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Course DVG B03: Data Structures & Algorithms – Compendium 

 
 
 
Course Structure 
 

1. Introduction: basic data structures and operations  (5 lectures) 
2. Sequences: sorting, searching and hashing  (2 lectures) 
3. Performance      (1 lecture) 
4. Trees: general, binary, BST, AVL, B-trees  (3 lectures) 
5. Graphs: directed, undirected    (4 lectures) 
6. Revision and exam technique    (1 lecture) 

 
Course goals 
 

1. Background: Abstraction, modelling & collections 
2. Data structures (set, sequence, tree, graph) and operations 
3. Algorithms: Tree: AVL add, heap, Graph: Dijkstra, Floyd, Warshall, Prim, 

Kruskal, Strong Components, Articulation Point 
4. Labs: Understanding and implementation of the above 
5. Abstraction: Modelling, Implementation, Collection 
6. Data Structures: Set, Sequence (List, Stack, Queue), Tree, (General, Binary, 

Binary Search, AVL, B-tree), Graph (Directed, Undirected) 
7. Introduce ABSTRACTION & ABSTRACT THINKING 
8. Create a mental toolbox 
9. Improve C programming 
10. Introduce the concept  of Abstract Programming 

(Language & implementation independent) 
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Data structures and operations – these can be generalised as collections 
 

1. set:  is_empty, add, remove, is_member, display, cardinality 
2. sequence: is_empty, add, remove, find, display, cardinality 
3. tree:  is_empty, add, remove, find, display, navigation, cardinality 
4. graph:  is_empty, add, remove, find (node, edge), display, cardinality,  

searches 
 
Abstraction 
 

1. modelling abstraction:  real world  entities, attributes, relationships 
2. abstract data types:  implementation independent 
3. collection abstraction:  set, sequence, tree, graph as collections 

Collection = entities & attributes + relationships 
 
Abstraction – working definitions 
 

1. ADT (abstract data type) = ADS (abstract data structure) + operations 
2. ADS = abstract set, sequence, tree graph 
3. DT (data type) = DS (data structure) + operations 
4. DS (data structure) = implementations of set, sequence, tree, graph – the most 

common DSs in programming languages are arrays and structures (records) 
 
Computer Science 
 

1. frequently deals with collections of information and how to organise information 
2. most important operation is SEARCHING 
3. SORTING is an aid to improved searching 
4. requires efficient methods of organising and searching information 
5. this in turn gave rise to the study of the data structures: set, sequence, tree, graph 
6. these data structures are used in every branch of computer science 
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Modelling 
 

1. consists of abstracting information from the real world to make a computer 
model which may then be represented by data structures and manipulated via 
algorithms 

2. from the database world we can use the Entity-Relationship model1 (Chen) 
where real world objects are represented as entities with attributes and where 
relationships (with attributes) may exist between entities 

3. Example: students and courses – the model contains only relevant information 
a. real world student: (name, address, hair colour, eye colour, university…) 
b. model student: (sname, address, telephone number, subject, id number) 
c. model course: (cname, code, level, offering, lecturer) 
d. courses/student relationship: (id number, code) 
e. each of these (b, c, d) may be represented by sets 

 
 
Language & Modelling 
 

1. noun    entity  e.g. student 
2. adjective   attribute  e.g. third year student 
3. verb   relationship e.g. student takes course 

 
 
Programming Languages 
 

1. provide (atomic / predefined) data types: integer, real, character, Boolean 
2. provide constructed data types usually via array and structure (record) 
3. provide basic operations on predefined data types: arithmetic, logic 
4. provide functions/procedures/methods as ways of defining  new operations 

using previously defined operations – basic + user defined 
5. example: linked lists using structures + pointers 
6. example: display the list as a function “display()” 
7. an “object” in OO programming is an entity + operations (methods) 

 
 
  

                                                 
1 http://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model  
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Implementing collections of entities and attributes  
 
 

1. e.g. student: (string: name, string: pnum, integer: year, integer: subject) 
2. arrays – one per attribute 

 

 
3. structures and pointers 

 
 
 
 
 
 
 
 
 

4. similarly trees and graphs may be implemented 
(Usually with structures & pointers) 

