
Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 1 of 21

FACIT TO
Ordinary Exam

DATA STRUCTURES AND ALGORITHMS DVG B03

130115 08:15 – 13:15

__
Course Coordinator: Donald F. Ross

Help Material: A Dictionary from the student’s home language to English.

*** OBS ***

Students who have studied the course as from (>=) Autumn Term 2006

Grading Levels:

Course: Max 60p, pass with special distinction 50p, pass with distinction 40p, pass 30p
 (of which a minimum 15p from the exam, 15p from the labs)
Exam: Max 30p, grade 5: 26p-30p, grade 4: 21p-25p, grade 3: 15p-20p
Labs: Max 30p, grade 5: 26p-30p, grade 4: 21p-25p, grade 3: 15p-20p

Students who have studied the course before (<) Autumn Term 2006

Grading Levels:

Course: Max 60p, pass with special distinction 50p, pass with distinction 40p, pass 30p
 (of which a minimum 20p from the exam, 10p from the labs)
Exam: Max 40p, grade 5: 34p-40p, grade 4: 27p-33p, grade 3: 20p-26p
Labs: Max 20p, grade 5: 18p-20p, grade 4: 14p-17p, grade 3: 10p-13p

Write legibly – read all questions carefully

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 2 of 21

(1) Give a short answer to each of the following questions:-

(a) Show the relationship between a binary search tree, a complete tree and a full tree with

the help of a Venn-diagram from set theory.

(b) What is the maximum load factor in hashing with quadratic probing as the collision
management technique which guarantees that a space can always be found?

50% see lecture notes on Hashing slide 9

(c) What is ”big-O”?

An indication of an algorithm’s worst case performance usually with respect to the
number of items processed, n.

(d) What does Warshall’s algorithm do?

Calculates the transitive closure of a graph i.e. determines if there is a path from
any node A to any node B (A and B not necessarily distinct)

(e) Give a definition of an AVL-tree.

An AVL-tree is a BST where the height difference between the left sub-tree and the
right sub-tree is no more than 1. |height(LC) – height(RC)| <= 1

A BST (Binary Search Tree) is a binary tree where all the values in the LC are less
than the value at the root and all the values in the RC are greater than the value at
the root.

(f) Which grammatical class in natural language corresponds to a relation in the Entity

Relationship model?

Verb. Entity = noun, attribute = adjective

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 3 of 21

(g) Which algorithm requires a DAG as a starting point?

Arguable all tree algorithms since a tree can be viewed as a DAG.

Topological sort on a DAG (whether it e a tree or graph)

(h) Which data structures are ordered?

Sequence, ordered trees for example a binary tree – and by extension BST and AVL

B-Tree

(i) Which algorithm is O(n3)?

Warshall’s, Floyd’s (sometimes known as Floyd-Warshall’s).

(j) Give a definition of a recursive function.

A function which conditionally calls itself.

Total 5p

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 4 of 21

(2) Abstraction

Discuss in detail why abstraction is so important in data structures. Are there any
possible disadvantages to abstraction? Which 3 definitions of the term abstraction have
we used in this course?

5p

• Modelling abstraction: real world ���� model (entities + attributes + relationships)
• Collections (sets) of entities: abstraction of sequences, trees & graphs (these add

relationships to the set)
• Implementation abstraction: ADTs (sets, sequences, trees & graphs)
• Programming abstraction: UI – Front End – Back End model

Points to note in your answer – marks for interesting points:

� By abstracting to produce ADTs, basic operations can be defined and the ADT applied
to a range of concrete examples – for e.g.

o The abstract data structure SEQUENCE may be used on a list of elements, a
sequence of characters (text editing, parsing, pattern matching) or as a basis for
other ADTs such as trees and graphs

� Abstracting allow us to focus on general aspects which are not dependent on the
underlying implementation or programming language – for e.g. general sequence
operations may be implemented using arrays + indexes OR structures + references.

