
1

TCP modeling

Performance Modeling Lecture #7

Slides adapted from Kurose and Ross

Outline

• Introduction
• TCP Modelling

• Fairness 
• The TFRC equation 
• HTTP modelling

Introduction

• TCP modelling can be used to determine:
– TCP throughput
– Application layer performance for HTTP etc. 
– Response times

TCP self-clocking in equilibrium

Time

Bandwidth

High Speed LANs Slow long-haul link

TCP throughput

• What’s the average throughout ot TCP as 
a function of window size and RTT?
– Ignore slow start

• Let W be the window size when loss 
occurs.

• When window is W, throughput is W/RTT
• Just after loss, window drops to W/2, 

throughput to W/2RTT. 
• Average throughout: .75 W/RTT

Problems for high-speed networks

• Example: 1500 byte segments, 100ms RTT, 
want 10 Gbps throughput

• Requires window size W = 83,333 in-flight 
segments

• Throughput in terms of loss rate:

• ➜ L = 2·10-10  Wow
• New versions of TCP for high-speed needed!

LRTT

MSS⋅22.1



2

Reno TCP

• Increase congestion window size
– slow start (cwnd < ssh):       cwnd += 1

– steady state (cwnd ≥ ssh):   cwnd += 1/cwnd

• Decrease congestion window size
– duplicated acknowledges: cwnd = cwnd/2
– timeout: cwnd = 1
• ssh = cwnd/2

The Magical (1/p)1/2

• Show in a simplified analysis
– infinitely long TCP connections
• only in the steady state
• cwnd += 1 per RTT

– no timeouts
• only duplicated acknowledges
• cwnd /= 2 per drop

• Average Bandwidth =
–MSS/RTT * (3/2p)1/2

Saw Tooth Behavior

W1

W1/2

W2

W2/2

W3

W3/2

Deriving BW

W

W/2

Total number of packets sent 
between two packet drops is:
(W/2 + W) * (W/2) /2  = (3/8)W2

RTT * W/2

p: probability of packet loss
(3/8) W2 = 1/p

W = (8/3p)1/2

BW = MSS * (3/8) W2 / (RTT * W/2) 
= MSS/RTT * (3/2p)1/2

W: average tooth tip
W/2: average tooth dip

Padhye‘s TCP model

• Based on TCP steady-state response function
- gives upper bound for transmission rate T (bytes/sec):

)321()
8

3
3(

3
2 2pp

p
t

p
R

s
T

RTO ++
=

)321()
8

3
3(

3
2 2pp

p
t

p
R

s
T

RTO ++
=

s: packet size

R: rtt

tRTO: TCP retransmit timeout

p: steady-state loss event rate (the difficult part!)

• well known example: TFRC - TCP-friendly rate control 
protocol
– smooth sending rate

Fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should 
have average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP 
connection 2

TCP Fairness



3

Why is TCP fair?
Two competing sessions:
• Additive increase gives slope of 1, as throughout increases
• multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n 
2
 t
h
ro

ug
h
pu

t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Fairness (more)
Fairness and UDP
• Multimedia apps often 

do not use TCP
– do not want rate throttled 

by congestion control

• Instead use UDP:
– pump audio/video at 

constant rate, tolerate 
packet loss

• Research area: TCP 
friendly

Fairness and parallel TCP 
connections

• nothing prevents app from 
opening parallel cnctions
between 2 hosts.

• Web browsers do this 
• Example: link of rate R 

supporting 9 cnctions; 
– new app asks for 1 TCP, gets 

rate R/10
– new app asks for 11 TCPs, 

gets R/2 !

Fairness
• ATM ABR: Max-Min-fairness

– “A (..) allocation of rates is max-min fair iff an increase of any rate (..)
must be at the cost of a decrease of some already smaller rate.“

– One resource: mathematical definition satisfies "general" understanding
of fairness - resource is divided equally among competitors

– Usually requires knowledge of flows in routers (switches) - scalability 
problem!

• Internet:
– TCP dominant, but does not satisfy Max-Min-fairness criterion!

– Ack-clocked - flows with shorter RTT react sooner (slow start, ..)
and achieve better results

– Therefore, Internet definition of fairness: TCP-friendliness

"A flow is TCP-compatible (TCP-friendly) if, in steady state, it uses no
more bandwidth than a conformant TCP running under comparable 
conditions."

Proportional Fairness

Proportional fairness:
“An allocation of rates x is proportionally

fair iff, for any other (..) allocation

y, we have:                         “

(roughly approximated by AIMD!)

