
1

NS2 Simulation

Performance Modeling Lecture #9

Slides adapted from Polly Huang and Mark Claypool

Discrete-Event Simulations (1 of 3)

• Continuous events are simulations like weather
or chemical reactions, while computers usually
discrete events

• Typical components:
• Event scheduler – linked list of events

– Schedule event X at time T
– Hold event X for interval dt
– Cancel previously scheduled event X
– Hold event X indefinitely until scheduled by other

event
– Schedule an indefinitely scheduled event
– Note, event scheduler executed often, so has

significant impact on performance

Discrete-Event Simulations (1 of 3)

• Simulation clock and time advancing
– Global variable with time
– Scheduler advances time

• Unit time – increments time by small amount and
see if any events

• Event-driven – increments time to next event and
executes (typical)

• System state variables
– Global variables describing state
– Can be used to save and restore

Discrete-Event Simulations (2 of 3)

• Event routines
– Specific routines to handle event
– Ex: job arrival, job scheduling, job departure
– Often handled by call-back from event

scheduler

• Input routines
– Get input from user (or config file, or script)
– Often get all input before simulation starts
– May allow range of inputs (from 1-9 ms) and

number or repetitions, etc.

Discrete-Event Simulations (3 of 3)

• Report generators
– Routines executed at end of simulation, final

result and print
– Can include graphical representation, too
– Ex: may compute total wait time in queue or

number of processes scheduled

Discrete Event Simulation
Example NS - (1 of 4)

• NS-2, network simulator
– Government funded initially, Open source

• Wildly popular for IP network simulations

(http://perform.wpi.edu/NS/)

2

Discrete Event Simulation
Example NS - (2 of 4)
(Event scheduler is core of simulator)

Discrete Event Simulation
Example NS - (3 of 4)

Open the NAM trace file
set nf [open out.nam w]
$ns namtrace-all $nf

Define a 'finish' procedure
proc finish {} {

global ns nf
$ns flush-trace
Close the trace file
close $nf
#Execute NAM on file
exec nam out.nam &
exit 0

}

Setup a FTP
set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ftp set type_ FTP

Initial schedule events
$ns at 0.1 "$cbr start"
$ns at 1.0 "$ftp start"
$ns at 4.0 "$ftp stop"
$ns at 4.5 "$cbr stop"

Finish after 5 sec (sim time)
$ns at 5.0 "finish"

Run the simulation
$ns run

Discrete Event Simulation
Example NS - (4 of 4)

• Output in text file, can be processed with
Unix command line tools

(Objects and script can have custom output, too)

ns-2

• Discrete event simulator
• Packet level

• Link layer and up
• Wired and wireless

Development Status

• Columbia NEST
• UCB REAL
• ns-1
• ns-2 (as of 2001…)

– 100K lines of C++ code
– 70K lines of otcl support code
– 30K lines of test suites
– 20K lines of documentation

First Words of Caution

• While we have considerable confidence in
ns, ns is not a polished and finished
product, but the result of an ongoing effort
of research and development. In
particular, bugs in the software are still
being discovered and corrected.

3

Second Words of Caution

• Users of ns are responsible for verifying
for themselves that their simulations are
not invalidated by bugs . We are working
to help the users with this by significantly
expanding and automating the validation
tests and demos.

Third Words of Caution

• Similarly, users are responsible for
verifying for themselves that their
simulations are not invalidated because
the model implemented in the simulator is
not the model that they were expecting.
The ongoing ns Notes and Documentation
should help in this process.

Object-Oriented

+ Reusability
+ Maintainability

– Careful planning ahead
– Performance

C++ and otcl Separation

• C++ for data
– per packet action

• otcl for control
– periodic or triggered action

+ Compromize between composibility and
speed

– Learning & debugging

otcl and C++: The Duality

C++

otcl

tcl Interpreter With Extents

• otcl: object-oriented support
• tclcl: C++ and otcl linkage
• Discrete event scheduler
• Data network components

tcl

otcl

tclcl

ns-2Event
Scheduler

N
etw

ork
C

om
ponent

4

Hello World - Interactive Mode

swallow 71% ns
% set ns [new Simulator]
_o3
% $ns at 1 “puts \“Hello World!\””
1
% $ns at 1.5 “exit”
2
% $ns run
Hello World!
swallow 72%