� Using ADTs, systems may be designed on paper before actually being implemented as a
programmed system

� Levels of abstraction may also be used, the most general being a collection (set), with
operations is_empty, cardinality, add_element, remove_element, find_element, display
collection.

� At the next level down we may have (abstract) sequences, tree and graphs – more
specific operations may be added here – for e.g. with a binary tree left_child,
right_child – where the tree is still an abstraction (and the implementation details
hidden)

� Abstraction provides a mental (conceptual) tool useful for programming
Abstraction provides a mental (conceptual) tool useful for creating a “tool kit” for
programming – it is easier to map the solution to a problem to a small number of known
techniques than to reinvent the wheel!

Definitions used in this course

1. modeling abstraction – abstracting entities and attributes from the real world to model
as ADTs in a program

2. collection abstraction – abstracting the common properties of the ADTs (set, sequence,
tree, graph) to an abstract collection

3. implementation abstraction – an ADT is considered independent of its implementation
(usually using either pointers and structures OR arrays and indexes)

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 5 of 21

I) Modelling

• Extract “entities” which have “attributes” and possible “relationships” to other
entities. E-R Model (Chen 1970)

• Allows non-essential details (from the real world) to be removed to allow a
simplified model to be produced (+ve)

• If values can be attached to the attributes of an entity then computer models may
be more easily defined and implemented (+ve)

• Potential loss of information (-ve)
• The model depends on the assumptions made and it must be clear what these are

(-ve)

II) ADTs
• Allows programming in the abstract i.e. implementation and language

independent (+ve)
• The essential properties of and operations on data structures may be discussed

independently of ant programming language features (+ve)
• ADTs may be viewed as collections of entities (and thus connected to

modelling) with common operations such as
• Create and entity/collection
• Add / Remove an entity to / from a collection
• Find entities in the collection - search
• Count the number of entities in the collection (cardinality)
• Define predicates such as “is_empty” for the collection (i.e. cardinality =

0)
• Provides a “mental toolkit” for programmers (+ve)
• For (beginner) programmers this may make operations harder to follow since

there is no reference to a specific programming language (-ve)

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 6 of 21

(3) Sequence

(a) Give a recursive definition of a sequence.
 (1p)

 S ::= H T | ¤ H- head, T tail, ¤ empty
 H ::= element
 T ::= S

(b) From your definition in (a) above, write recursive pseudo code to count up the

number of elements in a sequence
State all assumptions.
Give an example of how your code works.

 (2p)
int card(listref L) {
return is_empty(L) ? 0 : 1 + card(tail(L)); }

 OR
int card(listref L) {
 if is_empty(L) return 0;
 else return 1 + card(tail(L));
 }

(c) From your definition in (a) above, write recursive pseudo code to add an element

to a sequence in increasing (sorted) order. Assume that a function called Cons
which adds an element to the head of the list already exists.
Cons: element x list � list.
State all assumptions.
Give an example of how your code works.

 (2p)
listref cons(listref e, listref L) {
 return set_tail(e, L);
 }

listref b_add(int v, listref L)
{
 return is_empty(L) ? create_e(v)
 : v < get_value(head(L)) ?

 cons(create_e(v), L)
 : cons(head(L), b_add(v, tail(L)));
 }

 OR
listref b_add(int v, listref L)
{
 if (is_empty(L)) return create_e(v);
 else if (v < get_value(head(L)))
 return cons(create_e(v), L);
 else return cons(head(L), b_add(v, tail(L)));
 }

Total 5p

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 7 of 21

(4) General questions – give a detailed answer with an example

(a) What is double hashing?

In hashing, there is a hash function which maps a key value to an index in the
hash space H: key � index.

If/when collisions occur a collision resolution technique is required to find a new
(empty) space in the hash space. This is written as H(key) + f(i) where “i” is the
number of the collision – 1st, 2nd, 3rd, etc.

