
DFR/DSA 2016-06-30 20:47:11 page 1 of 37

DFR/DSA Compendium page 1 of 37

Course DVG B03: Data Structures & Algorithms – Compendium

Course Structure

1. Introduction: basic data structures and operations (5 lectures)
2. Sequences: sorting, searching and hashing (2 lectures)
3. Performance (1 lecture)
4. Trees: general, binary, BST, AVL, B-trees (3 lectures)
5. Graphs: directed, undirected (4 lectures)
6. Revision and exam technique (1 lecture)

Course goals

1. Background: Abstraction, modelling & collections
2. Data structures (set, sequence, tree, graph) and operations
3. Algorithms: Tree: AVL add, heap, Graph: Dijkstra, Floyd, Warshall, Prim,

Kruskal, Strong Components, Articulation Point
4. Labs: Understanding and implementation of the above
5. Abstraction: Modelling, Implementation, Collection
6. Data Structures: Set, Sequence (List, Stack, Queue), Tree, (General, Binary,

Binary Search, AVL, B-tree), Graph (Directed, Undirected)
7. Introduce ABSTRACTION & ABSTRACT THINKING
8. Create a mental toolbox
9. Improve C programming
10. Introduce the concept of Abstract Programming

(Language & implementation independent)

DFR/DSA 2016-06-30 20:47:11 page 2 of 37

DFR/DSA Compendium page 2 of 37

Data structures and operations – these can be generalised as collections

1. set: is_empty, add, remove, is_member, display, cardinality
2. sequence: is_empty, add, remove, find, display, cardinality
3. tree: is_empty, add, remove, find, display, navigation, cardinality
4. graph: is_empty, add, remove, find (node, edge), display, cardinality,

searches

Abstraction

1. modelling abstraction: real world  entities, attributes, relationships
2. abstract data types: implementation independent
3. collection abstraction: set, sequence, tree, graph as collections

Collection = entities & attributes + relationships

Abstraction – working definitions

1. ADT (abstract data type) = ADS (abstract data structure) + operations
2. ADS = abstract set, sequence, tree graph
3. DT (data type) = DS (data structure) + operations
4. DS (data structure) = implementations of set, sequence, tree, graph – the most

common DSs in programming languages are arrays and structures (records)

Computer Science

1. frequently deals with collections of information and how to organise information
2. most important operation is SEARCHING
3. SORTING is an aid to improved searching
4. requires efficient methods of organising and searching information
5. this in turn gave rise to the study of the data structures: set, sequence, tree, graph
6. these data structures are used in every branch of computer science

DFR/DSA 2016-06-30 20:47:11 page 3 of 37

DFR/DSA Compendium page 3 of 37

Modelling

1. consists of abstracting information from the real world to make a computer
model which may then be represented by data structures and manipulated via
algorithms

2. from the database world we can use the Entity-Relationship model1 (Chen)
where real world objects are represented as entities with attributes and where
relationships (with attributes) may exist between entities

3. Example: students and courses – the model contains only relevant information
a. real world student: (name, address, hair colour, eye colour, university…)
b. model student: (sname, address, telephone number, subject, id number)
c. model course: (cname, code, level, offering, lecturer)
d. courses/student relationship: (id number, code)
e. each of these (b, c, d) may be represented by sets

Language & Modelling

1. noun  entity e.g. student
2. adjective  attribute e.g. third year student
3. verb  relationship e.g. student takes course

Programming Languages

1. provide (atomic / predefined) data types: integer, real, character, Boolean
2. provide constructed data types usually via array and structure (record)
3. provide basic operations on predefined data types: arithmetic, logic
4. provide functions/procedures/methods as ways of defining new operations

using previously defined operations – basic + user defined
5. example: linked lists using structures + pointers
6. example: display the list as a function “display()”
7. an “object” in OO programming is an entity + operations (methods)

1 http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model

DFR/DSA 2016-06-30 20:47:11 page 4 of 37

DFR/DSA Compendium page 4 of 37

Implementing collections of entities and attributes

1. e.g. student: (string: name, string: pnum, integer: year, integer: subject)
2. arrays – one per attribute

3. structures and pointers

4. similarly trees and graphs may be implemented
(Usually with structures & pointers)

5. set & get operations may then be implemented for each attribute to keep the rest
of the code independent of the implementation details (array/structure)

6. using the set/get operations, other operations may be implemented
7. this may be done in a “backend” module as in C or using an object (class) in OO
8. this backend is the implementation of our ADT ( ADS + operations)

name pnum year subject

name

pnum

year

subject

name

pnum

year

subject

name

pnum

year

subject

DFR/DSA 2016-06-30 20:47:11 page 5 of 37

DFR/DSA Compendium page 5 of 37

ADTs, properties and CS applications

SET2

Definition: a collection of objects (entities)

Operations: union, intersection, difference, subset, is_member, cardinality

(number of objects), is_empty, add (member), remove (member),
find (member i.e. is_member), display

Properties: unique entities, unordered

CS applications: relational databases3

SEQUENCE4

Definition: an ordered collection of objects (entities)

Relationships: successor / predecessor

Operations: concatenate, difference, sub-sequence, is_member, cardinality,

is_empty, add (entity), remove (entity), find (entity), display,
add, remove & find by position (first, nth, last)

Properties: non-unique entities (duplicates), ordered (position attribute)
 may be sorted (note the difference between ordered and sorted!)

