

Introduction

- In computers, jobs share many resources: CPU, disks, devices
- Only one can access at a time, and others must wait in queues
- Queuing theory helps determine time jobs spend in queue
-Can help predict response time

Outline

- Introduction
- Notation and Rules
- Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

Notation Example

- M/M/3/20/1500/FCFS - single queue system with:
- Exponentially distributed arrivals
- Exponentially distributed service times
- Three servers
- Capacity 20 (queue size is $20-3=17$)
- Population is 1500 total
- Service discipline is FCFS
- Often, assume infinite queue and infinite population and FCFS, so just \rightarrow M/M/3

Rules for All Queues (2 of 4)

- Number in System versus Number in Queue
- Number of jobs is equal to waiting and servicing

$$
\mathrm{n}=\mathrm{n}_{\mathrm{q}}+\mathrm{n}_{\mathrm{s}}
$$

- Also means:

$$
\mathrm{E}[\mathrm{n}]=\mathrm{E}\left[\mathrm{n}_{\mathrm{q}}\right]+\mathrm{E}\left[\mathrm{n}_{\mathrm{s}}\right]
$$

- So mean number of jobs is equal to mean number in queue plus mean number being serviced

$$
\operatorname{Var}[\mathrm{n}]=\operatorname{Var}\left[\mathrm{n}_{\mathrm{q}}\right]+\operatorname{Var}\left[\mathrm{n}_{\mathrm{s}}\right]
$$

- Variance of jobs equal to variance of queue + service
- Also, service rate of servers independent of jobs in queue: $\quad \operatorname{Cov}\left(\mathrm{n}_{\mathrm{q}}, \mathrm{n}_{\mathrm{s}}\right)=0$

Rules for All Queues (1 of 4)

- Stability Condition

- If the number of jobs in queue becomes infinite, the system becomes unstable. For stability, mean arrival rate less than mean service rate

$$
\lambda<m \mu
$$

- Does not apply to finite queue or finite population systems
- Finite population cannot have infinite queue
- Finite queue drops if too many arrive so never has infinite queue

Rules for All Queues (3 of 4)

- Number versus Time
- If jobs not lost due to buffer overflow the mean jobs is related to response time as: mean jobs in system $=$ arrival rate \times mean response time
- Similarly
mean jobs in queue $=$ arrival rate \times mean waiting time
- Above equations known as "Little's Law"
- For finite buffers can use effective arrival rate (ignoring drops)

Rules for All Queues (4 of 4)

- Time in System versus Time in Queue
- Time spent in system is sum of queue and service time

$$
r=w+s
$$

- If service rate independent of jobs in queue

$$
\operatorname{Cov}(w, s)=0
$$

$\operatorname{Var}[r]=\operatorname{Var}[w]+\operatorname{Var}[s]$

Outline

- Introduction
- Notation and Rules
- Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

Little's Law

Mean jobs in system $=$ arrival rate \times mean response time

- Very commonly used in theorems
- Applies if jobs entering equals jobs serviced
- No new jobs created, no new jobs lost
- If lost, can adjust arrival rate to mean only those not lost
- Intuition: suppose monitor system and keep log of arrival and departures. If long enough, arrivals about the same as departures.
- Let there be N arrivals in long time T . Then: arrival rate $=$ total arrivals $/$ total time $=\mathrm{N} / \mathrm{T}$

Applying Little's Law

- Can be applied to subsystem, too
- mean time in queue $=$ arrival rate x waiting time
- mean time being serviced $=$ arrival rate \times service time
- Example:
- server satisfies I/O request in average of 100 msec . I/O rate is about 100 requests/sec. What is the mean number of requests at the server?
- Mean number at server $=$ arrival rate \times response time
$=(100$ requests $/ \mathrm{sec}) \times(0.1 \mathrm{sec})$
$=10$ requests