For linear probing f(i) = i
For quadratic probing f(i) = i*i
For double hashing f(i) = i * H’(key) which gives H(key) + i*H’(key) hence
double hashing (H and H’)

Example H’(key) = R – (key mod R) where R is prime and < size(Hash Table)

So for H(key) = key mod 10 and H´ could be 7 – (key mod 7)

So 4 36 44 5 7 64 24 would map to the hash table (0-9) as 6 ¤ ¤ ¤ 4 5 36 7 24 44

Show the calculations in your answer.

(b) What is a stack used for?

• As a memory – for e.g. to remember previous states, navigation through a
maze

• To reorder (say) a sequence e.g. in infix to postfix transformation of
arithmetic expressions 4*(2+2) � 4 2 2 + *

• To execute postfix expressions such as 4 2 2 + * on a stack machine –
push 4 (stack 4) push 2 (stack 4 2) push 2 (stack 4 2 2) apply + (stack 4 4)
apply * (stack 16)

• To maintain the stack frames on a run-time stack for function/procedure
calls in a programming language

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 8 of 21

(c) How is a general tree transformed to a binary tree?

1. The first child becomes the left child of the parent
2. The subsequent children become the right child of their predecessor

Draw an example and show how these rules are applied

a

b c d

e f g h i j

a

b

e c

d f

g

h

i

j

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 9 of 21

(d) How does the add function work in a heap?

Add(H, v)
 let A = H.array
 A.size++
 i = A.size
 while i > 1 and A[Parent(i)] < v
 do A[i] = A[Parent(i)]
 i = Parent(i)
 end while
 A[i] = v
end Add

Draw an example stepwise to illustrate your point. See also the demonstration on the
website.

(e) Describe a solution to the TSP-problem. TSP = Travelling Salesman Problem.

� TSP Algorithm
� variant of Kruskal’s
� edge acceptance conditions

� degree(v) should not >= 3
� no cycles unless # selected edges = |V|
� greedy / near-optimal

+ worked example to illustrate your point.

Total 5p

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 10 of 21

(5) Graph – Dijkstra + SPT

Extend Dijkstra’s algorithm below in order to save and show the SPT.
(SPT: Shortest Path Tree).

Dijkstra ()
{ S = {a}

 for (i in 2..n) D[i] = C[a, i] -- initialise D

 for (i in 1..(n-1)) {
 choose w in V - S such that D[w] is a minimum
 S = S + {w}
 foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])
 }
 }
 (3p)

Dijkstras algoritm med en utökning för SPT

Dijkstra_SPT (a)
{
 S = {a}

 for (i in V-S) {
 D[i] = C[a, i] --- initialise D - (edge cost)
 E[i] = a --- initialise E - SPT (edge)
 L[i] = C[a, i] --- initialise L - SPT (cost)
 }

 for (i in 1..(|V|-1)) {
 choose w in V-S such that D[w] is a minimum
 S = S + {w}
 foreach (v in V-S) if (D[w] + C[w,v] < D[v]) {
 D[v] = D[w] + C[w,v]
 E[v] = w
 L[v] = C[w,v]
 }
 }
}

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 11 of 21

Apply your extended version of the algorithm to the following directed graph:-

(a, b, 13), (a, d, 12), (a, e, 20), (b, c, 60), (c, e, 50), (d, c, 30), (d, e, 40)

Start at node ”a”.
Show each step in your calculation.
State all assumptions and show all calculations and intermediate results.
Draw each step in the construction of the STP– i.e. show the nodes and which edges are
added and subsequently removed.

