Karlstad University DSA Ordinary Exam130115 CompBeience

FACIT TO
Ordinary Exam
DATA STRUCTURES AND ALGORITHMS DVG B03

130115 08:15 - 13:15

Course Coordinator: Donald F. Ross

Help Material: A Dictionary from the student’s heranguage to English.

*kk OBS *kk

Students who have studied the course as from (>=ufumn Term 2006

Grading Levels

Course: Max 60p, pass with special distinction, §&ss with distinction 40p, pass 30p
(of which a minimum 15p from the exam, 15p from thdabs)

Exam: Max 30p, grade 5: 26p-30p, grade 4: 21p-gtgje 3: 15p-20p

Labs: Max 30p, grade 5: 26p-30p, grade 4: 21p-gfge 3: 15p-20p

Students who have studied the course before (<) Aunn Term 2006

Grading Levels

Course: Max 60p, pass with special distinction, §&ss with distinction 40p, pass 30p
(of which a minimum 20p from the exam, 10p from thdabs)

Exam: Max 40p, grade 5: 34p-40p, grade 4: 27p-3Buje 3: 20p-26p

Labs: Max 20p, grade 5: 18p-20p, grade 4: 14p-Gigge 3: 10p-13p

Write legibly — read all questions carefully

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 1 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(1)

DFR

Give a short answer to each of the following quesns:-

(a) Show the relationship between a binary search &reemplete tree and a full tree with
the help of a Venn-diagram from set theory.

(b) What is the maximum load factor in hashing withdpagic probing as the collision
management technique which guarantees that a spacdways be found?

50% see lecture notes on Hashing slide 9
(c) What is "big-O"?

An indication of an algorithm’s worst case performance usually with respect to the
number of items processed, n.

(d) What does Warshall's algorithm do?

Calculates the transitive closure of a graph i.e.atermines if there is a path from
any node A to any node B (A and B not necessarilyginct)

(e) Give a definition of an AVL-tree.

An AVL-tree is a BST where the height difference beveen the left sub-tree and the
right sub-tree is no more than 1. |height(LC) — hght(RC)| <=1

A BST (Binary Search Tree) is a binary tree where lathe values in the LC are less

than the value at the root and all the values in th RC are greater than the value at
the root.

() Which grammatical class in natural language coordp to a relation in the Entity
Relationship model?

Verb. Entity = noun, attribute = adjective

Data Structures and Algorithms, DVG B03, exa&801115 Page 2 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(9) Which algorithm requires a DAG as a starting point?
Arguable all tree algorithms since a tree can be gived as a DAG.
Topological sort on a DAG (whether it e a tree or gph)
(h) Which data structures are ordered?
Sequence, ordered trees for example a binary treeand by extension BST and AVL
B-Tree
(i) Which algorithm is O(#)?
Warshall’s, Floyd’s (sometimes known as Floyd-Warsall's).
() Give a definition of a recursive function.
A function which conditionally calls itself.

Total 5p

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 3 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

)

Abstraction

Discuss in detailwhy abstraction is so important in data structubes there any
possible disadvantages to abstraction? Which 3iitiefis of the term abstraction have
we used in this course?

5p

Modelling abstraction: real world =» model (entities + attributes + relationships)
Collections (sets) of entities: abstraction of seguces, trees & graphs (these add
relationships to the set)

Implementation abstraction: ADTs (sets, sequencesges & graphs)
Programming abstraction: Ul — Front End — Back Endmodel

Points to note in your answer — marks for interestig points:

>

By abstracting to produce ADTSs, basic operatiomstzadefined and the ADT applied
to a range of concrete examples — for e.g.

0 The abstract data structure SEQUENCE may be usedishof elements, a
sequence of characters (text editing, parsingepathatching) or as a basis for
other ADTs such as trees and graphs

Abstracting allow us to focus on general aspectshvare not dependent on the
underlying implementation or programming languader-e.g. general sequence
operations may be implemented using arrays + irel© structures + references.
Using ADTSs, systems may be designed on paper baftitally being implemented as a
programmed system

Levels of abstraction may also be used, the mostrgé being a collection (set), with
operations is_empty, cardinality, add_element, ramelement, find_element, display
collection.

At the next level down we may have (abstract) seges, tree and graphs — more
specific operations may be added here — for efty. avbinary tree left_child,

right_child — where the tree is still an abstratctfand the implementation details
hidden)

Abstraction provides a mental (conceptual) toofuider programming

Abstraction provides a mental (conceptual) toofuider creating a “tool kit” for
programming — it is easier to map the solution psablem to a small number of known
techniques than to reinvent the wheel!

