
- All "ready to run" processes in one
 Model Web server "farm"
- Model web server failing
 Model grocery store with single queue
- 'c' is the number of servers (Jain uses 'm')
- Assume arrival rate λ is the same
- Each server now can serve μ jobs per time
 - Mean service rate cµ
 - Note, assumes no "cost" for determining server
- If any server idle (fewer than c jobs in system, say n), job serviced immediately
- If all c servers are busy, job waits in queue







M/M/c Example (1 of 2) • How does response time for previous M/M/1 Web server change if number of servers increased to 4? – Can model as M/M/4



Another M/M/c Example (1 of 2)

- Students arrive at computer lab, 10 per hour. Spend 20 minutes at a terminal (assume exponentially distributed) and then leave. Center has 5 terminals.
 - A) How many terminals can go down and still be able to service the students?
 - B) What is the probability all terminals are busy?
 - C) How long is the average student in center?

Another M/M/c Example (2 of 2) • Arrival rate $\lambda = .167$ per min, $\mu = .05$ per min • Utilization = $\lambda/(\mu c) = .167/(.05x5) = .67$ A) Find c s.t. U > 1, so 1 > $\lambda/(\mu c) \rightarrow c > \lambda/u \approx 4$ - One terminal only can go down • Prob all idle, P₀ = [1 + (5x.67)⁵/[5!(1-67)] + (5x.67)¹/!! + (5x.67)⁵/[5!(1-67)] + (5x.67)⁴/!!]¹ = 0.0318 B) Prob busy \rightarrow Erlang's C formula (κ) Pr(c_ jobs) = [(cp)²]/[c!(1-p)] P₀ = [(5x.67)⁵] /[5!(1-67)] × .0318 = .33 - So, 1/3 of the time you'll need to wait upon arriving C) Time to wait: E[W] = $\kappa/[m\mu(1-\rho)]$ = .33(5x.05x(1-67)) = 4 minutes

M/M/c versus M/M/1 (1 of 2)

- Consider what would happen if the terminals were distributed in separate labs, one per lab, across campus.
 A) Would you wait longer?
- Can model as separate M/M/1 systems and compare to M/M/c system

M/M/c versus M/M/1 (2 of 2)

- For M/M/1 $\lambda {=}.167$ / 5 = .0333 and $\mu {=}.05$ $-\,\rho {=}.0333 /.05$ = .67
- Expected waiting time:
 $$\begin{split} & \text{E}[w] = \text{E}[n_q]/\lambda = \left[\rho^2 \,/ \, (1\text{-}\rho)\right] \,/ \, \lambda \\ & = \left[(.67)^2 / (1\text{-}.67)\right] \,/ \, (.033) \end{split}$$
 - \approx 41 minutes
 - A) Yes. A lot longer.
- What is the model ignoring that may make the answer seem better?