5. set & get operations may then be implemented for each attribute to keep the rest 
of the code independent of the implementation details (array/structure) 

6. using the set/get operations, other operations may be implemented 
7. this may be done in a “backend” module as in C or using an object (class) in OO 
8. this backend is the implementation of our ADT ( ADS + operations) 
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ADTs, properties and CS applications 
 
 
SET2 
 
Definition:   a collection of objects (entities) 
 
Operations:   union, intersection, difference, subset, is_member, cardinality  

(number of objects), is_empty, add (member), remove (member),  
find (member i.e. is_member), display 

 
Properties:   unique entities, unordered 
 
CS applications:  relational databases3 
 
 
SEQUENCE4 
 
Definition:   an ordered collection of objects (entities) 
 
Relationships:  successor / predecessor 
 
Operations:   concatenate, difference, sub-sequence, is_member, cardinality,  

is_empty, add (entity), remove (entity), find (entity), display, 
add, remove & find by position (first, nth, last) 

 
Properties:  non-unique entities (duplicates), ordered (position attribute) 
   may be sorted (note the difference between ordered and sorted!) 
 
CS applications: string, array, program (sequence of instructions) 
 
Recursive defn: Sequence  ::=  Head Tail | empty 
   Head  ::= element  
   Tail  ::= Sequence 
 
Restrictions:   add, remove at position first  stack5 (LIFO) 
   add at position last, remove at position first  queue6 (FIFO) 
 
  

                                                 
2 http://en.wikipedia.org/wiki/Set_theory  
3 http://en.wikipedia.org/wiki/Relational_model  
4 http://en.wikipedia.org/wiki/Sequence  
5 http://en.wikipedia.org/wiki/Stack_%28abstract_data_type%29  
6 http://en.wikipedia.org/wiki/Queue_%28abstract_data_type%29  
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TREE7 
 
Definition:  A hierarchical collection of objects, each node may have n children 
 
Operations:  traversals: pre-, in- post-order, general traversal, depth-first,  

breadth-first 
cardinality, height, add (node), remove (node), find (value),  
display 

 
Properties:  unordered, ordered, root node, leaf nodes (no children) 
 
CS applications: parse/syntax trees in compiling 
 
 
 
BINARY TREE8 
 
Definition:  A hierarchical collection of objects, each node may have at most 2  

children 
 
Operations:  traversals: pre-, in- post-order, general traversal, depth-first,  

breadth-first 
cardinality, height, add (node), remove (node), find (node), display 

  
Properties:  ordered (Left_child, Right_child), root node, leaf nodes (no  

children), height (number of levels / longest path length) 
full:  every node has zero or two children 
perfect: for height h there are 2h – 1 nodes  
complete perfect on the next lowest level and filled from the  

left on the lowest level 
 
CS applications: parse/syntax trees in compiling, arithmetic expression trees, 
   File system organisation (directories) 
 
Recursive defn: BT  ::=  Left_child Node Right_child | empty 
   Left_child ::= BT 
   Node  ::=  element 
   Right_child ::= BT 
 
Algorithms:  AVL add, heap 
  

                                                 
7 http://en.wikipedia.org/wiki/Tree_%28data_structure%29  
8 http://en.wikipedia.org/wiki/Binary_tree  
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GRAPH9 
 

Definition:  G = (V, E)   
V is a set of Vertices10 (nodes),  
E is a set of Edges 

 
Operations:  node-cardinality, edge-cardinality, is_empty, display, 
   add (node/edge), remove (node/edge), find (node/edge), 
   is_edge(A, B), is_path(A, B), neighbours(N),  
   traversals: depth-first, breadth-first  
   in-degree(N), out-degree(N) 
 
Properties:  unordered (set), directed, undirected 
 
CS applications: modelling networks (computer, transport), decision & planning 

systems (e.g. PERT11 charts) 
 
Algorithms: Dijkstra12, Dijkstra shortest path tree, Floyd, Warshall13 

Prim’s14, Kruskal’s15 
 

  

                                                 
9 http://en.wikipedia.org/wiki/Graph_%28abstract_data_type%29  
10 One vertex, two vertices or two vertexes 
11 http://en.wikipedia.org/wiki/Program_Evaluation_and_Review_Technique  
12 http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm  
13 http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm  
14 http://en.wikipedia.org/wiki/Prim%27s_algorithm  
15 http://en.wikipedia.org/wiki/Kruskal%27s_algorithm                                                                                                                         
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BT Implementation 
 
Typically a structure (value, left_child, right_child). 
 

