TCP modeling

Performance Modeling Lecture #7

Slides adapted from Kurose and Ross

Outline

* Introduction

» TCP Modelling

» Fairness

» The TFRC equation
* HTTP modelling

Introduction

» TCP modelling can be used to determine:
— TCP throughput
— Application layer performance for HTTP etc.
— Response times

TCP self-clocking in equilibrium

Time

P

i =P /
Bandwidth (‘“ :I:I:I:\ j
Sender Receiver
Ay N\
aH A
/ \
\
\
\
\
\
/ \\
High Speed LANs \ Slow long-haul link

TCP throughput

* What's the average throughout ot TCP as
a function of window size and RTT?

—Ignore slow start

» Let W be the window size when loss
occurs.

* When window is W, throughput is W/RTT

» Just after loss, window drops to W/2,
throughput to W/2RTT.

» Average throughout: .75 W/RTT

Problems for high-speed networks

« Example: 1500 byte segments, 100ms RTT,
want 10 Gbps throughput

* Requires window size W = 83,333 in-flight
segments
¢ Throughput in terms of loss rate:
1.22[MSS
RTTVL

- =» L=2101 Wow
* New versions of TCP for high-speed needed!

Reno TCP

¢ Increase congestion window size
— slow start (cwnd < ssh): cwnd +=1
— steady state (cwnd = ssh): cwnd += 1/cwnd
¢ Decrease congestion window size
—duplicated acknowledges: cwnd = cwnd/2

—timeout: cwnd =1
e ssh = cwnd/2

The Magical (1/p)?

¢ Show in a simplified analysis
—infinitely long TCP connections
¢ only in the steady state
e cwnd += 1 per RTT
—no timeouts
» only duplicated acknowledges
e cwnd /= 2 per drop
¢ Average Bandwidth =
—MSS/RTT * (3/2p)¥2

Saw Tooth Behavior

W,
Wi

W,

W,/2
W,/2
W,/2

Deriving BW

W: average tooth tip
W/2: average tooth dip
W, Total number of packets sent
i between two packet dropsis:
(W/2 + W) * (W/2) 12 = (3/8)W?

p: probability of packet loss
(3/18) Wz =1/p

‘ W = (8/3p)12
RTT * W/2 BW = MSS* (3/8) w2/ (RTT * W/Z)
= MSSY/RTT * (3/2p)¥2

Padhye's TCP model

« Based on TCP steady-state response function
- gives upper bound for transmission rate T (bytes/sec):

S
2 3
RIS *tol®) 00 PL+3207)

s: packet size

R: rtt

tarot TCP retransmit timeout

p: steady-state loss event rate (the difficult part!)

« well known example: TFRC - TCP-friendly rate control
protocol

— smooth sending rate

TCP Fairness

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should
have average rate of R/K

TCP connection 1

bottleneck
router

connection 2 capacity R

Why is TCP fair?

Two competing sessions:
« Additive increase gives slope of 1, as throughout increases
« multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase

Connection 2 throughput 7

Connection 1 throughput R

Fairness (more)

Fairness and parallel TCP

Fairness and UDP

¢ Multimedia apps often w
do not use TCP « nothing prevents app from
— do not want rate throttled opening parallel cnctions
by congestion control between 2 hosts.
* Instead use UDP: * Web browsers do this
— pump audio/video at * Example: link of rate R
constant rate, tolerate supporting 9 cnctions;
packet loss
— new app asks for 1 TCP, gets
. R_esearch area: TCP rate R/10
friendly — new app asks for 11 TCPs,

gets R/2!

Fairness

* ATM ABR: Max-Min-fairness
— “A (..) allocation of rates is max-min fair iff an increase of any rate (..)
must be at the cost of a decrease of some already smaller rate.”
— One resource: mathematical definition satisfies "general” understanding
of fairness - resource is divided equally among competitors
— Usually requires knowledge of flows in routers (switches) - scalability
problem!

* Internet:
— TCP dominant, but does not satisfy Max-Min-fairness criterion!

— Ack-clocked - flows with shorter RTT react sooner (slow start, ..)
and achieve better results
— Therefore, Internet definition of fairness: TCP-friendliness

"A flow is TCP-compatible (TCP-friendly) if, in steady state, it uses no
more bandwidth than a conformant TCP running under comparable
conditions.”

Proportional Fairness

F. Kelly: Network All link
should solve a global e
optimization problem capacities: c

(maximize log utility
function)

Max-Min-fairness
suboptimal:
=52=53=c/2

>
“An allocation of rates x is proportionally
fair iff, for any other (..) allocation

Proportionally fair allocation:
S1 =¢/3, S2 = S3 = 2¢/3

>
y, we have:

(roughly approximated by AIMD!)

Issues with TCP-friendliness

TCP regularly increases the queue length and causes loss
= detect congestion when it is already (ECN: almost) too late!
— possible to have more throughput with smaller queues and less loss
... but: exceed rate of TCP under similar conditions = not TCP-friendly!