CS applications: string, array, program (sequence of instructions)

Recursive defn: Sequence ::= Head Tail | empty
 Head ::= element
 Tail ::= Sequence

Restrictions: add, remove at position first  stack5 (LIFO)
 add at position last, remove at position first  queue6 (FIFO)

2 http://en.wikipedia.org/wiki/Set_theory
3 http://en.wikipedia.org/wiki/Relational_model
4 http://en.wikipedia.org/wiki/Sequence
5 http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29
6 http://en.wikipedia.org/wiki/Queue_%28abstract_data_type%29

DFR/DSA 2016-06-30 20:47:11 page 6 of 37

DFR/DSA Compendium page 6 of 37

TREE7

Definition: A hierarchical collection of objects, each node may have n children

Operations: traversals: pre-, in- post-order, general traversal, depth-first,

breadth-first
cardinality, height, add (node), remove (node), find (value),
display

Properties: unordered, ordered, root node, leaf nodes (no children)

CS applications: parse/syntax trees in compiling

BINARY TREE8

Definition: A hierarchical collection of objects, each node may have at most 2

children

Operations: traversals: pre-, in- post-order, general traversal, depth-first,

breadth-first
cardinality, height, add (node), remove (node), find (node), display

Properties: ordered (Left_child, Right_child), root node, leaf nodes (no

children), height (number of levels / longest path length)
full: every node has zero or two children
perfect: for height h there are 2h – 1 nodes
complete perfect on the next lowest level and filled from the

left on the lowest level

CS applications: parse/syntax trees in compiling, arithmetic expression trees,
 File system organisation (directories)

Recursive defn: BT ::= Left_child Node Right_child | empty
 Left_child ::= BT
 Node ::= element
 Right_child ::= BT

Algorithms: AVL add, heap

7 http://en.wikipedia.org/wiki/Tree_%28data_structure%29
8 http://en.wikipedia.org/wiki/Binary_tree

DFR/DSA 2016-06-30 20:47:11 page 7 of 37

DFR/DSA Compendium page 7 of 37

GRAPH9

Definition: G = (V, E)
V is a set of Vertices10 (nodes),
E is a set of Edges

Operations: node-cardinality, edge-cardinality, is_empty, display,
 add (node/edge), remove (node/edge), find (node/edge),
 is_edge(A, B), is_path(A, B), neighbours(N),
 traversals: depth-first, breadth-first
 in-degree(N), out-degree(N)

Properties: unordered (set), directed, undirected

CS applications: modelling networks (computer, transport), decision & planning

systems (e.g. PERT11 charts)

Algorithms: Dijkstra12, Dijkstra shortest path tree, Floyd, Warshall13

Prim’s14, Kruskal’s15

9 http://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29
10 One vertex, two vertices or two vertexes
11 http://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique
12 http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
13 http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
14 http://en.wikipedia.org/wiki/Prim%27s_algorithm
15 http://en.wikipedia.org/wiki/Kruskal%27s_algorithm

DFR/DSA 2016-06-30 20:47:11 page 8 of 37

DFR/DSA Compendium page 8 of 37

BT Implementation

Typically a structure (value, left_child, right_child).

Graph Implementation

Adjacency List Adjacency Matrix

 A B C D
A 1
B 1 1
C 1 1 1
D 1 1

value

Left_child Right_child

A

C

D

B

B

C D

A B

A C

D

A B

C D

DFR/DSA 2016-06-30 20:47:11 page 9 of 37

DFR/DSA Compendium page 9 of 37

SEQUENCE – Ordered – possibly sorted

Implementations: arrays (value, next, (previous)), structure & pointers (ditto)

Operations: is_empty: S  Boolean
 cardinality: S  integer
 add_pos: S x value x pos  S
 rem_pos: S x pos  S
 find_pos: S x pos  value

 display: S  S

 make_el: value  element

Operations: add_pos: S x value x first  S (push)
(Stack) rem_pos: S x first  S (pop)
 find_pos: S x first  value (TOS)

Operations: add_pos: S x value x last  S (enqueue)
(Queue) rem_pos: S x first  S (dequeue)

Operations: add: S x value  S
(sorted) rem: S x value  S
 find: S x value  Boolean

Operations: get_first: S  element
(sequential view) get_next: S x pos  element (pos implicit)*
 is_EOL: S x pos  Boolean (pos implicit)

* usually the backend keeps 2 references previous and current which are moved by
get_next – these references are private attributes

Operations: head: S  S
(Recursive view) tail: S  S
 cons: element x S  S

In the recursive versions of the operations, the sequence is DECONSTRUCTED into a
head + tail and then RECONSTRUCTED on the return from the recursive calls – each
call returns a “new” sequence. Note that the reference to an element and to S, are the
same type. The element may be envisaged as a sequence of 1 element.

New Sequences are always CONStructed by adding an element at the head of the
sequence (this avoids the need for the previous and current references in the sequential
version).

