
1

Simulation

Performance Modeling Lecture #8

Slides adapted from Mark Claypool

Introduction (1 of 3)

• System to be characterized may not be
available
– During design or procurement stage

• Still want to predict performance
• Or, may have system but want to evaluate

wide-range of workloads
� Simulation

• However, simulations may fail
– Need good programming, statistical analysis and

perf eval knowledge

The best advice to those about to embark on a very large simulation is
often the same as Punch’s famous advice to those about to marry: ‘Don’t!’

– Bratley, Fox and Schrage (1986)

Outline

• Introduction
• Common Mistakes in Simulation

• Terminology
• Types of Simulations
• Verification and Validation

Common Mistakes in Simulation
(1 of 4)

• Inappropriate level of detail
– Level of detail often potentially unlimited
– But more detail requires more time to develop

• And often to run!

– Can introduce more bugs, making more
inaccurate not less!

– Often, more detailed viewed as “better” but may
not be the case

• More detail requires more knowledge of input parameters
• Getting input parameters wrong may lead to more

inaccuracy (Ex: disk service times exponential vs.
simulating sector and arm movement)

– Start with less detail, study sensitivities and
introduce detail in high impact areas

Common Mistakes in Simulation
(2 of 4)

• Improper language
– Choice of language can have significant impact on

time to develop
– Special-purpose languages can make

implementation, verification and analysis easier
– C++Sim (http://cxxsim.ncl.ac.uk/), JavaSim

(http://javasim.ncl.ac.uk/), SimPy(thon)
(http://simpy.sourceforge.net/) …

• Unverified models
– Simulations generally large computer programs
– Unless special steps taken, bugs or errors

Common Mistakes in Simulation
(3 of 4)

• Invalid models
– No errors, but does not represent real system
– Need to validate models by analytic, measurement or

intuition

• Improperly handled initial conditions
– Often, initial trajectory not representative of steady

state
• Including can lead to inaccurate results

– Typically want to discard, but need method to do so
effectively

2

Common Mistakes in Simulation
(4 of 4)

• Too short simulation runs
– Attempt to save time
– Makes even more dependent upon initial

conditions
– Correct length depends upon the accuracy desired

(confidence intervals)
– Variance estimates

• Poor random number generators and seeds
– “Home grown” are often not random enough

• Makes artifacts

– Best to use well-known one
– Choose seeds that are different

More Causes of Failure (1 of 2)

• Large software
– Quotations above apply to software development

projects, including simulations
– If large simulation efforts not managed properly, can

fail

• Inadequate time estimate
– Need time for validation and verification
– Time needed can often grow as more details added

Any given program, when running, is obsolete. If a program is useful, it will
have to be changed. Program complexity grows until it exceeds the capacity
of the programmer who must maintain it. - Datamation 1968

Adding manpower to a late software project makes it later.
- Fred Brooks

More Causes of Failure (2 of 2)

• No achievable goal
– Common example is “model X”

• But there are many levels of detail for X

– Goals: Specific, Measurable, Achievable,
Repeatable

– Project without goals continues indefinitely

• Incomplete mix of essential skills
– Team needs one or more individuals with

certain skills
– Need: leadership, modeling and statistics,

programming, knowledge of modeled system

Simulation Checklist (1 of 2)

• Checks before developing simulation
– Is the goal properly specified?
– Is detail in model appropriate for goal?
– Does team include right mix (leader,

modeling, programming, background)?
– Has sufficient time been planned?

• Checks during simulation development
– Is random number random?
– Is model reviewed regularly?
– Is model documented?

Simulation Checklist (2 of 2)

• Checks after simulation is running
– Is simulation length appropriate?
– Are initial transients removed?
– Has model been verified?
– Has model been validated?
– Are there any surprising results? If yes, have

they been validated?

