Ordinary Exam
 DATA STRUCTURES AND ALGORITHMS DVG B03

130115 08:15-13:15

Course Coordinator: Donald F. Ross
Help Material: A Dictionary from the student's home language to English.
*** OBS ***

Students who have studied the course as from (>=) Autumn Term 2006

Grading Levels:

Course: Max 60p, pass with special distinction 50p, pass with distinction 40p, pass 30p (of which a minimum 15p from the exam, 15p from the labs)
Exam: \quad Max 30p, grade 5: $26 \mathrm{p}-30 \mathrm{p}$, grade 4: $21 \mathrm{p}-25 \mathrm{p}$, grade 3: $15 \mathrm{p}-20 \mathrm{p}$
Labs: Max 30p, grade 5: $26 \mathrm{p}-30 \mathrm{p}$, grade $4: 21 \mathrm{p}-25 \mathrm{p}$, grade $3: 15 \mathrm{p}-20 \mathrm{p}$

Students who have studied the course before (<) Autumn Term 2006
Grading Levels:
Course: Max 60 p, pass with special distinction 50 p, pass with distinction 40 p, pass 30 p (of which a minimum 20p from the exam, 10p from the labs)
Exam: \quad Max 40p, grade 5: $34 \mathrm{p}-40 \mathrm{p}$, grade 4: $27 \mathrm{p}-33 \mathrm{p}$, grade 3: 20p-26p
Labs: Max 20p, grade 5: $18 \mathrm{p}-20 \mathrm{p}$, grade $4: 14 \mathrm{p}-17 \mathrm{p}$, grade 3: $10 \mathrm{p}-13 \mathrm{p}$
Write legibly - read all questions carefully

(1) Give a short answer to each of the following questions:-

(a) Show the relationship between a binary search tree, a complete tree and a full tree with the help of a Venn-diagram from set theory.
(b) What is the maximum load factor in hashing with quadratic probing as the collision management technique which guarantees that a space can always be found?
(c) What is "big-O"?
(d) What does Warshall's algorithm do?
(e) Give a definition of an AVL-tree.
(f) Which grammatical class in natural language corresponds to a relation in the Entity Relationship model?
(g) Which algorithm requires a DAG as a starting point?
(h) Which data structures are ordered?
(i) Which algorithm is $\mathrm{O}\left(\mathrm{n}^{3}\right)$?
(j) Give a definition of a recursive function.

Total 5p

(2) Abstraction

Discuss in detail why abstraction is so important in data structures. Are there any possible disadvantages to abstraction? Which 3 definitions of the term abstraction have we used in this course?

$$
\mathbf{5 p}
$$

(3) Sequence

(a) Give a recursive definition of a sequence.
(b) From your definition in (a) above, write recursive pseudo code to count up the number of elements in a sequence
State all assumptions.
Give an example of how your code works.
(2p)
(c) From your definition in (a) above, write recursive pseudo code to add an element to a sequence in increasing (sorted) order. Assume that a function called Cons which adds an element to the head of the list already exists.
Cons: element x list \rightarrow list.
State all assumptions.
Give an example of how your code works.
(4) General questions - give a detailed answer with an example
(a) What is double hashing?
(b) What is a stack used for?
(c) How is a general tree transformed to a binary tree?
(d) How does the add function work in a heap?
(e) Describe a solution to the TSP-problem. TSP = Travelling Salesman Problem.

Total 5p

(5) Graph - Dijkstra + SPT

Extend Dijkstra's algorithm below in order to save and show the SPT. (SPT: Shortest Path Tree).

```
Dijkstra ()
{ S={a}
    for (i in 2..n) D[i] = C[a,i] -- initialise D
    for (i in 1..(n-1)) {
    choose w in V - S such that D[w] is a minimum
    S = S + {w}
    foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])
    }
    }
```

Apply your extended version of the algorithm to the following directed graph:-
(a, b, 13), (a, d, 12), (a, e, 20), (b, c, 60), (c, e, 50), (d, c, 30), (d, e, 40)
Start at node "a".
Show each step in your calculation.
State all assumptions and show all calculations and intermediate results.
Draw each step in the construction of the STP-i.e. show the nodes and which edges are added and subsequently removed.

Total 5p
(6) Graph - Prim's algorithm

Apply the version of Prim's algorithm given below to the undirected graph:-
(a-6-b, a-3-c, a-7-d, b-1-c, b-12-e, c-4-d, c-5-e, c-9-f, d-3-f, e-8-f).
Start with node "a".
State all assumptions and show all calculations and intermediate results.
(3p)
Explain the principles behind Prim's algorithm.
Use the example above in your explanation.
(2p)
Prim (node v) -- v is the start node
\{ $\mathrm{U}=\{\mathrm{v}\}$; for i in $(\mathrm{V}-\mathrm{U})\{$ low-cost $[\mathrm{i}]=\mathrm{C}[\mathrm{v}, \mathrm{i}] ;$ closest $[\mathrm{i}]=\mathrm{v} ;\}$
while (!is_empty (V-U)) \{
$\mathrm{i}=\mathrm{first}(\mathrm{V}-\mathrm{U}) ; \mathbf{m i n}=\operatorname{low}-\operatorname{cost}[\mathrm{i}] ; \mathrm{k}=\mathbf{i}$;
for \mathbf{j} in (V-U-k) if (low-cost[j] < min) \{min = low-cost[j]; $k=j ;\}$
display(k, closest[k]);
$\mathbf{U}=\mathbf{U}+\mathbf{k}$
for \mathbf{j} in (V-U) if ($\mathbf{C}[\mathbf{k}, \mathbf{j}]$ < low-cost $[\mathbf{j}])$) \{low-cost[j]=C[k,j]; closest[j]=k; \} \}
\}

Total 5p