DFR/DSA 2016-06-30 20:47:11 page 10 of 37

DFR/DSA Compendium page 10 of 37

SEQUENCE – Iterative add

Note

1. add at beginning pprev = NULL; pcurr = NULL (empty sequence) / = not NULL
(non-empty sequence)

2. add in middle pprev = not NULL, pcurr = not NULL
3. add at end pcurr = NULL, pprev = NULL (empty sequence) / = not NULL (non-

empty sequence)

set_pos (tvalue value) { // first_el() initializes pprev and pcurr
 // next_el() moves pprev and pcurr forward
 /* link in ascending order */
 first_el(); while(!is_eol() && (fvalue>get_value())) next_el();
 return;
}

void linknew() { // between pprev and pcurr

 if (is_prevempty()) liststart = pnew; //1
 else set_next(pprev, pnew); //2
 set_next(pnew, pcurr); //3
 return;
 }

add(tvalue value) { set_pos(value); pnew = make_el(value); linknew(); }

1. add at beginning
liststart = pnew (//1) and set_next(pnew, pcurr) (//3) -- pprev == NULL

2. add in middle

set_next(pprev, pnew) (//2) and set_next(pnew, pcurr) (//3)

3. add at end
set_next(pprev, pnew) (//2) and set_next(pnew, pcurr) (//3) -- pcurr == NULL

pprev

pnew

pcurr

DFR/DSA 2016-06-30 20:47:11 page 11 of 37

DFR/DSA Compendium page 11 of 37

SEQUENCE – Recursive add

seqref add(seqref S, valuetype value)
{
 return is_empty(S) ? make_el(value); //1

 : value < get_value(head(S)) ? cons(make_el(value), S); //2

 : cons(head(S), add(tail(S), value)); //3

}

1. add at the beginning – add((2, 4), 1);
a. is_empty(S)  false //1
b. 1 is less than 2  return cons(make_el(1), (2, 4))  (1, 2, 4) //2
c. finished!

2. add in the middle – add((2, 4), 3);

a. is_empty(S)  false //1
b. 3 not less than 2 //2
c. cons((2), add((4), 3)) //3

i. is_empty  false //1
ii. 3 less than 4 return cons(make_el(3), (4))  (3, 4) //2

d. cons((2), (3, 4))  (2, 3, 4) //3
e. finished!

3. add at the end – add((2, 4), 5);

a. is_empty(S)  false //1
b. 5 not less than 2 //2
c. cons((2), add((4), 5)) //3

i. is_empty  false //1
ii. 5 not less than 4 //2

iii. cons((4), add((), 5)) //3
1. is_empty(())  true, return (5) //1

iv. cons((4), (5))  (4, 5) //3
d. cons((2), (4, 5))  (2, 4, 5) //3
e. finished!

Recursive remove is similar – in step //2 : value == get_value(head(S)) ? tail(S);

DFR/DSA 2016-06-30 20:47:11 page 12 of 37

DFR/DSA Compendium page 12 of 37

STACK LIFO (Last in First out)

Operations: Push (add); Pop (remove); Top of Stack (ToS) – top (first) element (peek)

May be implemented using a sequence with position 

 push = add(value, first)
 pop = remove(first)
 Tos = find(first)

Often associated with depth-first searches

Queue (First in First out)

Operations: Enqueue (add); Dequeue (remove);

May be implemented using a sequence with position 

 enqueue = add(value, last+1)
 dequeue = remove(first)

Often associated with breadth-first searches

DFR/DSA 2016-06-30 20:47:11 page 13 of 37

DFR/DSA Compendium page 13 of 37

General Tree  Binary Tree

1. The first child becomes the left child of the parent
2. The subsequent children become the right child of their predecessor

Binary Tree (BT) / Binary Search Tree (BST)

Implementations: usually structures & pointers;

3 arrays (i) value (ii) left child (iii) right child;

array (heap structure) where the root is in A[1] and in
general the left child is in position 2 * position(parent) and the
right child in position 2 * position(parent) + 1 so for example the
left/right child of the root are in A[2], A[3] respectively; the
children of A[2] will be in A[4], A[5]; those of A[3] in A[6], A[7].

Note that the BST is sorted and thus it is possible to add/remove nodes without reference
to position.

Operations: is_empty, cardinality (nodes), height
 add (node), remove (node), find (value), display
 traversals: pre-, in-, post-order, depth-first, breadth-first

Properties: ordered, each node has max 2 children, BST is sorted

 Full: BT every node has either 2 or 0 children

Perfect: BT of height h has exactly 2h -1 elements
Complete: BT perfect on the next lowest level and the lowest

level is filled from the left

CS applications: parse/syntax trees in compiling, arithmetic expression trees,
 File system organisation (directories)

Operations are usually implemented recursively. Example – number of nodes

int card(BT)
{ if is_empty(BT) return 0; else return 1 + card(LC(BT)) + card(RC(BT)); }

OR

int card(BT) { return is_empty(BT) ? 0 : 1 + card(LC(BT)) + card(RC(BT)); }

DFR/DSA 2016-06-30 20:47:11 page 14 of 37

DFR/DSA Compendium page 14 of 37

BST Implementation – Binary Search Tree

Usually with a structure node (LCref, value, RCref)

The cons operation now becomes cons(LC, Node_el, RC)
Cf head/tail for a list – now we have LC, RC (“tail”), Node (“head”)

The add operation becomes

BST add(BST T, int v) {
 if is_empty(T) return create_el(v);
 if v < value(node(T)) return cons (add(LC(T), v), node(T), RC(T))
 if v > value(node(T)) return cons (LC(T), node(T), add(RC(T), v))
 return T; // no duplicates
}