Hello World - Passive Mode

simple.tcl
set ns [new Simulator]
$ns at 1 “puts \“Hello World!\””
$ns at 1.5 “exit”
$ns run

swallow 74% ns simple.tcl
Hello World!
swallow 75%

nam Fundamentals

• tcl
• otcl

– ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html

• ns-2
– http://www.isi.edu/nsnam/ns/ns_doc.ps.gz
– http://www.isi.edu/nsnam/ns/ns_doc.pdf
– http://www.isi.edu/nsnam/ns/doc/index.html

Basic tcl
proc test {} {

set a 43

set b 27

set c [expr $a + $b]
set d [expr [expr $a - $b] * $c]

for {set k 0} {$k < 10} {incr k} {

if {$k < 5} {

puts “k < 5, pow= [expr pow($d, $k)]”

} else {

puts “k >= 5, mod= [expr $d % $k]”
}

}

}

test

Basic otcl

Class mom

mom instproc init {age} {

$self instvar age_

set age_ $age
}

mom instproc greet {} {

$self instvar age_

puts “$age_ years old mom:
How are you doing?”

}

Class kid -superclass mom

kid instproc greet {} {

$self instvar age_

puts “$age_ years old kid:
What’s up, dude?”

}

set a [new mom 45]
set b [new kid 15]

$a greet

$b greet

5

Basic ns-2

• Creating the event scheduler
• [Tracing]

• Creating network
• Computing routes
• Creating connection
• Creating traffic
• Inserting errors

Creating Event Scheduler

• Create scheduler
– set ns [new Simulator]

• Schedule event
– $ns at <time> <event>
– <event>: any legitimate ns/tcl commands

• Start scheduler
– $ns run

Tracing

• Trace packets on all links
– $ns trace-all [open test.out w]

<event> <time> <from> <to> <pkt> <size>--<flowid> <src> <dst> <seqno> <aseqno>

+ 1 0 2 cbr 210 ------- 0 0.0 3.1 0 0

- 1 0 2 cbr 210 ------- 0 0.0 3.1 0 0

r 1.00234 0 2 cbr 210 ------- 0 0.0 3.1 0 0

• Trace packets on all links in nam-1 format
– $ns namtrace-all [open test.nam w]

• Right after ‘set ns [new Simulator]’

Creating Network

• Nodes
– set n0 [$ns node]
– set n1 [$ns node]

• Links & Queuing
– $ns duplex-link $n0 $n1 <bandwidth> <delay>

<queue_type>
– <queue_type>: DropTail, RED, CBQ, FQ,

SFQ, DRR

Tracing Specific links

• $ns trace-queue $n0 $n1
• $ns namtrace-queue $n0 $n1

Creating Network: LAN

• LAN
– $ns make-lan <node_list> <bandwidth>

<delay> <ll_type> <ifq_type> <mac_type>
<channel_type>

– <ll_type>: LL
– <ifq_type>: Queue/DropTail,
– <mac_type>: MAC/802_3
– <channel_type>: Channel

6

Computing routes

• Unicast
– $ns rtproto <type>
– <type>: Static, Session, DV, cost, multi-path

Creating Connection: UDP

• UDP
– set udp [new Agent/UDP]
– set null [new Agent/NULL]
– $ns attach-agent $n0 $udp
– $ns attach-agent $n1 $null
– $ns connect $udp $null

Creating Connection: TCP

• TCP
– set tcp [new Agent/TCP]
– set tcpsink [new Agent/TCPSink]
– $ns attach-agent $n0 $tcp
– $ns attach-agent $n1 $tcpsink
– $ns connect $tcp $tcpsink

Creating Traffic: On Top of TCP

• FTP
– set ftp [new Application/FTP]
– $ftp attach-agent $tcp
– $ns at <time> “$ftp start”

• Telnet
– set telnet [new Application/Telnet]
– $telnet attach-agent $tcp

Creating Traffic: On Top of UDP

• CBR
– set src [new Application/Traffic/CBR]

• Exponential or Pareto on-off
– set src [new Application/Traffic/Exponential]
– set src [new Application/Traffic/Pareto]

Creating Traffic: Trace Driven

• Trace driven
– set tfile [new Tracefile]
– $tfile filename <file>
– set src [new Application/Traffic/Trace]
– $src attach-tracefile $tfile

• <file>:
– Binary format
– inter-packet time (msec) and packet size (byte)

7

Inserting Errors

• Creating Error Module
– set loss_module [new ErrorModel]
– $loss_module set rate_ 0.01
– $loss_module unit pkt
– $loss_module ranvar [new

RandomVariable/Uniform]
– $loss_module drop-target [new Agent/Null]