What if | send more than TCP in the absence of competing TCP‘s?
— can such a mechanism exist?
— yes! TCP itself, with max. window size = bandwidth * RTT
— Does this mean that TCP is not TCP-friendly?

Details missing from the definition:
— parameters + version of ,conformant TCP*
— duration! short TCP flows are different than long ones

TCP-friendliness = compatibility of new mechanisms with old mechanism

— there was research since the 80's! e.g. new knowledge about network
measurements

TCP rate depends on RTT - how does this relate to ,fairness*?

Delay modeling

) Notation, assumptions:
Q HOV_’ Iong doe_s it take to + Assume one link between
receive an object from a client and server of rate R

Web server after sending a + S:MSS (bits)

request? « O: object size (bits)
Ignoring congestion, delay is * no retransmissions (no loss,
influenced by: no corruption)
« TCP connection establishment Window size:
« data transmission delay « First assume: fixed
« slow start congestion window, W
segments

* Then dynamic window,
modeling slow start

Fixed congestion window (1)

iritiate TOP
comection |

RIT

|

|

¥
\

L

First case: R
WS/R > RTT + S/R: AC -
for first segment in
window returns befor
window's worth of da . pits o
sent o ///j/,//// et

delay = 2RTT + O/R

SR

rrr | ¥R

time
at cliert at server

Fixed congestion window (2)

inifiate TCP
connection

Second case:

« WS/R<RTT+S/R: ‘= —
wait for ACK after
sending window's
worth of data sent

delay = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

returms

/\
/ Istack

tims tirne
R
atclient atserver

TCP Delay Modeling: Slow Start (1)

Now suppose window grows according to slow start

Will show that the delay for one object is:

Latency = 2RTT +%+ P[R’I‘I’ +§}—(2P —1)%

where Pis the number of times TCP idles at server:
P=minQ K-1

- where Q is the number of times the server idles
if the object were of infinite size.

-and Kis the number of windows that cover the object.

TCP Delay Modeling: Slow Start (2)

initiate TCP

Delay components: connection

* 2 RTT for connection —
estab and request request
+ O/R to transmit oblect

t first window
object SR
- time server idles due

to slow start

second window
=2SIR

third window
=4SIR

Server idles:

P = min{K-1,Q} times
Example: fourthwindow
+ 0/S =15 segments

+ K= 4 windows

. Q =2

+P=min{K-1,Q} = 2 abject

delivered

AN complete

transmission

time at
time at server
client

Server idles P=2 times

TCP Delay Modeling (3)
S

R + RTT = timefrom when server startstosend segment

until server receives acknowledgement

initate TCP
connection
—

2“2 = time to transmit the kth window

.
[§+ RTT —2“% =idletimeafter the kthwindow |

second vindow]
=25R

third window
=asR

.
ddlay :%+2R‘I‘I’+Zidleﬁmep

p=l

fourth window
=R

o °S S
== +2RTT+) [=+RTT =23
[;[R R]

o S
== +2RTT + P[RTT +>2] - (2° -1)=
R Pl UG

TCP Delay Modeling (4)

Recall K = number of windows that cover object
How do we calculate K ?

K =min{k:2°S+2'S+...+2*'S> O}
=min{k:2°+2'+...+ 2> 0/ S}

: (@)
=min{k: 2" -1>—

{ S}

: (o]
=min{k: kzlogz(§+1)}

:[Iogz(% +1ﬂ

imi RTT
Similarly, for Q: =|lo [1+7J +1
Q=|og 1+ &1

HTTP Modeling

« Assume Web page consists of:
— 1 base HTML page (of size O bits)
— Mimages (each of size O bits)

« Non-persistent HTTP:
— M+1 TCP connections in series

— Response time = (M+1)O/R + (M+1)2RTT + sum of idle times

* Persistent HTTP:

— 2 RTT to request and receive base HTML file

— 1 RTT to request and receive M images

— Response time = (M+1)O/R + 3RTT + sum of idle times
« Non-persistent HTTP with X parallel connections

— Suppose M/X integer.

— 1 TCP connection for base file

— M/X sets of parallel connections for images.

— Response time = (M+1)O/R + (M/X + 1)2RTT + sum of idle times

HTTP Response time (in seconds)

RTT = 100 msec, O = 5 Kbytes, M=10 and X=5

18
16
14 n
O non-persgtent
1 per:
h n :
p persistent
6
4 H parallel non-
2 persistent

28 100 1Mbps 10

Kbps Kbps Mbps
For low bandwidth, connection & response time dominated by
transmission fime.

Persistent connections only give minor improvement over parallel
connections.

HTTP Response time (in seconds)
RTT =1 sec, O = 5 Kbytes, M=10 and X=5

70

60

50 "

O non-persgtent

40

30 W persistent

20 H paralle non-
10 persstent

¢}

28 100 1Mbps 10
Kbps Kbps Mbps

For larger RTT, response time dominated by TCP establishment
& slow start delays. Persistent connections now give important
improvement: particularly in high delaysbandwidth networks.