See the example below

Firstly consider the add function

BST add(BST T, int v) {
 if is_empty(T) return create_el(v); //case 1
 if v < value(node(T)) return cons (add(LC(T), v), node(T), RC(T)) //case 2
 if v > value(node(T)) return cons (LC(T), node(T), add(RC(T), v)) //case 3
 return T; // no duplicates //case 4
}

DFR/DSA 2016-06-30 20:47:11 page 15 of 37

DFR/DSA Compendium page 15 of 37

Note that below, the left and right sub-trees are represented by their root node value

Initial call
Start with an example BST and add 9 (see below and note the case number from above
case 3: cons (LC(T), node(T), add(RC(T), v)) i.e. cons (3, 5, add(10, 9))

Step 1: The first recursive call is case 3 which “rephrases the question” as add 9 to the
following BST
case 2 : cons (add(LC(T), v), node(T), RC(T)) i.e. cons (add(8, 9), 10, 12)

Step 2: The next recursive call is case 2 which “rephrases the question” as add 9 to the
following BST
case 3 : (LC(T), node(T), add(RC(T), v)) i.e. cons (¤, 8, add(¤, 9))

This becomes case 1 which returns a tree containg a single node (9) to step 2 giving

case 1: if is_empty(BST) return create_el(v); //case 1

Step 2 then returns the following tree to step 1
cons (LC(T), node(T), add(RC(T), v)) i.e. cons (¤, 8, add(¤, 9))

5

10 3

1 8 4 12

9

10

8 12

9

8 9

9

8

9

DFR/DSA 2016-06-30 20:47:11 page 16 of 37

DFR/DSA Compendium page 16 of 37

Step 1 then returns the following tree to the initial call
cons (add(LC(T), v), node(T), RC(T)) i.e. cons (add(8, 9), 10, 12)

which in turn returns the tree below as the final result.
cons (LC(T), node(T), add(RC(T), v)) i.e. cons (3, 5, add(10, 9))

And the process is complete

Note that in the above, the left and right sub-trees are represented by their root node value

10

8 12

9

5

10 3

1 8 4 12

9

DFR/DSA 2016-06-30 20:47:11 page 17 of 37

DFR/DSA Compendium page 17 of 37

The remove operation is a little more tricky – see the literature.

Swap the value with a leaf node, remove the leaf node and check that any constraints on
the tree (BST, AVL) are still met.

BST remove(BST T, int v)
{
 if IsEmpty(T) then return T //case 1
 if v < value(T) then return cons(remove(LC(T), v), T, RC(T)) //case 2
 if v > value(T) then return cons(LC(T), T, remove(RC(T), v)) //case 3
 return remove_Root(T); // return a BST with the (local) root removed //case 4
}
LC, RC = return left and right child respectively

Where remove_Root is left as an exercise for the lab. Work through an example of this
and note what is passed in the recursive calls AND what is returned on the way back
from the recursive calls i.e. the deconstruction / reconstruction process.

Remove_Root has 4 cases

i) the tree is a leaf node i.e. no left nor right child
ii) the tree has a left child only
iii) the tree has a right child only
iv) the tree has both a left and right child

The solution for cases (i), (ii) and (iii) are

i) return the empty tree
ii) return the left child
iii) return the right child

N.B. check that you understand why this is the case!
Draw the corresponding pictures

Case 4 has 2 solutions

a) replace the node (local root) value with the maximum value of the left child
b) replace the node (local root) value with the minimum value of the right child

and then reconstruct the tree as

a) cons(remove(LC(T), max), create_el(max), RC(T))
b) cons(LC(T), create_el(min), remove(RC(T), min))

DFR/DSA 2016-06-30 20:47:11 page 18 of 37

DFR/DSA Compendium page 18 of 37

Now take an example and work through it as was done above for add

And remove the root (5)

For case (a) in remove_Root we have
cons(remove(LC(T), max), create_el(max), RC(T)) i.e. cons(remove(3, 4), 4, 10)

for the remove(3, 4) this gives
if v > value(T) then return cons(LC(T), T, remove(RC(T), v)) //case 3
i.e. cons(LC(T), T, remove(RC(T), v)) i.e. cons(1, 3, remove(4, 4))

this calls remove_Root again with case (i) that the node is a leaf node in which case the
empty tree is returned so the cons above gives cons(1, 3, ¤) giving the tree

Which in turn is returned to the first cons above –

cons(remove(LC(T), max), create_el(max), RC(T)) i.e. cons(remove(3, 4), 4, 10)

to give the tree

Which is the required result.

Exercise repeat the above for the case where the minimum of the right child is used
instead.

5

10 3

1 8 4 12

3

1

4

10 3

1 8 12

remove(5,5)
remove_Root(5,5)
cons(remove(3, 4), 4, 10)
cons(1, 3, remove(4, 4))
remove_Root(4,4)  STOP!
return ¤
return (1,3,¤)
return (3,4,10) result
root values given for LC, RC

DFR/DSA 2016-06-30 20:47:11 page 19 of 37

DFR/DSA Compendium page 19 of 37

Graphs: Directed & Undirected G=(V, E) – set of vertices + set of edges

Graphs may be implemented with adjacency lists or adjacency matrices. (See above).

Note that a graph is a collection of vertices (nodes) + edges. Edges require 2 nodes for
their existence and may be specified by (a, b) where a and b are nodes.

