DFR/DSA DSA Notes: Abstract Programming Page 1 of 13

Abstract Programming — an overview.

In the DSA (Data Structures & Algorithms) course, the start point for abstract
programming is the sequence (as an example). By abstract programming |
mean that much of the implementation detail is hidden. This usually means the
details of whether arrays or structures and pointers have been used for the
implementation.

Sequence Definition

Sequence ::= Head Tail | empty // (::= means is defined as)
Head ::= element
Tail ::= Sequence // recursive definition

What does this imply?

1. A sequence is either empty or non-empty

2. A non-empty sequence is composed of a head and a tail
3. To deconstruct the sequence, 2 functions are required
a. Head(sequence S)
b. Tail(sequence S)
4. To reconstruct the sequence, a further function
cons(head(S), tail(S)) is required where S is a sequence

This in turn determines how the code will be written — e.g. add an element

static sequence be_add_val(sequence S, int v) {
return is_empty(S) ? create_e(v)
v < get_value(head(S)) ? cons(create_e(v), S)
cons(head(S), be_add_val(tail(S),v));
}

create_e(int v) creates a new element from a value

DFR/DSA 07/12/2016 21:24 Page 1 of 13

DFR/DSA DSA Notes: Abstract Programming Page 2 of 13

The abstract form of the above example is

1. Check for an empty sequence // is_empty(S)
2. Process the Head // non-empty non-recursive
3. Process the Tail // non-empty recursive

This provides an abstract programming pattern for the remaining operations on

the sequence.

Cardinality (size)

static int be_size_seq(sequence S)

{ return is_empty(S) ? 0: 1 + be_size_seq(tail(S)); }

OR using if/then/else

static int be_size_seq(sequence S)

{ if (is_empty(S)) return O else return 1 + be_size_seq(tail(S)); }

Non-empty implies that the sequence contains at least one element

Remove

static sequence be_rem_val(sequence S, int v) {
return is_empty(S) ?S
v == get_value(head(S)) ? tail(S)
cons(head(S), be_rem_val(tail(S), v));

}

Garbage collection is assumed!

DFR/DSA 07/12/2016 21:24 Page 2 of 13

DFR/DSA DSA Notes: Abstract Programming Page 3 of 13

Find

Here there is a choice. Find can either return true or false OR if the element is
found, a reference to the element otherwise a null reference (however this is
implemented — the reference is an abstract type)

static sequence be_find_val(sequence S, int v) {
return (is_empty(S) | | (v==get_value(head(S)))) ? S : be_find_val(tail(S), v);
}

This is a shortened version of the pattern — the “standard version” is

static sequence be_find_val(sequence S, int v) {
return is_empty(S) ?S // S is NULLREF (not found)
v==get_value(head(S)) ?S // found
be_find_val(tail(S), v);
}

The Boolean version is

static int be_find_val(sequence S, int v) {
return is_empty(S) ?0 // false
v==get_value(head(S)) ?1 // true

be_find_val(tail(S), v);

NOTE in all of these functions, sequence is an (abstract) reference to the
sequence.

DFR/DSA 07/12/2016 21:24 Page 3 0f 13

DFR/DSA DSA Notes: Abstract Programming Page 4 of 13

The abstract implementation then becomes

#define NULLREF NULL // the abstract null reference (pointer)

typedef struct segelem * sequence; // abstract reference to an element

typedef struct seqgelem { // element — structure + pointer
int value;
sequence tail; // abstract sequence reference
} seqgelem;

This may be further abstracted by defining an abstract type for the value

typedef int valuetype // here the type is an integer

giving

typedef struct segelem * sequence; // abstract reference to an element

typedef struct seqgelem { // element — structure + pointer
valuetype value; // abstract value type
sequence tail; // abstract sequence reference
} seqgelem;

In the rest of the code only NULLREF, valuetype and sequence are used.
S==NULL, pointers (=), and value type int should NOT be used

This allows the value type to be easily redefined to another type by changing

the typedef to| typedef xxx valuetype | — where xxx is any defined type.

The next step is to define the get/set functions on the sequence element.
These will be implementation dependent in the code BUT the get/set functions
represent the abstraction (hiding) of the implementation details.

There are 2 attributes (i) value and (ii) a reference to a sequence

DFR/DSA 07/12/2016 21:24 Page 4 of 13

DFR/DSA DSA Notes: Abstract Programming Page 5 of 13

The get/set functions are

static valuetype get value(sequence E) { return E->value; }
static sequence get_tail (sequence E) { return E->tail; }
static sequence set_value(sequence E, valuetype v) {E->value =v; return E; }

static sequence set_tail (sequence E, sequencet) {E->tail =t;returnE; }

Finally there is one more implementation dependent function

sequence create_e(valuetype v) // create an element from a value

static sequence create_e(valuetype v)

{

return set_tail(set_value(malloc(sizeof(sequence)), v), NULLREF);

}

Here, the malloc reveals that the implementation is based on structures and
pointers. For an array based implementation, the create_e function would get
the next free element in the array.