 (2p)

Initialise D, E, L

D: ¤ 13 § 12 20
E: ¤ a a a a
L: ¤ 13 § 12 20
w is d (min value in D) S = {a,d} V-S = {b,c,e}
v = b min (D[b], D[d]+C (d,b)) � min(13, 12+§) � no change
v = c min (D[c], D[d]+C (d,c)) � min(§, 12+30) � a-d-c 42
v = e min (D[e], D[d]+C (d,e)) � min(20, 12+40) � no change

D: ¤ 13 42 12 20
E: ¤ a d a a
L: ¤ 13 30 12 20

--

b a

d

c e

13

30 40

12

20

50

60

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 12 of 21

D: ¤ 13 42 12 20
E: ¤ a d a a
L: ¤ 13 30 12 20
 w is b (min value in D) S = {a,d,b} V-S = {c,e}
v = c min (D[c], D[b]+C (b,c)) � min(42, 13+60) � no change
v = e min (D[e], D[b]+C (b,e)) � min(20, 13+§) � no change

D: ¤ 13 42 12 20
E: ¤ a d a a
L: ¤ 13 30 12 20

--

D: ¤ 13 42 12 20
E: ¤ a d a a
L: ¤ 13 30 12 20
 w is e (min value in D) S = {a,d,b,e} V-S = {c}
v = c min (D[c], D[e]+C (e,c)) � min(42, 20+§) � no change

D: ¤ 13 42 12 20
E: ¤ a d a a
L: ¤ 13 30 12 20

--

This is the final result.

b a

d

c e

13

30 40

12

20

50

60

b a

d

c e

13

30 40

12

20

50

60

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 13 of 21

Costs: a�b (13), a�d�c (42), a�d (12), a�e (20)

SPT edges: a�b (13), a�d (12), d�c (30), a�e (20)

Principle – similar to Prims i.e build a component step by step ���� SPT

Total 5p

b a

d

c e

13

30 40

12

20 60

b a

d

c e

13

30 40

12

20 60

b a

d

c e

13

30 40

12

20 60

b a

d

c e

13

30

12

20

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 14 of 21

(6) Graph – Prim’s algorithm

Apply the version of Prim’s algorithm given below to the undirected graph:-

(a-6-b, a-3-c, a-7-d, b-1-c, b-12-e, c-4-d, c-5-e, c-9-f, d-3-f, e-8-f).

Start with node ”a” .

State all assumptions and show all calculations and intermediate results.

 (3p)

Explain the principles behind Prim’s algorithm.
Use the example above in your explanation.

 (2p)

1. Prim (node v) { -- v is the start node
2. U = {v}; for i in (V-U) { low-cost[i] = C[v,i]; clo sest[i] = v; }
3. while (!is_empty (V-U)) {
4. i = first(V-U); min = low-cost[i]; k = i;
5. for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; }
6. display(k, closest[k]);
7. U = U + k
8. for j in (V-U) if (C[k,j] < low-cost[j])) { low-cost[j] = C[k,j]; closest[j] = k; }
9. }
10. }

Total 5p

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 15 of 21

The principle is that the MST ” grows” from the one component (here ”a”) by connecting this
component to any other component (a node) by the shortest direct of indirect path SO FAR
CALCULATED – this last proviso reveals that Prim’s is a GREEDY algorithm i.e. used a local
best solution.

See below for the calculations.

Draw the graph (and possibly sketch the answer – use Kruskalls for a quick check!):

 Cost 16

a

d

f

b

e

c

a

d

f

b

e

c 4

5

1
3 3

3

76

1
4

12

5 9

8

3

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 16 of 21

Draw the cost matrix C and array D

 a b c d e f
a 6 3 7
b 6 1 12
c 3 1 4 5 9
d 7 4 3
e 12 5 8
f 9 3 8

a b c d e f

lowcost 6 3 7 § §

closest a a a a a

Min edge: lowcost: 6 3 7 § § --- closest: a a a a a --- U = {a,c} V-U = {b,d,e,f} min = 3; k = c
Readjust costs: if C[k,j] < lowcost[j] then { lowcost[j] = C[k,j]; closest[j] = k }
j = b; if C[c,b] < lowcost[b] then { lowcost[b] = C[c,b]; closest[b] = c } � 1<6 � c-1-b
j = d; if C[c,d] < lowcost[d] then { lowcost[d] = C[c,d]; closest[d] = c } � 4<7 � c-4-d
j = e; if C[c,e] < lowcost[e] then { lowcost[e] = C[c,e]; closest[e] = c } � 5<§ � c-5-e
j = f; if C[c,f] < lowcost[f] then { lowcost[f] = C[c,f]; closest[f] = c } � 9<§ � c-9-f