The edge may be directed (one way) (a, b) or undirected (two-way) {a, b} with the latter
being implemented by 2 directed edges (a,b) and (b,a). This shows up as symmetry in the
adjacency matrix, about the diagonal top-left to bottom-right.

Examples – Directed Graphs

Examples – Undirected Graphs

DFR/DSA 2016-06-30 20:47:11 page 20 of 37

DFR/DSA Compendium page 20 of 37

For terminology and more information see Wikipedia Graphs16,17

In computer science graphs are used to model computer networks. They may also model
transport networks. Graphs have also been used to model systems in other disciplines.

Examples of issues involving graphs are

CONNECTIVITY18 – the degree to which nodes are connected
e.g. in a network (computer, transport) it is desirable that each node is connected to every
other node for sending messages from A to B or travelling from A to B. Dijkstra’s
algorithm gives the shortest path from a given node to all other nodes. Warshal’s
algorithm gives the transitive closure of a graph showing whether all nodes are connected
(the resultant matrix contains only one’s) or not

The A2B (Dijkstra/Floyd) problem is one we look at in the labs.

Since graphs are slightly more complex data structures, there is more terminology19
associated with a graph. Learn the following:-

 Vertex (Node)
o Source node – a node with only outgoing edges
o Sink node – a node with only incoming edges
o Adjacent nodes – endpoints of the same edge
o Articulation point – a node which when removed results in a disconnected

graph
 Edge – connection between 2 nodes, a and b

o Directed edge (a, b) a, b are nodes
o Undirected edge {a, b} a, b are nodes
o Weighted edge – the edge has a cost c associated with it
o Parallel edges – multiple edges of the same type and end nodes
o Self loop – an edge with the start and end vertex
o Bridge edge – an edge which when removed results in a disconnected

graph
 Graph

o Simple Graph – no parallel edges nor self-loops
o Directed Graph (DiGraph) – a graph with directed edges only
o Undirected Graph – a graph with undirected edges only
o Weighted Graph – a graph with weighted edges
o Mixed Graph - a graph with both directed and undirected edges
o Sub-graph – a subset of vertices and edges
o Spanning sub-graph – a sub-graph containing all the vertices

16 http://en.wikipedia.org/wiki/Graph_%28mathematics%29
17 http://en.wikipedia.org/wiki/Graph_theory
18 http://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29
19 http://www.csl.mtu.edu/cs2321/www/newLectures/24_Graph_Terminology.html

DFR/DSA 2016-06-30 20:47:11 page 21 of 37

DFR/DSA Compendium page 21 of 37

o Spanning Tree – a spanning sub-graph that is also a tree
o Tree – an undirected connected graph with no cycles
o Acyclic Graph – a graph with no cycles

 Degree
o In-degree – number of edges arriving at a node
o Out-degree – number of edges leaving a node

 Path - a sequence of alternating vertices and edges starting and ending on a
vertex

o Simple path – a path with distinct vertices
o Directed path – a path containing only directed edges
o Length of a path is the number of edges in the path

 Cycle – a path that starts and ends on the same vertex
o Simple Cycle – a path with unique vertices except for the first and last
o Directed cycle – a cycle containing only directed edges

 Connected Graph – is any 2 vertices can be joined by a path
 Disconnected graph (has several components) – not connected

If you find any more definitions, bring then to the class and we can add these to the list.

DFR/DSA 2016-06-30 20:47:11 page 22 of 37

DFR/DSA Compendium page 22 of 37

SEQUENCES

Sorting and Searching

For efficient search a sorted collection is often preferred. There are 2 classes of sorting
algorithms for sequences

1. swap methods: e.g. Bubble20, insertion21, selection22, shellsort23
2. divide and conquer methods: quicksort24, mergesort25

Hashing26

Hash function is a mapping of an input value (key) to an index value (usually integer).
A Simple hashing function may be for example. H(key)  n where H is key mod p and
p is usually a prime number. The distribution of the index values should be relatively
uniform. If not collisions may occur i.e. H(key1)  and H(key2)  n

Collision handling and resolution is another area of Hashing. If collisions arise, the
resolution algorithm must find a new space for the information i.e. a different index value.
Usually this is H(key) + f(i) where I is the number of the collision (1, 2, …)

Some techniques are

1. separate chaining – create a list of elements at i
(disadvantage search  O(n) instead of O(1))

2. linear probing – try n+1, n+2, … until a free position is found f(i) = i
(disadvantage primary clustering)

3. quadratic probing – try n+12, n+22, … f(i) = i2
(disadvantage secondary clustering especially if load > 50%)

4. double hashing – f(i) is another hash function H2

Other methods for disk systems involves overflow slots in the same page and on different
pages.

Much research has been carried out on more sophisticated hash functions.

20 http://en.wikipedia.org/wiki/Bubble_sort
21 http://en.wikipedia.org/wiki/Insertion_sort
22 http://en.wikipedia.org/wiki/Selection_sort
23 http://en.wikipedia.org/wiki/Shellsort
24 http://en.wikipedia.org/wiki/Quicksort
25 http://en.wikipedia.org/wiki/Merge_sort
26 http://en.wikipedia.org/wiki/Hash_function

DFR/DSA 2016-06-30 20:47:11 page 23 of 37

DFR/DSA Compendium page 23 of 37

PERFORMANCE

Performance is often stated in terms of big-oh – for example O(1) (constant), O(log n)
(logarithmic), O(n) (linear), O(n log n) (loglinear), O(n2) (quadratic), O(n3) (cubic),
O(nc) (polynomial), O(cn) (exponential), O(n!) (factorial) where n is the number of items
in the collection. Usually this is a time performance e.g. time to sort n elements quicksort
(O(n log n)), insertsort (O(n2)). See the diagram below.