After this there is a further abstraction based on the definition of the sequence

The de-construction functions Head(sequence S), Tail(sequence S)
The re-construction function cons(sequence Head, sequence Tail)
static sequence Head(sequence S) {returnsS;}

static sequence Tail(sequence S) { return get_tail(S); }

static sequence cons(sequence H, sequence T) { return set_tail(H, T); }

and finally define the is-empty function

staticint is_empty(sequence S) { return S == NULLREF; }

After this point only these functions should be used to manipulate the
sequence. See the code for the sequence operations (add, rem, find) above.

DFR/DSA 07/12/2016 21:24 Page 5 of 13

DFR/DSA DSA Notes: Abstract Programming Page 6 of 13

By defining and naming these functions, the code is self-documenting.

Head, Tail and cons show how the sequence is de- and re-constructed in the
operations.

Signs of non-abstract programming are NOT using the abstract functions and
revealing the implementation details. For example add

static sequence be_add_val(sequence S, int v) {
return is_empty(S) ? create_e(v)
v < get_value(head(S)) ? cons(create_e(v), S)
cons(head(S), be_add_val(tail(S),v));
}

Might be written as

static sequence be_add_val(sequence S, int v) {
return S==NULL ? create_e(v)
v < get_value(S) ? cons(create_e(v), S)
cons(S, be_add_val(S2>tail, v));
}

Where S==NULL, S and S—>tail reveal the implementation details (structure +
pointer) and the function is less well documented in terms of the ABSTRACT
DEFINITION of the sequence and possibly less well understood by the
programmer!!!

If you are using the second form (non-abstract) in your labs please change the
code to the abstract form.

This is @ mental exercise in abstract programming since both the sequence and
the binary tree are particularly good examples of how the definition
determines and constrains the code.

DFR/DSA 07/12/2016 21:24 Page 6 of 13

DFR/DSA

DSA Notes: Abstract Programming Page 7 of 13

While the student may think (right now) that this is perhaps a “strange” way of
programming, it comes from the functional programming paradigm. The above
function written in the programming language Haskell becomes

bAdd v[] =v:[] []is the empty sequence
bAdd v [x:xs] : iscons

| v<x = v : [x:xs] x is head

| otherwise =X : bAdd v xs Xs is tail

Where the sequence is defined as a cons(Head, Tail) in a very shortened form

[x : xs] where x is the head, xs is the tail, : is the cons function and [] the empty
list. [x : xs] can be read as “a list is a head ‘cons:ed’ to a tail”.

Signs of abstract programming

1. The implementation details (array/structure + pointer) are hidden
(abstracted) by

a.

~0oooT

ok wnN

Defining an abstract NULLREF
Defining an abstract value type
Defining get/set functions for each attribute
Defining a create element function
Defining an is_empty function
Defining de-construction functions for the ADT
i. For a sequence these are Head(S), Tail(S)
ii. For a binary tree these are LC(T), node(T), RC(T)
Defining a re-construction function for the ADT
i. For a sequence this is cons(Head(S), Tail(S))
ii. For a binary tree this is cons(LC(T), node(T), RC(T))

Functions are short and perform one operation only

The code is self-documenting and reflects the structure of the ADT
The code follows a pattern determined by the structure of the ADT
The code is easy to understand by a person who understands ADTs
The code is elegant!

These ideas represent a new style of programming which is perhaps new (and
strange) for you BUT it is part of this course and the understanding of ADTs.

DFR/DSA

07/12/2016 21:24 Page 7 of 13

DFR/DSA DSA Notes: Abstract Programming Page 8 of 13

ADT Binary Tree / Binary Search Tree / AVL tree

The next stage is to apply the above ideas to the BT (which is part of the tree
lab (BST/AVL-tree) of the course). So how do we start?

1. Look at the definition of the BT
2. ldentify the code pattern from the definition
3. Apply this pattern to the functions which implement the operations

The Definition

BT == LC N RC |empty // non-empty or empty
N = element // N is the node / root
LC = BT // LC is the Left Child
RC = BT // RC is the Right Child

The Pattern

1. The empty case

2. The node / root case // non-empty, non-recursive
3. The LC case // non-empty, recursive

4. The RC case // non-empty, recursive

However in this case it is sometimes more advantageous to slightly change the
pattern to

1. The empty case

2. The LC case // non-empty, recursive

3. The RC case // non-empty, recursive

4. The node / root case // non-empty, non-recursive

DFR/DSA 07/12/2016 21:24 Page 8 of 13

DFR/DSA

DSA Notes: Abstract Programming

The start definitions and functions then become

Page 9 of 13

#define NULLREF NULL

// abstract null reference

typedef struct treenode * treeref;

// abstract tree reference

typedef struct treenode {

// tree element (node)

int
int
treeref
treeref

} treenode;

value;

height;

LC; // abstract tree reference
RC; // abstract tree reference

static treeref T

= (treeref) NULLREF;