 
 
Graph Implementation 
 
 
 
Adjacency List     Adjacency Matrix 
 
 
        

 A B C D 
A  1   
B   1 1 
C 1 1  1 
D 1  1  
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SEQUENCE – Ordered – possibly sorted 
 
Implementations: arrays (value, next, (previous)), structure & pointers (ditto) 
 
Operations:  is_empty: S     Boolean 
   cardinality: S    integer 
   add_pos: S x value x pos   S 
   rem_pos: S x pos    S 
   find_pos: S x pos    value 
 
   display: S    S 
 
   make_el: value    element 
 
Operations:  add_pos: S x value x first   S  (push) 
(Stack)  rem_pos: S x first   S  (pop) 
   find_pos: S x first   value (TOS) 
 
Operations:  add_pos: S x value x last   S  (enqueue) 
(Queue)  rem_pos: S x first   S  (dequeue) 
 
Operations:  add:  S x value   S 
(sorted)  rem:  S x value   S 
   find:  S x value   Boolean 
 
Operations:  get_first: S    element 
(sequential view) get_next: S x pos    element (pos implicit)* 
   is_EOL: S x pos    Boolean (pos implicit) 
 
* usually the backend keeps 2 references previous and current which are moved by 
get_next – these references are private attributes 
 
Operations:  head:  S    S 
(Recursive view) tail:  S    S 
   cons:  element x S   S 
 
In the recursive versions of the operations, the sequence is DECONSTRUCTED into a 
head + tail and then RECONSTRUCTED on the return from the recursive calls – each 
call returns a “new” sequence. Note that the reference to an element and to S, are the 
same type. The element may be envisaged as a sequence of 1 element. 
 
New Sequences are always CONStructed by adding an element at the head of the 
sequence (this avoids the need for the previous and current references in the sequential 
version). 
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SEQUENCE – Iterative add 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note 

1. add at beginning pprev = NULL; pcurr = NULL (empty sequence) / = not NULL  
(non-empty sequence) 

2. add in middle pprev = not NULL, pcurr = not NULL 
3. add at end pcurr = NULL, pprev = NULL (empty sequence) / = not NULL (non-

empty sequence) 
 
set_pos (tvalue value) {  // first_el() initializes pprev and pcurr 
      // next_el() moves pprev and pcurr forward 
   /* link in ascending order */ 
   first_el(); while(!is_eol() && (fvalue>get_value())) next_el(); 
   return; 
} 
 
void linknew() {  // between pprev and pcurr 
 
   if (is_prevempty()) liststart = pnew; //1 
   else set_next(pprev, pnew);   //2 
   set_next(pnew, pcurr);   //3 
   return; 
   } 
 
add(tvalue value) { set_pos(value); pnew = make_el(value); linknew(); } 
 

1. add at beginning 
liststart = pnew (//1) and set_next(pnew, pcurr) (//3)  -- pprev == NULL 

 
2. add in middle 

set_next(pprev, pnew) (//2) and set_next(pnew, pcurr) (//3) 
 

3. add at end 
set_next(pprev, pnew) (//2) and set_next(pnew, pcurr) (//3)  -- pcurr == NULL 
 

 
  

pprev 

pnew 

pcurr 
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SEQUENCE – Recursive add 
 
 
seqref add(seqref S, valuetype value)  
{ 
 return is_empty(S)     ? make_el(value);  //1 
   

 : value < get_value(head(S))  ? cons(make_el(value), S); //2 
 
 : cons(head(S), add(tail(S), value));    //3 

} 
 

1. add at the beginning  – add( (2, 4), 1); 
a. is_empty(S)    false      //1 
b. 1 is less than 2   return cons(make_el(1), (2, 4))  (1, 2, 4) //2 
c. finished! 