Min edge: lowcost: 1 3 4 5 9 --- closest: c a c c c --- U = {a,c,b} V-U = {d,e,f} min = 1; k = b
Readjust costs: if C[k,j] < lowcost[j] then { lowcost[j] = C[k,j]; closest[j] = k }
j = d; if C[b,d] < lowcost[d] then { lowcost[d] = C[b,d]; closest[b] = b } � §<4 � no change
j = e; if C[b,e] < lowcost[e] then { lowcost[e] = C[b,e]; closest[d] = b} � 12<5 � no change
j = f; if C[b,f] < lowcost[f] then { lowcost[f] = C[b,f]; closest[e] = b } � §<9 � no change

Min edge: lowcost: 1 3 4 5 9 --- closest: c a c c c --- U = {a,c,b,d} V-U = {e,f} min = 4; k = d
j = e; if C[d,e] < lowcost[b] then { lowcost[e] = C[d,e]; closest[e] = d } � §<5 � no change
j = f; if C[d,f] < lowcost[e] then { lowcost[f] = C[d,f]; closest[f] = d } � 3<9 � d-3-f

Min edge: lowcost: 1 3 4 5 3 --- closest: c a c c d --- U = {a,c,b,d,f} V-U = {e} min = 3; k = f
j = e; if C[f,e] < lowcost[e] then { lowcost[e] = C[f,e]; closest[e] = f } � 8<5 � no change

Finally add the remaining node – node e (there are no further calculations)
Min edge: lowcost: 1 3 4 5 3 --- closest: c a c c d --- U = {a,c,b,d,f e} V-U = {¤}

QED ☺ MST edges c-1-b, a-3-c, c-4-d, c-5-e, d-3-f Total cost = 16

(Confirm using Kruskal’s)

Principle: to build the MST from a single component by choosing the cheapest edge to non-
component nodes from the last node added. Above start with a, add edge distances (infinite if
no edge), choose the cheapest (a-3-c) and add this to the component. Now recheck if there are
cheaper edges from c to the non-component nodes. Repeat until all the nodes are connected. So
the component develops as (a), (a-3-c), (a-3-c, c-b-1, c-4-d, c-5-e, d-3-f) (see above).

See below for the example in the question.

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 17 of 21

Start Graph Solution

Start with node a – a is the component
Calculate the edges distances from a to the remaining nodes: no edge=infinity (§)
Calculate the shortest edge (lines 3-4 of the algorithm) – a-3-c
Add node c to the component (line 7 of the algorithm)
Recalculate the edge distances from c to (b,d,e,f) to see if there is a shorter edge
than so far calculated (line 8 of the algorithm)

Min edge: lowcost: 6 3 7 § § --- closest: a a a a a --- U = {a,c} V-U = {b,d,e,f} min = 3; k = c
Readjust costs: if C[k,j] < lowcost[j] then { lowcost[j] = C[k,j]; closest[j] = k }
j = b; if C[c,b] < lowcost[b] then { lowcost[b] = C[c,b]; closest[b] = c } � 1<6 � c-1-b
j = d; if C[c,d] < lowcost[d] then { lowcost[d] = C[c,d]; closest[d] = c } � 4<7 � c-4-d
j = e; if C[c,e] < lowcost[e] then { lowcost[e] = C[c,e]; closest[e] = c } � 5<§ � c-5-e
j = f; if C[c,f] < lowcost[f] then { lowcost[f] = C[c,f]; closest[f] = c } � 9<§ � c-9-f
Result after this iteration: lowcost: 1 3 4 5 9 --- closest: c a c c c