Definitions used in this course

1.

2.

DFR

modeling abstraction — abstracting entities antbates from the real world to model
as ADTs in a program

collection abstraction — abstracting the commormperties of the ADTs (set, sequence,
tree, graph) to an abstract collection

implementation abstraction —an ADT is consideretépendent of its implementation
(usually using either pointers and structures QRyarand indexes)

Data Structures and Algorithms, DVG B03, exa&801115 Page 4 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

DFR

Il)

Modelling

Extract “entities” which have “attributes” and pis “relationships” to other
entities. E-R Model (Chen 1970)

Allows non-essential details (from the real wotiabe removedo allow a
simplified model to be produced (+ve)

If values can be attached to the attributes ofraityethen computer models may
be more easily defined and implemented (+ve)

Potential loss of information (-ve)

The model depends on the assumptions made anditbhaiclear what these are
(-ve)

ADTs

Allows programming in the abstract i.e. implemeiotataind language
independent (+ve)
The essential properties of and operations onstedatures may be discussed
independently of ant programming language feat(ires)
ADTs may be viewed as collections of entities (#ng connected to
modelling) with common operations such as

» Create and entity/collection

* Add/ Remove an entity to / from a collection

* Find entities in the collection - search

* Count the number of entities in the collection duaality)

» Define predicates such as “is_empty” for the caitec(i.e. cardinality =

0)

Provides a “mental toolkit” for programmers (+ve)
For (beginner) programmers this may make operatiander to follow since
there is no reference to a specific programminguage (-ve)

Data Structures and Algorithms, DVG B03, exa&801115 Page 5 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(3) Segquence

(a) Give a recursive definition of a sequence.

(1p)
S:=HT]|w® H- head, T tail, @ empty
H ::= element
T:=S

(b) From your definition in (a) above, write recursp&eudo code to count up the
number of elements in a sequence
State all assumptions.
Give an example of how your code works.

(2p)
int card(listref L) {
return is _enpty(L) 2 0 : 1 + card(tail(L)); }
OR
int card(listref L) {
if is_enmpty(L) return O;
el se return 1 + card(tail(L));

}

(c) From your definition in (a) above, write recursp&eudo code to add an element
to a sequence in increasing (sorted) order. Asshatea function called Cons
which adds an element to the head of the list dyrexists.

Cons: element x lis® list.
State all assumptions.
Give an example of how your code works.

_ _ _ (2p)
listref cons(listref e, listref L) {

return set tail(e, L);

}
listref b_add(int v, listref L)

{
return is_enmpty(L) ? create_e(v)
v < get_value(head(L)) ?
cons(create_e(v), L)
cons(head(L), b _add(v, tail(L)));

}
OR
listref b add(int v, listref L)

{
if (is_enmpty(L)) return create_e(v);
else if (v < get_val ue(head(L)))
return cons(create_e(v), L);
el se return cons(head(L), b_add(v, tail(L)));

}
Total 5p

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 6 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(4) General questions — give a detailed answer with aaxample

(a) What is double hashing?

In hashing, there is a hash function which mapsyavalue to an index in the
hash space H: key index.

If/when collisions occur a collision resolution edque is required to find a new
(empty) space in the hash space. This is writtei(sy) + f(i) where “i” is the
number of the collision =1 2'% 3 etc.

For linear probing f(i) = i

For quadratic probing f(i) = i*i

For double hashing f(i) = i * H'(key) which giveg(key) + i*H’(key) hence
double hashing (H and H’)

Example H’'(key) = R — (key mod R) where R is priarel < size(Hash Table)
So for H(key) = key mod 10 and H” could be 7 — (keyd 7)
S04 364457 64 24 would map to the hash tab® 66 6 c o045 36 7 24 44

Show the calculations in your answer.

(b) What is a stack used for?

* As a memory — for e.g. to remember previous stat@ggation through a
maze

* To reorder (say) a sequence e.g. in infix to postéinsformation of
arithmetic expressions 4*(2+2 422 +*

* To execute postfix expressions such as 4 2 2 +& siack machine —
push 4 (stack 4) push 2 (stack 4 2) push 2 (st&R)apply + (stack 4 4)
apply * (stack 16)

* To maintain the stack frames on a run-time stackuiction/procedure
calls in a programming language

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 7 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(c) How is a general tree transformed to a binary tree?