 
2. add in the middle  – add( (2, 4), 3); 

a. is_empty(S)    false      //1 
b. 3 not less than 2       //2 
c. cons((2),  add((4),  3))      //3 

i. is_empty  false      //1  
ii. 3 less than 4 return cons(make_el(3), (4))  (3, 4)  //2 

d. cons((2), (3, 4))  (2, 3, 4)      //3 
e. finished!  

 
3. add at the end   – add( (2, 4), 5); 

a. is_empty(S)    false      //1 
b. 5 not less than 2       //2 
c. cons((2),  add((4),  5))      //3 

i. is_empty  false      //1  
ii. 5 not less than 4      //2 

iii. cons((4), add( (), 5))      //3 
1. is_empty( () )  true, return (5)   //1 

iv. cons((4), (5))  (4, 5)     //3 
d. cons( (2), (4, 5))    (2, 4, 5)      //3 
e. finished!  

 
 
Recursive remove is similar – in step //2 : value == get_value(head(S)) ? tail(S); 
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STACK  LIFO (Last in First out) 
 
Operations:  Push (add); Pop (remove); Top of Stack (ToS) – top (first) element (peek) 
 
May be implemented using a sequence with position   
 

 push = add(value, first) 
 pop  = remove(first) 
 Tos  =  find(first)   

 
Often associated with depth-first searches 
 
Queue (First in First out) 
 
 
Operations: Enqueue (add); Dequeue (remove); 
 
May be implemented using a sequence with position   
 

 enqueue = add(value, last+1) 
 dequeue  = remove(first) 

 
Often associated with breadth-first searches 
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General Tree  Binary Tree 
 

1. The first child becomes the left child of the parent 
2. The subsequent children become the right child of their predecessor 

 
 
Binary Tree (BT) / Binary Search Tree (BST) 
 
Implementations: usually structures & pointers;  

3 arrays (i) value (ii) left child (iii) right child;  
 
array (heap structure) where the root is in A[1] and in  
general the left child is in position 2 * position(parent) and the  
right child in position 2 * position(parent) + 1 so for example the  
left/right child of the root are in A[2], A[3] respectively; the  
children of A[2] will be in A[4], A[5]; those of A[3] in A[6], A[7]. 

 
Note that the BST is sorted and thus it is possible to add/remove nodes without reference 
to position. 
 
Operations:  is_empty, cardinality (nodes), height 
   add (node), remove (node), find (value), display 
   traversals: pre-, in-, post-order, depth-first, breadth-first 
 
Properties:  ordered, each node has max 2 children, BST is sorted 
 
   Full:  BT every node has either 2 or 0 children 

Perfect: BT of height h has exactly 2h -1 elements 
Complete: BT perfect on the next lowest level and the lowest  

level is filled from the left  
 
CS applications: parse/syntax trees in compiling, arithmetic expression trees, 
   File system organisation (directories) 
 
Operations are usually implemented recursively. Example – number of nodes 
 
int card(BT) 
{    if is_empty(BT) return 0; else return 1 + card(LC(BT)) + card(RC(BT)); } 
 
OR 
 
int card(BT) { return is_empty(BT) ? 0 : 1 + card(LC(BT)) + card(RC(BT)); } 
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BST Implementation – Binary Search Tree 
 
 
Usually with a structure node (LCref, value, RCref) 
 
The cons operation now becomes cons(LC, Node_el, RC)  
Cf head/tail for a list – now we have LC, RC (“tail”), Node (“head”) 
 
The add operation becomes 
 
BST add(BST T, int v) { 
   if is_empty(T) return create_el(v); 
   if v < value(node(T))  return cons ( add(LC(T), v), node(T), RC(T))  
   if v > value(node(T))  return cons ( LC(T), node(T), add(RC(T), v)) 
   return T; // no duplicates  
} 
 
See the example below 
 
Firstly consider the add function 
 
BST add(BST T, int v) { 
   if is_empty(T) return create_el(v);      //case 1 
   if v < value(node(T))  return cons ( add(LC(T), v), node(T), RC(T)) //case 2 
   if v > value(node(T))  return cons ( LC(T), node(T), add(RC(T), v)) //case 3 
   return T;  // no duplicates       //case 4 
} 
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Note that below, the left and right sub-trees are represented by their root node value 
 