a

d

f

b

e

c

a

d

f

b

e

c 4

5

1
3 3

3

76

1
4

12

5 9

8

3

a

d

f

b

e

c

3

76 a

d

f

b

e

c

3
1

4

5 9
§ §

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 18 of 21

Continue with node c – c is the new node in the component
Calculate the shortest edge (lines 3-4 of the algorithm) – c-1-b
Add node b to the component (line 7 of the algorithm)
Recalculate the edge distances from b to (d,e,f) to see if there is a shorter edge
than so far calculated (line 8 of the algorithm)

Min edge: lowcost: 1 3 4 5 9 --- closest: c a c c c --- U = {a,c,b} V-U = {d,e,f} min = 1; k = b
Readjust costs: if C[k,j] < lowcost[j] then { lowcost[j] = C[k,j]; closest[j] = k }
j = d; if C[b,d] < lowcost[d] then { lowcost[d] = C[b,d]; closest[b] = b } � §<4 � no change
j = e; if C[b,e] < lowcost[e] then { lowcost[e] = C[b,e]; closest[d] = b} � 12<5 � no change
j = f; if C[b,f] < lowcost[f] then { lowcost[f] = C[b,f]; closest[e] = b } � §<9 � no change
Result after this iteration: lowcost: 1 3 4 5 9 --- closest: c a c c c – NO CHANGE

a

d

f

b

e

c

3
1

4

5 9

a

d

f

b

e

c

3
1

4

5 9

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 19 of 21

Now look for the closest non-component node to the component – node d
Calculate the shortest edge (lines 3-4 of the algorithm) – c-4-d
Add node d to the component (line 7 of the algorithm)
Recalculate the edge distances from d to (e,f) to see if there is a shorter edge than
so far calculated (line 8 of the algorithm)

Min edge: lowcost: 1 3 4 5 9 --- closest: c a c c c --- U = {a,c,b,d} V-U = {e,f} min = 4; k = d
j = e; if C[d,e] < lowcost[b] then { lowcost[e] = C[d,e]; closest[e] = d } � §<5 � no change
j = f; if C[d,f] < lowcost[e] then { lowcost[f] = C[d,f]; closest[f] = d } � 3<9 � d-3-f
Result after this iteration: lowcost: 1 3 4 5 3 --- closest: c a c c d

a

d

f

b

e

c

3
1

4

5 9

a

d

f

b

e

c

3
1

4

5
3

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 20 of 21

Now look for the closest non-component node to the component – node f
Calculate the shortest edge (lines 3-4 of the algorithm) – d-3-f
Add node f to the component (line 7 of the algorithm)
Recalculate the edge distances from f to (e) to see if there is a shorter edge than so
far calculated (line 8 of the algorithm)

Min edge: lowcost: 1 3 4 5 3 --- closest: c a c c d --- U = {a,c,b,d,f} V-U = {e} min = 3; k = f
j = e; if C[f,e] < lowcost[e] then { lowcost[e] = C[f,e]; closest[e] = f } � 8<5 � no change
Result after this iteration: lowcost: 1 3 4 5 3 --- closest: c a c c d

a

d

f

b

e

c

3
1

4

5
3

a

d

f

b

e

c

3
1

4

5
3

Karlstad University DSA Ordinary Exam130115 Computer Science

DFR Data Structures and Algorithms, DVG B03, exam 130115 Page 21 of 21

Now look for the closest non-component node to the component – node e
Calculate the shortest edge (lines 3-4 of the algorithm) – c-5-e
Add node e to the component (line 7 of the algorithm)
Recalculate the edge distances from e to (¤) to see if there is a shorter edge than
so far calculated (line 8 of the algorithm) – no edges

Result after this iteration: lowcost: 1 3 4 5 3 --- closest: c a c c d

a

d

f

b

e

c

3
1

4

5
3

a

d

f

b

e

c

3
1

4

5
3