1. Thefirst child becomes thieft child of the parent
2. Thesubsequent childrenbecome theight child of theirpredecessor

Draw an example and show how these rules are applie

¢G
o

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 8 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(d) How does the add function work in a heap?

Add(H, V)
let A = H array
A size++
i = A size
while i > 1 and A[Parent(i)] < v
do Ali] = Al Parent (i)]
i = Parent(i)
end while
Ali] =v
end Add

Draw an example stepwise to illustrate your pdhgte also the demonstration on the
website.

(e) Describe a solution to the TSP-problem. TSP = ThageSalesman Problem.
B TSP Algorithm
O variant of Kruskal's
O edge acceptance conditions
B degree(v) should not >=3
B no cycles unless # selected edges = |V|
B greedy / near-optimal

+ worked example to illustrate your point.

Total 5p

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 9 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(5) Graph — Dijkstra + SPT

Extend Dijkstra’'s algorithm below in order to save and show the SPT.
(SPT: Shortest Path Tree).

Dijkstra ()
{ S ={a}
for (1in 2..n) D[i] = CJa,] -- initialise D

for (iin 1..(n-1)) {
choose w in V - S such that D[w] is a minimum

S =S +{w}
foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,V])
}

(3p)

Dijkstras algoritm med en utdkning for SPT

Dijkstra_SPT (a)

S ={a}
for (i in V-S) {
Dli] =Cla,i] --- initialise D - (edge cst)
E[l =a --- initialise E - SPT (edg)
L] =Cla,li] --- initialise L - SPT(cost)
}

for (iin 1..(JV|-1)) {
choose w in V-S such that D[w] is a minimum
S =S+ {w}
foreach (vin V-S) if (D[w] + C[w,v] < D[v]) {
D[v] = D[w] + C[w,V]
E[v]=w
L[v] = C[w,V]

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 10 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

Apply yourextended version of the algorithirto the followingdirected graph:-

(a, b, 13), (a, d, 12), (a, e, 20), (b, c, 60), éc50), (d, c, 30), (d, e, 40)

Start at node "a”.

Show each step in your calculation.

State all assumptions and show all calculations arnidtermediate results.

Draw each stepn the construction of the STP- i.e. show the n@dekwhich edges are
added and subsequently removed.

(2p)
Initialise D, E, L
D: 21381220
E:oaaa a
L: 21381220
w is d (min value in D) S ={a,d} V-S = {b,c,e}
v=Db min (D[b], D[d]+C (d,b)) => min(13, 12+8)> no change
v=c min (D[c], D[d]+C (d,c)) => min(8, 12+30)> a-d-c 42
v=e min (D[e], D[d]+C (d,e)) => min(20, 12+40)> no change
D: @ 13421220 13 |
E:mad a a b |je=q a

L: 213301220

50

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 11 of 21

Karlstad University

D:© 13421220
E:oad a a
L: @ 13301220

D: 213421220
E:oad a a
L: @ 13301220

DSA Ordinary Exam130115

CompBeience

w is b (min value in D) S = {a,d,b} V-S = {c,e}
v=c min (D[c], D[b]+C (b,c)) = min(42, 13+60)> no change
v=e min (D[e], D[b]+C (b,e)) = min(20, 13+8)> no change

D:©13421220
E:onad a a
L: @ 13301220

D: 13421220
E:oad a a
L: 213301220

w is e (min value in D) S = {a,d,b,e} V-S = {c}
v=c min (D[c], D[e]+C (e,c)) = min(42, 20+8)> no change

This is the final result.

DFR

Data Structures and Algorithms, DVG B03, exa&801115

Page 12 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

Costs: Db (13), a>d>c (42), a>d (12), a>e (20)

SPT edges: -2b (13), a>d (12), d>c (30), a>e (20)

Principle — similar to Prims i.e build a componentstep by step= SPT

13 13 | 13 13
................. =
...... €0
\ 4
C e C e C e C e

Total 5p

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 13 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

(6) Graph — Prim’s algorithm

Apply the version of Prim’s algorithm given belowto the undirected graph:-

(a-6-b, a-3-c, a-7-d, b-1-c, b-12-e, c-4-d, c-5ee9-f, d-3-f, e-8-f).
Start with node "a”.

State all assumptions and show all calculations andtermediate results.

(3p)

Explainthe principles behind Prim’s algorithm.
Use the example above in your explanation.