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

T
(n

)

n

nn  n!  O(n!) 2n  O(2n) n3/2  O(n3) 7n2  O(n2)25n log(n)  O(n log(

100n  O(n)

100 log(n)  O(log(n)

DFR/DSA 2016-06-30 20:47:11 page 24 of 37

DFR/DSA Compendium page 24 of 37

ALGORITHMS

TREES (1)

Convert a General Tree to a Binary Tree:

1. The first child becomes the left child of the parent
2. The subsequent children become the right child of their predecessor

Breadth-first Traversal:

BreadthFirst(T) {
 if T is not Empty {
 Q = Empty;
 Q = AddQ(Q, T);
 while(Q != Empty) {
 p = front(Q); Q = deQ(Q);
 process(Root(p));
 if(Left(p) != Empty) Q = AddQ(Q, Left(p));
 if(Right(p) != Empty) Q = AddQ(Q, Right(p));
 }
 }
}

Depth-first Traversal: Pre-order, In-order and Post-order:

PreOrder(T) {
if !is_empty(T) { process(Root(T)); PreOrder(Left(T)); PreOrder(Right(T)); }
}

InOrder(T) {
if !is_empty(T) { InOrder(Left(T)); process(Root(T)); InOrder(Right(T)); }
}

PostOrder(T) {
if !is_empty(T) { PostOrder(Left(T)); PostOrder(Right(T)); process(Root(T)); }
}

DFR/DSA 2016-06-30 20:47:11 page 25 of 37

DFR/DSA Compendium page 25 of 37

HASHING

For a hash function HF: 0 <= HF(key) <= M-1

Collision handling:-

Separate chaining:- the collisions are handled by building a separate list from the

position given by HF(key)

OR
a new position is calculated using HF(key) + f(i) where i is the ith collision

1. Linear probing f(i) = i
2. Quadratic probing f(i) = i2
3. Double hashing f(i) = HF2(key)

Examples of HF:- key mod x (x is usually a prime number)
 key mod 10 (used in the examples for teaching purposes since

the calculation is easy)

Example of HF2:- R - (key mod R) where R is a prime number < size(Hash Table)

In the lecture notes R = 7 was used (R < 10).

Disadvantages:-

1. Linear probing  primary clusters (around the first position found)  linear
search

2. Quadratic probing  secondary clusters (requires a rehash when load > 50%

DFR/DSA 2016-06-30 20:47:11 page 26 of 37

DFR/DSA Compendium page 26 of 37

HEAP

Heapify & Build

Heapify(A, i)

Determine the left and right children - "l" and "r"

 l = Left(i)
 r = Right(i)

Determine if the left child exists (i.e. that i is not a leaf node) and if so whether the value
at the left child is greater than than the value at the parent - otherwise largest is the parent
node

 if l <= A.size and A[l] > A[i] then largest = l else largest = i

Determine if the right child exists and if so whether the value at the right child is greater
than than the value of largest.
Now we have the biggest value for the parent and left and right children

 if r <= A.size and A[r] > A[largest] then largest = r

If the largest value is NOT the parent then swap the parent value with the child value and
heapify the child sub-tree

 if largest != i then
 swap(A[i], A[largest])
 Heapify(A, largest)
 end if

end Heapify

Build(A)

 for i = [A.size / 2] downto 1 do Heapify(A, i)

 end Build

Why does the algorithm start with A.size/2?

See the revision notes for a worked example
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?heapify=1
See the animation on
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/Heapify.pps

DFR/DSA 2016-06-30 20:47:11 page 27 of 37

DFR/DSA Compendium page 27 of 37

Add

Add(H, v)
 let A = H.array
 A.size++
 i = A.size
 while i > 1 and A[Parent(i)] < v
 do A[i] = A[Parent(i)]
 i = Parent(i)
 end while
 A[i] = v
end Add

See the animation on
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/HAdd.pps

Remove

Remove(H)
 let A = H.array
 A[1] = A[A.size]
 A.size--
 Heapify(A, 1)
end Remove

See the animation on
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/HRemove.pps

DFR/DSA 2016-06-30 20:47:11 page 28 of 37

DFR/DSA Compendium page 28 of 37

TREES (2)

AVL-add

void AvlTree::insert(const Comparablke & x, AvlNode * & t) const

{ if (t == NULL) t = new AvlNode(x, NULL, NULL);

else if (x < t->element) { /*** add to left child ***/

 insert(x, t->left);

 if (height(t->left) - height(t->right) == 2)
 if (x < t->left->element) rotateWithLeftChild(t); /*LSTof LC*/
 else doubleWithLeftChild(t); /*RSTof LC*/
 }

else if (t->element < x) { /*** add to right child ***/

 insert(x, t->right);

 if (height(t->right) - height(t->left) == 2)
 if (t->right->element < x) rotateWithRightChild(t); /*RSTof RC */
 else doubleWithRightChild(t); /*LSTof RC */
 }

else ; /*** duplicate - do nothing ***/

t->height = max(height(t->left), height(t->right)) + 1; /*** recalculate height ***/