Outline

• Introduction
• Common Mistakes in Simulation

• Terminology
• Selecting a Simulation Language
• Types of Simulations
• Verification and Validation
• Transient Removal
• Termination

3

Terminology (1 of 7)

• Introduce terms using an example of
simulating CPU scheduling
– Study various scheduling techniques given

job characteristics, ignoring disks, display…

• State variables
– Variables whose values define current state of

system
– Saving can allow simulation to be stopped

and restarted later by restoring all state
variables

– Ex: may be length of the job queue

Terminology (2 of 7)
• Event

– A change in system state
– Ex: Three events: arrival of job, beginning of new

execution, departure of job

• Continuous-time and discrete-time models
– If state defined at all times � continuous
– If state defined only at instants � discrete
– Ex: class that meets M-F 2-3 is discrete since not

defined other times

J
ob

s

Time S
tu
d
e
nt
s

Time

Terminology (3 of 7)
• Continuous-state and discrete-state models

– If uncountably infinite � continuous
• Ex: time spent by students on hw

– If countable � discrete
• Ex: jobs in CPU queue

– Note, continuous time does not necessarily imply
continuous state and vice-versa

• All combinations possible

J
ob

s

Time

T
im
e

Term

Terminology (4 of 7)

• Deterministic and probabilistic (stochastic)
models
– If output predicted with certainty � deterministic
– If output different for different repetitions �

probabilistic

O
ut
pu
t

Input

O
ut
pu
t

Input
(Deterministic) (Probabilistic)

(vertical lines)

Terminology (5 of 7)
• Static and dynamic models

– Time is not a variable � static
– If changes with time � dynamic
– Ex: CPU scheduler is dynamic, while matter-to-

energy model E=mc2 is static

• Linear and nonlinear models
– Output is linear combination of input � linear
– Otherwise � nonlinear

O
ut
pu
t

Input
(Linear)

O
ut
pu
t

Input
(Non-Linear)

Terminology (6 of 7)

• Open and closed models
– Input is external and independent � open
– Closed model has no external input
– Ex: if same jobs leave and re-enter queue then

closed, while if new jobs enter system then open

cpu

open

cpu

closed

4

Terminology (7 of 7)

• Stable and unstable
– Model output settles down � stable
– Model output always changes � unstable

O
ut
pu
t

Time

(Unstable)

O
ut
pu
t

Time

(Stable)

Outline

• Introduction
• Common Mistakes in Simulation

• Terminology
• Types of Simulations
• Verification and Validation

Types of Simulations

• Variety of types, but main: emulation, Monte
Carlo, trace driven, and discrete-event

• Emulation
– Simulation that runs on a computer to make it appear

to be something else
– Examples: JVM, NIST Net

Operating System

Hardware

Process Process

Java program

Java VM

Monte Carlo Simulation (1 of 2)

• A static simulation has no time parameter
– Runs until some equilibrium state reached

• Used to model physical phenomena, evaluate
probabilistic system, numerically estimate
complex mathematical expression

• Driven with random number generator
– So “Monte Carlo” (after casinos) simulation

• Example, consider numerically determining the
value of π

• Area of circle = π2 for radius 1

Monte Carlo Simulation (2 of 2)

• Imagine throwing dart at
square
– Random x (0,1)

– Random y (0,1)

• Count if inside
– sqrt(x2+y2) < 1

• Compute ratio R
– in / (in + out)

• Can repeat as many
times as needed to get
arbitrary precision

• Unit square area of 1
• Ratio of area in

quarter to area in
square = R
– π = 4R

Trace-Driven Simulation

• Uses time-ordered record of events on real
system as input
– Ex: to compare memory management, use trace of

page reference patterns as input, and can model and
simulate page replacement algorithms

• Note, need trace to be independent of system
– Ex: if had trace of disk events, could not be used to

study page replacement since events are dependent
upon current algorithm

5

Trace-Driven Simulation
Advantages

• Credibility – easier to sell than random inputs
• Easy validation – when gathering trace, often get

performance stats and can validate with those
• Accurate workload – preserves correlation of

events, don’t need to simplify as for workload
model

• Less randomness – input is deterministic, so
output may be (or will at least have less non-
determinism)

• Fair comparison – allows comparison of
alternatives under the same input stream