(2p)

Prim (node v) { --vis the start node
U = {v}; foriin (V-U) { low-cost[i] = C|v,i]; clo sest[i] = v; }
while (lis_empty (V-U)) {
i = first(V-U); min = low-cost[i]; k = i;
for jin (V-U-K) if (low-cost[j] < min) {min = low-cost[j]; k =j; }
display(k, closest[k]);
U=U+k
forjin (V-U) if (Clk,j] < low-cost[j])) { low-cost[j] = C[k,j]; closest[j] = k; }
}

PBOO~NOoORMWNE

0.}

Total 5p

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 14 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

The principle is that the MST ” grows” from the one componentréh&”) by connecting this
component to any other component (a node) by tbeest direct of indirect path SO FAR
CALCULATED - this last proviso reveals that Prinissa GREEDY algorithm i.e. used a local
best solution.

See below for the calculations.

Draw the graph (and possibly sketch the answee-Knsskalls for a quick check!):

Cost 16
612 N7 a
3 3
b N 1 d b 1 d
- 4
12 C 3 C 4 3
5 9
e o \f e—/5 f
8

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 15 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

Draw the cost matrix C and array D

a b c d e f
a 6 3 7
b 6 1 12
(o 3 1 4 5 9
d 7 4 3
e 12 5 8
f 9 3 8
a b c d e f
lowcost 6 3 7) 8
closest a a a a

Min edge lowcost: 637 8 § --- closest: aaaa---U={a,c} V-U={b,de,ffmn=3;k=c
Readjust costs: if C[k,j] < lowcost][j] then { lowstjj] = C[k,j]; closest][j] = k }

j = b; if C[c,b] < lowcost[b] then { lowcost[b] €[c,b]; closest[b] = c }> 1<6=» c-1-b

j =d; if C[c,d] < lowcost[d] then { lowcost[d] €[c,d]; closest[d] = ¢ }> 4<7=> c-4-d

j = e; if C[c,e] < lowcost[e] then { lowcost[e] €[c,e]; closest[e] = ¢ }> 5<§=> c-5-e

j =1, if C[c,f] < lowcost[f] then { lowcost[f] =C][c,f]; closest[f] = c }> 9<§=>» c-9-f

Min edge lowcost:134 59 --- closest. ec c ¢ ---U = {a,c,b} V-U ={d,e,ff min=1; k=b
Readjust costs: if C[k,j] < lowcost][j] then { lowstjj] = C[k,j]; closest][j] = k }

j =d; if C[b,d] < lowcost[d] then { lowcost[d] €[b,d]; closest[b] = b }» 8<4-> no change
j = e; if C[b,e] < lowcost[e] then { lowcost[e] E[b,e]; closest[d] = b}> 12<5-> no change
j =f; if C[b,f] < lowcost[f] then { lowcost[f] =CI[b,f]; closest[e] = b }> §<9-> no change

Min edge lowcost: 13459 --- closestcacc ¢ ---U ={a,c,b,d} V-U ={e,f} min=4; k =d
j = e; if C[d,e] < lowcost[b] then { lowcost[e] €[d,e]; closest[e] = d }» 8§<5-> no change
j =f; if C[d,f] < lowcost[e] then { lowcost[f] =C[d,f]; closest[f] = d }-> 3<9=> d-3-f

Min edge lowcost: 13453 --- closestcaccd --- U ={a,c,b,d,f} V-U ={e} min = 3; k =f
j = e; if C[f,e] < lowcost[e] then { lowcost[e] E[f,e]; closest[e] = f }> 8<5-> no change

Finally add the remaining node — node e (therenarfurther calculations)
Min edge lowcost: 1345 3 --- closestcaccd --- U ={a,c,b,d,f e} V-U = {g}

QED © MST edges c-1-b, a-3-c, c-4-d, c-5-e, d-3-f Total cost = 16
(Confirm using Kruskal's)
Principle: to build the MST from a single component by chogghe cheapestdgeto non-
component nodes from the last node added. Abovevegta a, addedgedistances (infinite if
no edge), choose the cheapest (a-3-c) and adtbttiie component. Now recheck if there are
cheapeedgesfrom c to the non-component nodes. Repeat uhtihalnodes are connected. So
the component develops as (a), (a-3-c), (a-3-elcé4-d, c-5-e, d-3-f) (see above).

See below for the example in the question.