}

LST = Left sub tree LC = Left child
RST = Right sub tree RC = Right child

REMEMBER:

Adding to the “outside” requires a single rotation
Adding to the “inside” requires a double rotation

DFR/DSA 2016-06-30 20:47:11 page 29 of 37

DFR/DSA Compendium page 29 of 37

Rotations – remember that these are “mirror images” (right  left)

SINGLE ROTATIONS:-

Void rotateWithLeftChild(AvlNode * & k2) { // single right rotation

 AvlNode *k1 = k2->left;

 k2->left = k1->right;
 k1->right = k2;
 k2->height = max(height(k2->left), height(k2->right)) + 1;
 k1->height = max(height(k1->left), k2->height) + 1;
 k2 = k1;
}

Void rotateWithRightChild(AvlNode * & k2) { // single left rotation

 AvlNode *k1 = k2->right;

 k2->right = k1->left;
 k1->left = k2;
 k2->height = max(height(k2->right), height(k2->left)) + 1;
 k1->height = max(height(k1->right), k2->height) + 1;
 k2 = k1;
}

DOUBLE ROTATIONS:-

Void doubleWithLeftChild(AvlNode * & k3) { // double right rotation

rotateWithRightChild(k3->left); // single left rotation
 rotateWithLeftChild(k3); // single right rotation
}

Void doubleWithRightChild(AvlNode * & k3) { // double left rotation

 rotateWithLeftChild(k3->right); // single right rotation
 rotateWithRightChild(k3); // single left rotation
}

DFR/DSA 2016-06-30 20:47:11 page 30 of 37

DFR/DSA Compendium page 30 of 37

GRAPHS

Dijkstra

Dijkstra (a)
{
 S = {a} -- start node
 for (i in V-S) D[i] = C[a, i] -- initialise D

 -- D[i] represents the distance from node a to the remaining
 -- nodes in the graph (i.e. the edges. Distance = infinity if
 -- there is no edge from node a to some node x)

 while (!is_empty(V-S)) { -- “unvisited nodes”
 -- i.e. nodes not in the
 -- component (S)

 choose w in V-S such that D[w] is a minimum
 -- i.e. D[w] is the shortest path from a to w (so far)

 S = S + {w}
 -- add node w to the component (i.e. visited nodes)

 foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])*
 -- check if there is a shorter path VIA node w
 -- than that already calculated – if so update D[v]
 }
 }

*could also be written
foreach (v in V-S) if (D[w]+C[w,v] < D[v]) D[v] = D[w]+C[w,v]

The “essence” of this algorithm is the row

 foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])

this may be visualised as

See the worked example in the revision notes
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/DijkstraEx4.pdf
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/DijkstraEx.pdf

w

a each v in V-S

D[w] path cost a w C[w,v] edge cost w  v

D[v] path cost a  v

DFR/DSA 2016-06-30 20:47:11 page 31 of 37

DFR/DSA Compendium page 31 of 37

Dijkstra + SPT (Shortest Path Tree)

Dijkstra_SPT (a)
{
 S = {a} -- start node

 for (i in V-S) {
 D[i] = C[a, i] --- initialise D - (edge cost)

 -- D[i] represents the distance from node a to the remaining
 -- nodes in the graph (i.e. the edges. Distance = infinity if
 -- there is no edge from node a to some node x)

 E[i] = a --- initialise E - SPT (edge)

 -- E[i] represents the edge from E[i] to each node in V-a

 L[i] = C[a, i] --- initialise L - SPT (edge cost)

 -- L[i] represents the edge COST from E[i] to each node in V-a

 -- together E[i] & L[i] represent the SPT in its different
 -- stages of development

 }

 while (!is_empty(V-S)) {

 choose w in V-S such that D[w] is a minimum
 -- i.e. D[w] is the shortest path from a to w (so far)

 S = S + {w}
 -- add node w to the component (i.e. visited nodes)

 foreach (v in V-S)
 if (D[w]+C[w,v] < D[v]) {
 -- check if there is a shorter path VIA node w

 D[v] = D[w]+C[w,v] -- update path cost to v
 E[v] = w -- save the edge w  v
 L[v] = C[w,v] -- save the COST w  v

 -- i.e. the edge w  v gives a shorter path a  v and
 -- thus should be added to the SPT

 }
 }
 }

See the worked example in revision notes
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/DijkstraSPTEx
4.pdf

DFR/DSA 2016-06-30 20:47:11 page 32 of 37

DFR/DSA Compendium page 32 of 37

GRAPHS

Floyd’s Algorithm – all pairs shortest path

Floyd ()
{

 for (i in 1..n) for (j in 1..n) if (i <> j) A[i, j] = C[i, j] -- initialisation
 for (i in 1..n) A[i, i] = 0

 for (k in 1..n) for (i in 1..n) for (j in 1..n)
 if (A[i, k] + A[k, j] < A[i, j]) A[i, j] = A[i, k] + A[k, j]
 }

Warshall’s Algorithm – transitive closer (i.e. does a path exist between nodes x and y?)