// define a tree (empty)

static int is_empty(treeref T) { return T == NULLREF; }
static int get_value(treeref T) { return T->value; }
static int get_height(treeref T) { return T->height; }

static treeref

static treeref

get LC(treerefT)

get RC(treeref T)

{ return T->LC;

{ return T->RC;

static treeref
static treeref
static treeref

static treeref

set_value(treeref T, intv)
set_height(treeref T, int h)
set_LC(treeref T, treeref L)

set_RC(treeref T, treeref R)

{T->value =v; returnT, }
{ T->height = h; return T; }
{T->LC =L;returnT; }

{T->RC =R;returnT; }

DFR/DSA

07/12/2016 21:24

Page 9 of 13

DFR/DSA DSA Notes: Abstract Programming Page 10 of 13

static treeref create_node(int v)
{
return set_RC(
set LC(
set_height(

set_value(malloc(sizeof(treenode)), v),

0),
NULLREF),
NULLREF);
}
static treeref node(treeref T) {returnT, }
static treeref LC(treeref T) { return get_LC(T); }
static treeref RC(treeref T) { return get_RC(T); }

static treeref cons(treeref LC, treeref N, treeref RC) {

return set_LC(set_RC(N, RC), LC);
}

LC(T), node(T) and RC(T) are the deconstruction functions for the tree

cons(LC, node, RC) is the reconstruction function for the tree

The operations on the tree are then implemented according to the pattern
and abstractions defined above. Add, find, cardinality and remove.

DFR/DSA 07/12/2016 21:24 Page 10 of 13

DFR/DSA DSA Notes: Abstract Programming

Page 11 of 13

static treeref b_add(treeref T, int v) // no duplicate values

{

return is_empty(T) ? create_node(v)

:v < get value(node(T)) ? cons(b_add(LC(T), v), node(T), RC(T))

:v>get_value(node(T)) ? cons(LC(T), node(T), b_add(RC(T), v))

T,

static int b_findb(treeref T, int v)

{
return is_empty(T) ?0
:v< get value(node(T)) ? b_findb(LC(T), v)
:v> get_value(node(T)) ? b_findb(RC(T), v)
1;
}

// false

// true

static int b_size(treeref T)

{
return is_empty(T) ?0:1 + b_size(LC(T)) + b_size(RC(T));
}
DFR/DSA 07/12/2016 21:24 Page 11 of 13

DFR/DSA DSA Notes: Abstract Programming Page 12 of 13

static treeref b_rem(treeref T, int v)

{
return is_empty(T) T
:v< get value(node(T)) ? cons(b_rem(LC(T), v), node(T), RC(T))
:v> get_value(node(T)) ? cons(LC(T), node(T), b_rem(RC(T), v))
removeAtRoot(T);
}

Note that b_rem maintains the pattern defined above. Another sign of abstract
programming is to separate functionality and to divide problems up into
smaller sub-problems. Note the new sub-goal is to implement removeAtRoot.

There are 4 cases:

static treeref removeAtRoot(treeref T) {

return is_LeafNode(T) ? NULLREF // no LC, no RC
is_empty(LC(T)) ? RC(T) // RC only
is_empty(RC(T)) ? LC(T) // LC only

twoChild(T); // LC and RC

So the next sub-goal is to write twoChild() (and is_LeafNode() — used to
document the code).

In the case where the root has both a LC and a RC then there are 2 possibilities

1. Replace the value at the root by the maximum value in the LC
2. Replace the value at the root by the minimum value in the RC

The minimum/maximum values must be removed from the RC/LC.

DFR/DSA 07/12/2016 21:24 Page 12 of 13

DFR/DSA DSA Notes: Abstract Programming Page 13 of 13

One way of proceeding is --- twoChild(T) thus requires a decision

1. height(LC(T)) > height(RC(T)) =» use maximum value in LC
2. otherwise =» use minimum value in RC

Then cons(LC, node, RC) may then be used to return the resultant tree
This in turn might lead to further help functions which will be mirror images.

Again the definition determines the pattern and thus how the code is written.

In summary

Signs of abstract programming

1. The implementation details (array/structure + pointer) are hidden
(abstracted) by
a. Defining an abstract NULLREF
Defining an abstract value type
Defining get/set functions for each attribute
Defining a create element function
Defining an is_empty function
Defining de-construction functions for the ADT
i. For asequence these are Head(S), Tail(S)
ii. For a binary tree these are LC(T), node(T), RC(T)
g. Defining a re-construction function for the ADT
i. For asequence this is cons(Head(S), Tail(S))
ii. For a binary tree this is cons(LC(T), node(T), RC(T))
Functions are short and perform one operation only
The code is self-documenting and reflects the structure of the ADT
The code follows a pattern determined by the structure of the ADT
The code is easy to understand by a person who understands ADTs
The code is elegant!

N

ok wn

These ideas represent a new style of programming which is perhaps new (and
strange) for you BUT it is part of this course and the understanding of ADTs.

DFR/DSA 07/12/2016 21:24 Page 13 of 13