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 16 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

Start Graph Solution
6112 N7 a
b |7 B d b L1 2 d
17 c 14 3 c W4 3'
e [5 3 == f e IO f|

Start with node a — a is the component

Calculate the edges distances frato the remaining nodes: no edge=infinity (8)
Calculate the shortest edge (lines 3-4 of the dlgo) — a-3-c

Add node c to the component (line 7 of the algomith

Recalculate the edge distances from c to (b,dte,Bee if there is a shorter edge
than so far calculated (line 8 of the algorithm)

e i e [T f

Min edge lowcost: 637 8 § --- closest: @a aa ---U ={a,c} V-U = {b,d,e,f} min=3; k=c
Readjust costs: if C[k,j] < lowcost[j] then { lowst]j] = C[k,j]; closest[j] = k }

j = b; if C[c,b] < lowcost[b] then { lowcost[b] €[c,b]; closest[b] = ¢ > 1<6=>» c-1-b

j =d; if C[c,d] < lowcost[d] then { lowcost[d] €[c,d]; closest[d] = ¢ }> 4<7=> c-4-d

j = e; if C[c,e] < lowcost[e] then { lowcost[e] €[c,e]; closest[e] = ¢ }> 5<8=>» c-5-e

j =1, if C[c,f] < lowcost[f] then { lowcost[f] =C][c,f]; closest[f] =c} > 9<§=>» c-9-f
Result after this iteration: lowcost:134 5 9 --- closest. @acc c

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 17 of 21

Karlstad University DSA Ordinary Exam130115 CompBeience

Continue with node ¢ — c is the new node in thepament

Calculate the shortest edge (lines 3-4 of the dlgo) — c-1-b

Add node b to the component (line 7 of the algonith

Recalculate the edge distances from b to (d,e,5ee if there is a shorter edge
than so far calculated (line 8 of the algorithm)

Min edge lowcost: 13459 --- closest.@acc c ---U ={a,c,b} V-U ={d,e,ffmin=1; k=b
Readjust costs: if C[k,j] < lowcost[j] then { lowst}j] = C[k,j]; closest[j] = k }

j =d; if C[b,d] < lowcost[d] then { lowcost[d] €[b,d]; closest[b] =b }» 8<4-> no change
j = e; if C[b,e] < lowcost[e] then { lowcost[e] E[b,e]; closest[d] = b}> 12<5-> no change
j =f; if C[b,f] < lowcost[f] then { lowcost[f] =C][b,f]; closest[e] = b }> §<9-> no change
Result after this iteration: lowcost:134 5 9 --- closest: @ ¢ ¢ c — NO CHANGE

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 18 of 21

Karlstad University DSA Ordinary Exam130115 Comp@Beience

Now look for the closest non-component node tocthraponent — node d
Calculate the shortest edge (lines 3-4 of the dlgo) — c-4-d

Add node d to the component (line 7 of the algonith

Recalculate the edge distances from d to (e,fe¢afsthere is a shorter edge than
so far calculated (line 8 of the algorithm)

Min edge lowcost: 13459 --- closestcacc ¢ ---U ={a,c,b,d} V-U ={e,ff min=4; k=d
j = e; if C[d,e] < lowcost[b] then { lowcost[e] €[d,e]; closest[e] = d }» 8§<5-> no change
j =f; if C[d,f] < lowcost[e] then { lowcost[f] =C[d,f]; closest[f] = d }> 3<9=> d-3-f

Result after this iteration: lowcost: 13453 --- closestcaccd

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 19 of 21

Karlstad University DSA Ordinary Exam130115 Comp@Beience

Now look for the closest non-component node tocthaponent — node f
Calculate the shortest edge (lines 3-4 of the dlgo) — d-3-f

Add node f to the component (line 7 of the algan}h

Recalculate the edge distances from f to (e) tafsbere is a shorter edge than so
far calculated (line 8 of the algorithm)

Min edge lowcost: 13453 --- closestcaccd --- U ={a,c,b,d,f} V-U ={e} min = 3; k =f
j = e; if C[f,e] < lowcost[e] then { lowcost[e] E€[f,e]; closest[e] = f }> 8<5-> no change
Result after this iteration: lowcost: 13453 --- closestcaccd

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 20 of 21

Karlstad University DSA Ordinary Exam130115 Comp@Beience

Now look for the closest non-component node toctiraponent — node e
Calculate the shortest edge (lines 3-4 of the dlgo) — c-5-e

Add node e to the component (line 7 of the algam)th

Recalculate the edge distances from e to (v) taf $eere is a shorter edge than
so far calculated (line 8 of the algorithm) — ngesl

Result after this iteration: lowcost: 134 5 3 --- closestcaccd

DFR Data Structures and Algorithms, DVG B03, exa&801115 Page 21 of 21