Warshall ()
{

 for (i in 1..n) for (j in 1..n) A[i, j] = C[i, j] -- initialisation
 for (i in 1..n) A[i, i] = 0

 for (k in 1..n) for (i in 1..n) for (j in 1..n)
 if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j]
 }

Note that both use a similar principle to Dijkstra’s algorithm

this may be visualised as

k

i j

A[i,k] path cost/existence i j C[k,j] path cost/existence k  j

A[i,j] path cost/existence i  j

DFR/DSA 2016-06-30 20:47:11 page 33 of 37

DFR/DSA Compendium page 33 of 37

DIGRAPHS (Directed Graphs)

Depth-first search:-

select one v in V and mark as visited; enqueue v in Q

 while not is_empty(Q) {

 x = front(Q); dequeue(Q);

 for each y in adjacent (x) if unvisited (y) {
 mark(y); enqueue y in Q; process (x,y); // (e.g. add to tree)

 }

Topological Sort:-

tsort(v) {

 mark v visited
 for each w adjacent to v if w unvisited tsort(w);

 display(v);

 }

NB: prints reverse topological order of a DAG from v

DFR/DSA 2016-06-30 20:47:11 page 34 of 37

DFR/DSA Compendium page 34 of 37

Strong Components Algorithm:-

 Perform a dfs and assign a number to each vertex

 dfs(v) { mark v visited
 for each w adjacent to v if w unvisited dfs(w)
 number v
 }

 construct digraph Gr by reversing every edge in G

 perform a dfs on Gr starting at highest numbered vertex (repeat on next highest if

all vertices not reached)

 each tree in resulting spanning forest is an SCC of G

DFR/DSA 2016-06-30 20:47:11 page 35 of 37

DFR/DSA Compendium page 35 of 37

GRAPHS

Kruskal’s

S = set of connected components (V from G=(V,E))

merge(A, B, S) -- merge components A & B in S - rename A
find(v, S) -- return name of component X in S : v in X
initial(‘A’, v, S) -- make A the name of component in S

containing only vertex v initially
insert(e, S) -- add a given edge to S
remove_pq() -- remove an edge from the PQ
(x, y, c) -- edge (x, y) in PQ with cost c

for each v in S initial (next(name), v, S) -- initiliase

while (size(S) > 1 { -- size = number of components
 get_PQ (); -- get (x, y, c) from PQ

 if (find(x, S) != find(y, S)) { -- x, y in different components
 merge (find (x, S), find (y, S), S);
 insert (get_PQ (), S);
 }
 remove_pq();
 }

-- this is a “less obvious” statement of what is a relatively simple algorithm if you look at
-- the explanation in the lecture notes
-- http://www.cs.kau.se/cs/education/courses/dvgb03/lectures/graphs3.pdf
-- and the summary on
-- http://www.cs.kau.se/cs/education/courses/dvgb03/revision/Kruskal.pdf

DFR/DSA 2016-06-30 20:47:11 page 36 of 37

DFR/DSA Compendium page 36 of 37

Prim’s

Prim (node v) -- v is the start node

 { U = {v}; for i in (V-U) { low-cost[i] = C[v,i]; closest[i] = v; }

 -- U is the set of “visited nodes” i.e. the component which will eventually

-- become the MST
-- V is the set of nodes in the graph G = (V, E)
-- V-U is the set of “unvisited nodes” i.e. nodes which are NOT part of the
-- component

 -- low_cost[i] represents the cost of an edge from x  y in the graph
 -- initially this is the cost from the start node v to the remaining nodes
 -- closest[i] is the value of this edge (initially may be infinite)

 while (!is_empty (V-U)) { -- find the closest vertex in V-U

 i = first(V-U); min = low-cost[i]; k = i; -- minimum cost edge
 for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; }

 -- this computes the closest (least cost) node NOT in the component

 display(k, closest[k]); -- display edge (just to check)
 U = U + k; -- k added to U i.e. the component

 for j in (V-U) if (C[k,j] < low-cost[j])) -- readjust costs
 {low-cost[j] = C[k,j]; closest[j] = k; }
 }

 -- if there is an edge from k to any (unvisited) node in V-U (i.e. not in

-- the component) replace the current edge with the edge k  j
-- (j in V-U) and update low_cost[j]

 }

See the worked example in the revision notes
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/PrimExa.pdf

DFR/DSA 2016-06-30 20:47:11 page 37 of 37

DFR/DSA Compendium page 37 of 37

Articulation Points Algorithm:-

 Perform a dfs of the graph, computing the df-number for each vertex v

 (df-numbers order the vertices as in a pre-order traversal of a tree)

 for each vertex v, compute low(v) - the smallest df-number of v or any vertex w

reachable from v by following down 0 or more tree edges to a descendant x of v
(x may be v) and then following a back edge (x, w)

 compute low(v) for each vertex v by visiting the vertices in post-order traversal

 when v is processed, low(y) has already been computed for all children y of v

Note that the post-order traversal implies a bottom-up solution

 the root is an AP iff it has 2 or more children

 since it has no cross edges, removal of the root must disconnect the sub-
trees rooted at its children

 removing a => {b, d, e} and {c, f, g}

 a vertex v (other than the root) is an AP iff there is some child w of v such that
low(w) >= df-number(v)

 v disconnects w and its descendants from the rest of the graph
 if low(w) < df-number(v) there must be a way to get from w down the

tree and back to a proper ancestor of v (the vertex whose df-number is
low(w)) and therefore deletion of v does not disconnect w or its
descendants from the rest of the graph