S1 D1

S2 S3

D2 D3

0
1

<=−
∑

=

S

s s

ss

x

xy

F. Kelly: Network 
should solve a global
optimization problem
(maximize log utility 
function) 

Max-Min-fairness
suboptimal:
S1 = S2 = S3 = c/2

All link

capacities: c

Proportionally fair allocation:
S1 = c/3, S2 = S3 = 2c/3

Issues with TCP-friendliness
• TCP regularly increases the queue length and causes loss

⇒ detect congestion when it is already (ECN: almost) too late!
– possible to have more throughput with smaller queues and less loss

... but: exceed rate of TCP under similar conditions ⇒ not TCP-friendly!

• What if I send more than TCP in the absence of competing TCP‘s?
– can such a mechanism exist?
– yes! TCP itself, with max. window size = bandwidth * RTT
– Does this mean that TCP is not TCP-friendly?

• Details missing from the definition:
– parameters + version of „conformant TCP“
– duration! short TCP flows are different than long ones

• TCP-friendliness = compatibility of new mechanisms with old mechanism
– there was research since the 80‘s! e.g. new knowledge about network 

measurements

• TCP rate depends on RTT - how does this relate to „fairness“?

Delay modeling

Q: How long does it take to 
receive an object from a 
Web server after sending a 
request? 

Ignoring congestion, delay is 
influenced by:

• TCP connection establishment

• data transmission delay

• slow start

Notation, assumptions:
• Assume one link between 

client and server of rate R

• S: MSS (bits)

• O: object size (bits)
• no retransmissions (no loss, 

no corruption)

Window size:
• First assume: fixed 

congestion window, W 
segments

• Then dynamic window, 
modeling slow start



4

Fixed congestion window (1)

First case:
WS/R > RTT + S/R: ACK 

for first segment in 
window returns before 
window’s worth of data 
sent

delay = 2RTT + O/R

Fixed congestion window (2)

Second case:
• WS/R < RTT + S/R: 

wait for ACK after 
sending window’s 
worth of data sent
delay = 2RTT + O/R

+ (K-1)[S/R + RTT - WS/R]

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

R

S

R

S
RTTP

R

O
RTTLatency P )12(2 −−




 +++=

where P is the number of times TCP idles at server:

}1,{min −= KQP

- where Q is the number of times the server idles
if the object were of infinite size.

- and  K is the number of windows that cover the object.

TCP Delay Modeling: Slow Start (2)

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

Example:
• O/S  = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2

Server idles P=2 times

Delay components:
• 2 RTT for connection 
estab and request
• O/R to transmit 
object
• time server idles due 
to slow start

Server idles: 
P = min{K-1,Q} times

TCP Delay Modeling (3)

R

S

R

S
RTTPRTT

R

O

R

S
RTT

R

S
RTT

R

O

idleTimeRTT
R

O

P

k
P

k

P

p
p

)12(][2

]2[2

2delay

1

1

1

−−+++=

−+++=

++=

−

=

=

∑

∑

th window after the  timeidle 2 1 k
R

S
RTT

R

S k =




 −+
+

−

ementacknowledg receivesserver  until                   

segment  send  tostartsserver   whenfrom time=+ RTT
R

S

 window kth the transmit  totime2 1 =−

R

Sk

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

TCP Delay Modeling (4)






 +=

+≥=

≥−=

≥+++=
≥+++=

−

−

)1(log

)}1(log:{min

}12:{min

}/222:{min

}222:{min

2

2

110

110

S

O

S

O
kk

S

O
k

SOk

OSSSkK

k

k

k

L

L

Similarly, for Q:

Recall K = number of windows that cover object

How do we calculate K ?

1
/

1log2 +














 +=
RS

RTT
Q



5

HTTP Modeling
• Assume Web page consists of:

– 1 base HTML page (of size O bits)

– M images (each of size O bits)
• Non-persistent HTTP: 

– M+1 TCP connections in series

– Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

• Persistent HTTP:

– 2 RTT to request and receive base HTML file
– 1 RTT to request and receive M images

– Response time = (M+1)O/R + 3RTT + sum of idle times

• Non-persistent HTTP with X parallel connections

– Suppose M/X integer.

– 1 TCP connection for base file

– M/X sets of parallel connections for images.
– Response time = (M+1)O/R +  (M/X + 1)2RTT + sum of idle times

0
2
4
6
8

10
12
14
16
18
20

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)
RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

For low bandwidth, connection & response time  dominated by 
transmission time.

Persistent connections only give minor improvement over parallel
connections.

0

10

20

30

40

50

60

70

28
Kbps

100
Kbps

1 Mbps 10
Mbps

non-persistent

persistent

parallel non-
persistent

HTTP Response time (in seconds)

RTT =1 sec, O = 5 Kbytes, M=10 and X=5

For larger RTT, response time dominated by TCP establishment 
& slow start delays. Persistent connections now give important 
improvement: particularly in high delay•bandwidth networks.