Utilization Law

- Given average arrival rate λ.
- Average utilization of a system is time busy over total time
- Factor into:

$$
U=b / T
$$

$$
\mathrm{U}=\mathrm{b} / \mathrm{T}=(\mathrm{b} / \mathrm{d})(\mathrm{d} / \mathrm{T})
$$

where d is number of departures and arrivals during time T

- Notice, (b/d) is average time spent servicing each of the d jobs. Call it $s(s=b / d)$
- Since balanced (in == out), $\lambda=d / T$
- So:

$$
U=\lambda s \quad \text { (Utilization Law })
$$

Applying Utilization Law

- Consider I/O system with one disk and one controller. If average time required to service each request is 6 msec , what is maximum request rate it can tolerate?
- Maximum will occur when 100% utilized, so U=1
- Substituting $U=\lambda s$, we get:

$$
1=\lambda_{\max } s
$$

- So, $\lambda_{\max }=1 /\left(6 \times 10^{-3}\right)=167$ requests $/ \mathrm{sec}$

Utilization Law

- Notice, utilization law $U=\lambda s$ can be written as:

$$
U=\lambda / \mu
$$

where μ is the average service rate

- Ratio λ / μ is often called traffic intensity
- Given own symbol $\rho=\lambda / \mu$
- If $(\rho>1)$ then $\lambda>\mu$ (arrival rate greater than service rate)
- Jobs arrive faster than can be processed
- Queue grows to infinity
- Unstable
- Must have ($\rho<1$) for stability (so U never > 100\%)

Outline

- Introduction
- Notation and Rules
- Little’s Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

Operational Analysis

- Using Little's Law and Utilization Law can say things about average behavior
- Requires no assumptions about distribution times of arrivals or servicing
- High level view
- But can not say things about, say, maximum or worst case
- For example, cannot use it to determine needed buffer space to enqueue incoming requests
- Will use stochastic distributions and queuing theory to get more detailed analysis

Types of Stochastic Processes (1 of 5)

- Number of jobs at CPU of computer system at time t is a random variable $(n(t))$
- To specify such random variables, need probability distribution function for each t - Same with waiting time (w(t))
- These random functions of time or sequences are called stochastic processes
- Useful for describing state of queuing systems

Types of Stochastic Processes (3 of 5)

- Birth-Death Process
- Markov in which transitions restricted to neighboring states only are called birth-death process
- Can represent states by integers, s.t. process in state n can only go to state $\mathrm{n}+1$ or $\mathrm{n}-1$
- Ex: jobs in queue with single server can be represented by birth-death process
- Arrival (birth) causes state to change by +1 and departure after service (death) causes state to change by -1
- Only if arrive individually, not in batch

Types of Stochastic Processes (4 of 5)

- Poisson Processes
- If interarrival times are IID and exponentially distributed, then number of arrivals over interval $[t, t+x]$ has a Poisson distribution \rightarrow Poisson Process
- Popular because arrivals are memoryless
- Also:
- Merging k Poisson streams with mean rate λ_{i} gives another Poisson stream with mean rate:

$$
\lambda=\Sigma \lambda_{i}
$$

Types of Stochastic Processes (4 of 5)

- Poisson Processes (continued) - Also
- If Poisson stream split into k substreams with probability p_{i}, each substream is Poisson with mean rate λp_{i}
- If arrivals to single server with exponential service times are Poisson with mean λ, departures are also Poisson with mean λ, if $(\lambda<\mu)$
- Same relationship holds for m servers as long as total arrival rate less than total service rate

Types of Stochastic Processes (5 of 5)

Outline

- Introduction
- Notation and Rules
- Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

Questions

- M/D/10/5/1000/LCFS
- What can you say about it?
- What is bad about it?
- Which has better performance: M/M/3/300/100 or M/M/3/100/100?
- During 1 hour, name server received 10,800 requests. Mean response time 1/3 second.
- What is the mean number of queries in system?

Single Queue, Single Server M/M/1 Queue (1 of 6)

- Only one queue, exponentially distributed arrivals and service time
- Ex: CPU in a system, processes in queue
- No buffer or population limitations
- Can often be modeled as birth-death process
- Jobs arrive individually (not batch)
- Changes state to $\mathrm{n}+1$ (birth), $\mathrm{n}-1$ (death)
- Transitions depend only on current state

Single Queue, Single Server M/M/1 Queue (2 of 6)

- At any state, probability of going up same as probability coming down (balanced)

$$
\begin{gathered}
\lambda P_{n-1}=\mu P_{n}, \text { or } \\
P_{n}=(\lambda / \mu) P_{n-1}=\rho P_{n-1}
\end{gathered}
$$