• Similarity to actual implementation – often
simulated system needs to be similar to real one

Trace-Driven Simulation
Disadvantages

• Complexity – requires more detailed implementation
• Representativeness – trace from one system may not

represent all traces
• Finiteness – can be long, so often limited by space but

then that time may not represent other times
• Single point of validation – need to be careful that

validation of performance gathered during a trace
represents only 1 case

• Trade-off – it is difficult to change workload since cannot
change trace. Changing trace would first need workload
model

Outline

• Introduction
• Common Mistakes in Simulation

• Terminology
• Types of Simulations
• Verification and Validation

Analysis of Simulation Results

• Would like model output to be close to that of real
system

• Made assumptions about behavior of real systems
• 1st step, test if assumptions are reasonable

– Validation, or representativeness of assumptions

• 2nd step, test whether model implements assumptions
– Verification, or correctness

Always assume that your assumption is invalid.
– Robert F. Tatman

Model Verification Techniques
(1 of 3)

• Good software engineering practices will result in fewer
bugs

• Top-down, modular design
• Assertions (antibugging)

– Say, total packets = packets sent + packets received
– If not, can halt or warn

• Structured walk-through
• Simplified, deterministic cases

– Even if end-simulation will be complicated and non-deterministic,
use simple repeatable values (maybe fixed seeds) to debug

• Tracing (via print statements or debugger)

Model Verification Techniques
(2 of 3)

• Continuity tests
– Slight change in input should yield slight change in

output, otherwise error

• Degeneracy tests
– Try extremes (lowest and highest) since may

reveal bugs

T
h
rp
ut

(Debugged)

T
h
rp
ut

(Undebugged)

6

Model Verification Techniques
(3 of 3)

• Consistency tests – similar inputs produce
similar outputs
– Ex: 2 sources at 50 pkts/sec produce same total as 1

source at 100 pkts/sec

• Seed independence – random number
generator starting value should not affect final
conclusion (maybe individual output, but not
overall conclusion)

Model Validation Techniques

• Ensure assumptions used are reasonable
– Want final simulated system to be like real system

• Unlike verification, techniques to validate one simulation
may be different from one model to another

• Three key aspects to validate:
– Assumptions
– Input parameter values and distributions
– Output values and conclusions

• Compare validity of each to one or more of:
– Expert intuition
– Real system measurements
– Theoretical results

� 9 combinations
- Not all are
always possible,
however

Model Validation Techniques -
Expert Intuition

• Most practical, most
common

• “Brainstorm” with people
knowledgeable in area

• Assumptions validated
first, followed soon after
by input. Output
validated as soon as
output is available (and
verified), even if
preliminary

• Present measured results
and compare to
simulated results (can
see if experts can tell the
difference)

T
h
ro
ug
h
p
ut

Packet Loss Probability

0.2 0.4 0.8

Which alternative
looks invalid? Why?

Model Validation Techniques -
Real System Measurements

• Most reliable and preferred
• May be unfeasible because system does not exist or

too expensive to measure
– That could be why simulating in the first place!

• But even one or two measurements add an
enormous amount to the validity of the simulation

• Should compare input values, output values,
workload characterization
– Use multiple traces for trace-driven simulations

• Can use statistical techniques (confidence intervals)
to determine if simulated values different than
measured values

Model Validation Techniques -
Theoretical Results

• Can be used to compare a simplified system with
simulated results

• May not be useful for sole validation but can be used to
complement measurements or expert intuition
– Ex: measurement validates for one processor, while analytic

model validates for many processors

• Note, there is no such thing as a “fully validated” model
– Would require too many resources and may be impossible
– Can only show is invalid

• Instead, show validation in a few select cases, to lend
confidence to the overall model results

Question

• Imagine you are called in as an expert to
review a simulation study. Which of the
following would you consider non-intuitive
and would want extra validation?
1. Throughput increases as load increases
2. Throughput decreases as load increases
3. Response time increases as load increases
4. Response time decreases as load increases
5. Loss rate decreases as load increases