• Inserting Error Module
– $ns lossmodel $loss_module $n0 $n1

Network Dynamics

• Link failures
– route changes reflected automatically
– can emulate node failure

Four Models

• $ns rtmodel-at <time> <up|down> $n0 $n1
• $ns rtmodel Trace <config_file> $n0 $n1

• $ns rtmodel <model> <params> $n0 $n1
• <model>: Deterministic, Exponential
• <params>: [<start>] <up_interval>

<down_interval> [<finish>]

Outlines

• Essentials
• Getting Started

• Fundamental tcl, otcl and ns-2
• Case Studies - TCP, web traffic, RED

Case Studies

• TCP (tcp.tcl)
• Web (web.tcl & dumbbell.tcl)

• Queuing - RED (red.tcl)

Visualization Tools

• nam-1 (Network AniMator Version 1)
• xgraph

8

Basic ns-2: Special Topics

• multicast support
• application-level support

• wireless support

Multicast - 5 components

• enable multicast capability
• configure multicast routing

• create a multicast group/sender
• create a multicast receiver
• attach traffic source

Enabling multicast capability

• set ns [new Simulator -multicast on]
• or $ns multicast (right after [new

Simulator])

Configuring multicast routing

• $ns mrtproto <type>
• <type>: CtrMcast, DM, ST, BST

Creating a multicast group

• set udp [new Agent/UDP]
• $ns attach-agent $n0 $udp

• set group [Node allocaddr]
• $udp set dst_addr_ $group

Creating a multicast receiver

• set rcvr [new Agent/NULL]
• $ns attach-agent $n1 $rcvr

• $ns at <time> “$n1 join-group $rcvr
$group”

9

Attaching a traffic source

• set cbr [new Application/Traffic/CBR]
• $cbr attach-agent $udp

• $ns at <time> “$cbr start”

Application - 2 components

• two-way TCP
• Application/TcpApp

Application: Two-way TCP

• FullTcp connection
– set tcp1 [new Agent/TCP/FullTcp]
– set tcp2 [new Agent/TCP/FullTcp]
– $ns attach-agent $n1 $tcp1
– $ns attach-agent $n2 $tcp2
– $ns connect $tcp1 $tcp2
– $tcp2 listen

Application: TcpApp

• User data transfer
– set app1 [new Application/TcpApp $tcp1]
– set app2 [new Application/TcpApp $tcp2]
– $app1 connect $app2
– $ns at 1.0 “$app1 send <data_byte> \”<ns-2

command>\””
– <ns-2 command>: will be executed when

received at the receiver TcpApp

Wireless - 5 components

• setup
• node configuration

– layer 3-2, layer 1, tracing, energy

• node coordinates
• node movements
• nam tracing

Setup

• set ns [new Simulator]
• set topo [new Topography]

• $topo load_flatgrid <length> <width>

10

Node Configuration: Layer 3-2

• $ns node-config
– adhocRouting <adhoc routing type>
– llType LL
– ifqType Queue/DropTail/PriQueue
– ifqLen <queue length>
– macType Mac/802_11

• <adhoc routing type>: DSDV, DSR, TORA,
AODV

Node Configuring: Layer 1

• $ns node-config
– phyType Phy/WirelessPhy
– antType Antenna/OmniAntenna
– propType <propagation model>
– channelType Channel/WirelessChannel
– topoInstance $topo

• <propagation model>:
Propagation/TwoRayGround,
Propagation/FrissSpaceAttenuation

Node Configuration: Tracing

• $ns node-config
– agentTrace <ON or OFF>
– routerTrace <ON or OFF>
– macTrace <ON or OFF>

Node Configuration: Energy

• $ns node-config
– energyModel EnergyModel
– initialEnergy <total energy>
– txPower <energy to transmit>
– rxPower <energy to receive>

Creating Nodes

• set mnode [$ns node]

Node Coordinates

• $mnode set X_ <x>
• $mnode set Y_ <y>

• $mnode set Z_ 0

11

Node Movement

• Disable random motion
– $mnode random-motion 0

• Specified
– $ns at 1.0 “$mnode setdest <x> <y>

<speed>”

• Random
– $ns at 1.0 “$mnode start”

Tracing

• at the beginning
– $ns namtrace-all-wireless [open test.nam

w] <length> <width>

• initialize nodes
– $ns initial_node_position $mnode 20

Case Studies

• multicast (mcast.tcl)
• wireless (wireless-udp.tcl, wireless-tcp.tcl)