- We have: $P_{1}=\rho P_{0}, P_{2}=\rho P_{1}, .$.
- In general, probability of exactly n jobs in the system is:

$$
P_{n}=\rho^{n} P_{0}
$$

- We want a closed form for P_{n} (with no P_{0})

Single Queue, Single Server M/M/1 Queue (3 of 6)

- All probabilities add to 1 , so:

$$
\Sigma P_{n}=\Sigma \rho^{n} P_{0}=1 \quad n=0,1, \ldots, \infty
$$

- Expanding:

$$
\begin{gathered}
\rho^{0} P_{0}+\rho^{1} P_{0}+\rho^{2} P_{0}+\ldots=1 \\
P_{0}=1 /\left(\rho^{0}+\rho^{1}+\rho^{2} \ldots\right)=1 / \Sigma \rho^{n}
\end{gathered}
$$

- Since $\rho<1$ for stability, can be shown that sum converges

$$
P_{0}=1-\rho \quad \text { and } \quad P_{n}=(1-\rho) \rho^{n}
$$

- Can now derive many useful performance parameters for M/M/1 queue

Single Queue, Single Server M/M/1 Queue (5 of 6)

- Mean jobs in queue (use $n-1$ since at most one serviced)
$E\left[n_{q}\right]=\Sigma(n-1) P_{n}=\Sigma(n-1)(1-\rho) \rho^{n}=\rho^{2} /(1-\rho)$
- When no jobs in system, idle
- When jobs in system, busy
- Utilization
- Server is busy when 1 or more jobs in system
- Average load, or average utilization

$$
U=1-P_{0}=1-(1-\rho)=\rho
$$

- (Note, same as before)

Single Queue, Single Server M/M/1 Queue (6 of 6)

- As utilization increases beyond 85%, queue rises sharply
- Corresponding sharp rise in response time
- Utilization must be under 100\%, but often lower
- Ex: OS CPU scheduler often has 60-80\% heuristic

Example of M/M/1 Queue Analysis (1 of 2)

- Network gateway, 4 Mbps , packet size 1000 bytes, Arrival rate of 125 packets/sec
- What is the probability of overflow with only 12 buffers?
- How many buffers are needed to keep packet loss to 1 in 1,000,000?

Example of M/M/1 Queue Analysis (2 of 2)

- Arrival rate $\lambda=125 \mathrm{pps}$
- Service rate: 4000000/8
= $500000 \mathrm{Mbytes} / \mathrm{sec}$ $500000 / 1000=500 \mathrm{pps}$ So, $\mu=500 \mathrm{pps}$
- Utilization (traffic intensity): $\rho=\lambda / \mu=125 / 500=.25$
- Mean packets in gateway: $\rho /(1-\rho)=.25 / .75=.33$
- Probability of n packets in gateway
$\operatorname{Pr}(\mathrm{n})=(1-\rho) \rho^{n}=.75(.25)^{n}$
- Mean time in gateway:
($1 / \mu$)/(1- ρ)
$=(1 / 500) /(1-.25)=2.66 \mathrm{~ms}$
Prob of overflow $=\operatorname{Pr}(13+)$
$=\rho^{13}=.25^{13}=1.49 \times 10^{-8}$
≈ 15 packets/billion
- To limit to less than 10^{-6}
$\rho^{n} \leq 10^{-6}$
$\mathrm{n}>\log \left(10^{-6}\right) / \log (.25)$
> 9.96
- So, 10 buffers

Another Example of M/M/1 Queue Analysis (1 of 2)

- Web server. Time between requests exponential with mean time between 8 ms . Time to process exponential with average service time 5 ms .
A) What is the average response time?
B) How much faster must the server be to halve this average response time?
C) How big a buffer so only 1 in 1,000,000,000 requests are lost?

