

Simple Examples

Consider add \& delete

- Add
- When you have worked out the cases for add...
- Outside = single rotation
- Inside = double rotation
- You can then treat delete as equivalent to add and derive the general case for add and delete to rebalance the tree

Add - outside \rightarrow simple rotation

Look at simple cases

SLR(T)

- Add 11 to (*,9,10)
- Adding is on the OUTSIDE
- Balance factor (bf) $\mathrm{h}(\mathrm{L})-\mathrm{h}(\mathrm{R})$ - $\mathrm{bf}=0-2 \rightarrow-2 \rightarrow$?LR
- Now look at the R-child (10) - $b f=-1$
\rightarrow SLR
- Single Left Rotation required to re-balance the tree i.e. to maintain the AVL constraint.
- Single Right Rotation

SRR is the mirror image

Add - inside \rightarrow double rotation

Look at simple cases

- Add 11 to (*,9,12)
- Adding is on the INSIDE
- Balance factor (bf) $h(\mathrm{~L})-\mathrm{h}(\mathrm{R})$ - $\mathrm{bf}=0-2 \rightarrow-2 \rightarrow$?LR
- Now look at the R-child (12) - bf = 1
\rightarrow DLR
- Double Left Rotation required to re-balance the tree i.e. to maintain the AVL constraint.
- Double Right Rotation DRR is the mirror image

Delete \rightarrow simple rotation (i)

Look at simple cases

bf = -2

SLR(T)

- Delete 8 from (8,9,(*,10,11))
- Equivalent to add 11 to $(*, 9,10)$
- Adding is on the OUTSIDE
- Balance factor (bf) $h(\mathrm{~L})-\mathrm{h}(\mathrm{R})$ - $\mathrm{bf}=0-2 \rightarrow-2 \rightarrow$?LR
- Now look at the R-child (10)
- $b f=-1$
\rightarrow SLR
- Single Left Rotation required to re-balance the tree i.e. to maintain the AVL constraint.
- Single Right Rotation

SRR is the mirror image

Delete \rightarrow simple rotation (ii)

Look at simple cases

bf $=-2$

SLR(T)

$$
\begin{gathered}
21_{\mathrm{h}=3} \\
9_{\mathrm{h}=2}^{12}{ }_{\mathrm{n}=1} \\
10 \\
\mathrm{~m}_{\mathrm{h}=1}
\end{gathered}
$$

- Delete 8 from (8,9,(10,11,12))
- Balance factor (bf) $h(\mathrm{~L})-\mathrm{h}(\mathrm{R})$ - $\mathrm{bf}=0-2 \rightarrow-2 \rightarrow$?LR
- Now look at the R-child (11) - $\mathrm{bf}=0$
\rightarrow SLR
- Single Left Rotation required to re-balance the tree i.e. to maintain the AVL constraint.
- Single Right Rotation SRR is the mirror image

Delete \rightarrow double rotation

Look at simple cases

- Delete 8 from (8,9,(11,12,*))
- Equivalent to add 11 to $(*, 9,12)$
- Adding is on the INSIDE
- Balance factor (bf) $\mathrm{h}(\mathrm{L})-\mathrm{h}(\mathrm{R})$
- $\mathrm{bf}=0-2 \rightarrow-2 \rightarrow$?LR
- Now look at the R-child (12)
- bf = 1
\rightarrow DLR
- Double Left Rotation required to re-balance the tree i.e. to maintain the AVL constraint.
- Double Right Rotation DRR is the mirror image

Comparing add and delete (i)

Look at simple cases

9
10
11
SLR(T)
10
$9 \quad 11$

This represents 2 cases

1. Add 11 to $(*, 9,10)$
2. Remove $\mathbf{8}$ from (8,9,(*,10,11))

- Both use a Single Left Rotation to re-balance the tree i.e. to maintain the AVL constraint.
- Adding Is on the OUTSIDE
- Single Right Rotation

SRR is the mirror image

Comparing add and delete (ii)

Look at simple cases

Think about this example

Delete 8 from
(8,9,(10,11,12))
Is like
Add 12 to $\left({ }^{*}, 9,11\right) \rightarrow$
SLR $\rightarrow(9,11,12)$
Add 10 gives
((*,9,10),11,12)

Comparing add and delete (iii)

Look at simple cases

9

DLR(T)

10
$9 \quad 11$
$\operatorname{DLR}(T)=\operatorname{SRR}(R C(T))+\operatorname{SLR}(T)$

This represents 2 cases

1. Add $\mathbf{1 0}$ to $(*, 9,11)$
2. Remove $\mathbf{8}$ from (8,9,(10,11,*))

- Both use a Double Left Rotation to re-balance the tree i.e. to maintain the AVL constraint.
- Adding Is on the INSIDE
- Double Right Rotation DDR is the mirror image

Next step - write the lab code

- The above is sufficient info to produce the code for the lab
- It is worth thinking where in the code the rebalancing function is called
- Challenge: it is possible to have just one call to the rebalancing function $)$

In summary

- Start with simple examples
- Derive general principles
- Balancing may be done just after the ADD / REMOVE
- Think carefully where you re-balance!
- Hint: in one place only in the BST code
- It's a tree - balance takes 4 lines! $)$