Another Example of M/M/1 Queue Analysis (2 of 2)

- Request rate
$\lambda=1000 / 8=0.125$ requests per ms
- Service rate
$\mu=1000 / 5=0.2$
requests per ms
- Utilization
$\rho=\lambda / \mu=.125 / .2=.625$
- So, 62.5% of capacity
A) Avg response time
$(1 / \mu) /(1-\rho)$
$=(1 / .2) /(1-.625)$
$=13.33 \mathrm{~ms}$
- To halve, want $(1 / \mu) /(1-\rho)=6.665$
- Assume λ fixed, so change μ
$\mu=1 / 6.665+0.125=.257$
B) So, (.275-.2)/. 2 * 100 $=37.5 \%$ faster
- 1 in 1 billion errors
- Buffer size k: $\operatorname{Pr}(\mathrm{k}) \leq 10^{-9}$ $\rho^{k} \leq 10^{-9}$
C) So, $\mathrm{k}>\log \left(10^{-9}\right) / \log (.625)$ $k \approx 44$

Outline

- Introduction
- Notation and Rules
- Little's Law
- Types of Stochastic Processes
- Analysis of a Single Queue, Single Server
- Analysis of a Single Queue, Multiple Servers

Single Queue, Multiple Servers - M/M/c Queue (1 of 4)
 - Model multiple servers
 - Model multiprocessor (SMP) systems
 - All "ready to run" processes in one queue
 - Model Web server "farm"
 - Model grocery store with single queue
 - ' c ' is the number of servers (Jain uses ' m ')
 - Assume arrival rate λ is the same
 - Each server now can serve μ jobs per time
 - Mean service rate cu
 - Note, assumes no "cost" for determining server
 - If any server idle (fewer than c jobs in system, say n), job serviced immediately
 - If all c servers are busy, job waits in queue

Single Queue, Multiple Servers - M/M/c Queue (2 of 4)

- From above.
$\lambda_{n}=\lambda \quad n=0, \ldots, \infty$
$\mu_{\mathrm{n}}=\mathrm{n} \mu \quad \mathrm{n}=1, \ldots, \mathrm{c}-1$
$\mu_{n}=c \mu \quad n=c, \ldots, \infty$
- Using balanced equations:
$P_{n}=\left[(c \rho)^{n} / n!\right] P_{0} \quad n=1, \ldots, c$
$P_{n}=\left[(c \rho)^{\left.n /\left(c!c^{n-c}\right)\right] P_{0} \quad n>c}\right.$
- Where ρ is traffic intensity
- Also, utilization of each server
- Find P_{0} since sum must be 1
- $\Sigma \mathrm{P}_{\mathrm{n}}=\Sigma\left[(\mathrm{c} \rho)^{\mathrm{n}} / \mathrm{n}!\right] \mathrm{P}_{0}$ (1 to c) $+\Sigma\left[(c \rho)^{\left.n /\left(c!c^{n-c}\right)\right]}\right] P_{0}(c+1$ to $\infty)$ $=1$
- Solve for $P_{0}=$
$\frac{1}{\sum\left[(c \rho)^{n} / n!\right]+(c \rho)^{c} /(c!(1-\rho))}(n=1$ to c in first term)

Single Queue, Multiple Servers - M/M/c Queue (3 of 4)

- Newly arriving job will wait if all servers are busy. Happens if more than c jobs.
$\operatorname{Pr}(>c$ jobs $)=\rho_{c}+\rho_{c+1}+\rho_{c+2}+\ldots=\Sigma P_{n}$ (n from $\mathrm{c}+1$ to ∞)
$=P_{0}(c \rho)^{c} / c!\times \Sigma \rho^{n-c} \quad(n$ from $c+1$ to $\infty)$
$=\left[(c \rho)^{c}\right] /[c!(1-\rho)] P_{0}$
- Known as Erlang's C formula (κ)
- Mean jobs in system
$\mathrm{E}[\mathrm{n}]=\Sigma \mathrm{nP}_{\mathrm{n}}=\left[\mathrm{P}_{0}(\mathrm{c} \mathrm{\rho})^{\mathrm{c}}\right] /\left[\mathrm{c}!(1-\rho)^{2}\right]+\mathrm{c} \mathrm{\rho}$ $=c \rho+\rho \kappa /(1-\rho)$

Single Queue, Multiple Servers

 - M/M/c Queue (4 of 4)- Mean jobs in queue
$E\left[n_{\mathrm{q}}\right]=\Sigma(\mathrm{n}-\mathrm{c}) \mathrm{P}_{\mathrm{n}}=\mathrm{P}_{0}(\mathrm{c} \mathrm{\rho})^{\mathrm{c}} / \mathrm{c}!\times \Sigma(\mathrm{n}-\mathrm{c}) \rho^{\mathrm{n}-\mathrm{c}}$
$=\left[P_{0} \rho(c \rho)^{c}\right] /\left[c!(1-\rho)^{2}\right]=\rho \kappa /(1-\rho)$
- Mean response time
- Using Little's law
- mean jobs = mean arrv rate \times mean resp time
$E[n]=\lambda E[r]$
$\mathrm{E}[\mathrm{r}]=\mathrm{E}[\mathrm{n}] / \lambda$
$E[r]=1 / \mu+\kappa /[c \mu(1-\rho)]$
- Mean waiting time $\mathrm{E}[\mathrm{w}]=\mathrm{E}\left[\mathrm{n}_{\mathrm{q}}\right] / \lambda$ $=[\rho \kappa /(1-\rho)] / \lambda=\kappa /[c \mu(1-\rho)]$

M/M/c Example (2 of 2)

- Request rate $\lambda=0.125$
- Service rate $\mu=0.2$
- Traffic intensity $-\rho=\mu /(c \lambda)=0.1563$
- Probability of idle
- $\mathrm{P}_{0}=$

1
$\Sigma\left[(c \rho)^{n / n!}\right]+$
$(c \rho)^{c} /(c!(1-\rho)) P_{0}$
$=0.532$

- Erlang's C formula $-\kappa=(4 \times 0.1563)^{4}(0.5352)$ 4!(1-.01563) $=.0040326$
- So, average response time:
$E[r]=1 / \mu+\kappa / c \mu(1-\rho)$ $=1 / .2+.004326 /(4)(.2)(1-$ $=5.01 \mathrm{~ms}$
- Thus, increasing servers by 4 reduces response time by appx 62\%

Another M/M/c Example (1 of 2)

- Students arrive at computer lab, 10 per hour. Spend 20 minutes at a terminal (assume exponentially distributed) and then leave. Center has 5 terminals.
A) How many terminals can go down and still be able to service the students?
B) What is the probability all terminals are busy?
C) How long is the average student in center?

Another M/M/c Example (2 of 2)

- Arrival rate $\lambda=.167$ per min, $\mu=.05$ per min
- Utilization $=\lambda /(\mu \mathrm{c})=.167 /(.05 \times 5)=.67$
A) Find c s.t. $U>1$, so $1>\lambda /(\mu c) \rightarrow c>\lambda / u \approx 4$
- One terminal only can go down
- Prob all idle, P_{0}
$=\left[1+(5 x .67)^{5} /[5!(1-.67)]+(5 x .67)^{1} / 1!\right.$
$\left.+(5 x .67)^{2 / 2}!+(5 x .67)^{3 / 3}!++(5 x .67)^{4 / 4!}\right]^{-1}$ $=0.0318$
B) Prob busy \rightarrow Erlang's C formula (κ)
$\operatorname{Pr}(>c$ jobs $)=[(c p) c] /[c!(1-\rho)] P_{0}$ $=\left[(5 x .67)^{5}\right] /[5!(1-.67)] \times .0318=.33$
- So, $1 / 3$ of the time you'll need to wait upon arriving
C) Time to wait: $E[w]=\kappa /[m \mu(1-\rho)]$
$=.33 /(5 x .05 \times(1-.67))=4$ minutes

$\mathrm{M} / \mathrm{M} / \mathrm{c}$ versus $\mathrm{M} / \mathrm{M} / 1$ (1 of 2)

- Consider what would happen if the terminals were distributed in separate labs, one per lab, across campus.
A) Would you wait longer?
- Can model as separate M/M/1 systems and compare to $M / M / c$ system

$\mathrm{M} / \mathrm{M} / \mathrm{c}$ versus $\mathrm{M} / \mathrm{M} / 1$ (2 of 2)

- For $M / M / 1 \lambda=.167 / 5=.0333$ and $\mu=.05$ $-\rho=.0333 / .05=.67$
- Expected waiting time:
$\mathrm{E}[\mathrm{w}]=\mathrm{E}\left[\mathrm{n}_{\mathrm{q}} / \lambda=\left[\rho^{2} /(1-\rho)\right] / \lambda\right.$ $=\left[(.67)^{2} /(1-.67)\right] /(.033)$ ≈ 41 minutes
A) Yes. A lot longer.
- What is the model ignoring that may make the answer seem better?