Initial call 
Start with an example BST and add 9 (see below and note the case number from above 
case 3:      cons ( LC(T), node(T), add(RC(T), v))  i.e. cons ( 3, 5, add(10, 9)) 
     
  
 
 
 
 
  
  
 
 
Step 1: The first recursive call is case 3 which “rephrases the question” as add 9 to the 
following BST  
case 2 :   cons ( add(LC(T), v), node(T), RC(T))  i.e. cons ( add(8, 9), 10, 12)  
 
 
 
  
  
 
 
Step 2: The next recursive call is case 2 which “rephrases the question” as add 9 to the 
following BST  
case 3 :   ( LC(T), node(T), add(RC(T), v))  i.e. cons ( ¤, 8, add(¤, 9))  
 
 
 
 
 
This becomes case 1 which returns a tree containg a single node (9) to step 2 giving 
 
case 1:   if is_empty(BST) return create_el(v);        //case 1 
 
 
 
Step 2 then returns the following tree to step 1  
cons ( LC(T), node(T), add(RC(T), v)) i.e. cons ( ¤, 8, add(¤, 9)) 
  
 
 
  

5 

10 3 

1 8 4 12 

9 

10 

8 12 

9 

8 9 

9 

8 

9 
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Step 1 then returns the following tree to the  initial call 
cons ( add(LC(T), v), node(T), RC(T))  i.e. cons ( add(8, 9), 10, 12) 
 
 
 
  
 
 
 
 
 
which in turn returns the tree below as the final result. 
cons ( LC(T), node(T), add(RC(T), v))  i.e. cons ( 3, 5, add(10, 9)) 
 
  
 
 
 
 
  
  
 
 
 
 
 
And the process is complete 
 
Note that in the above, the left and right sub-trees are represented by their root node value 
  

10 

8 12 

9 

5 

10 3 

1 8 4 12 

9 
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The remove operation is a little more tricky – see the literature. 
 
Swap the value with a leaf node, remove the leaf node and check that any constraints on 
the tree (BST, AVL) are still met. 
 
BST remove(BST T,  int v) 
{ 
   if IsEmpty(T) then return T             //case 1  
   if v < value(T) then return cons(remove(LC(T), v), T,  RC(T))        //case 2 
   if v > value(T) then return cons(LC(T), T, remove(RC(T), v))         //case 3 
   return remove_Root(T);   // return a BST with the (local) root removed   //case 4 
} 
LC, RC = return left and right child respectively 
 
Where remove_Root is left as an exercise for the lab. Work through an example of this 
and note what is passed in the recursive calls AND what is returned on the way back 
from the recursive calls i.e. the deconstruction / reconstruction process. 
 
Remove_Root has 4 cases 
 
i)  the tree is a leaf node i.e. no left nor right child 
ii)  the tree has a left child only 
iii)  the tree has a right child only 
iv)  the tree has both a left and right child 
 
The solution for cases (i), (ii) and (iii) are 
 
i) return the empty tree 
ii) return the left child 
iii) return the right child 
 
N.B. check that you understand why this is the case!  
Draw the corresponding pictures 
 
 
Case 4 has 2 solutions 
 
a)  replace the node (local root) value with the maximum value of the left child 
b) replace the node (local root) value with the minimum value of the right child 
 
and then reconstruct the tree as 
 
a) cons(remove(LC(T), max), create_el(max), RC(T)) 
b) cons(LC(T), create_el(min), remove(RC(T), min)) 
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Now take an example and work through it as was done above for add 
 
  
 
 
 
 
  
  
 
And remove the root (5) 
 
For case (a)  in remove_Root we have 
cons(remove(LC(T), max), create_el(max), RC(T)) i.e. cons(remove(3, 4), 4, 10) 
 
for the remove(3, 4) this gives 
if v > value(T) then return cons(LC(T), T, remove(RC(T), v))  //case 3 
i.e. cons(LC(T), T, remove(RC(T), v)) i.e. cons(1, 3, remove(4, 4)) 
 
this calls remove_Root again with case (i) that the node is a leaf node in which case the 
empty tree is returned so the cons above gives cons(1, 3, ¤) giving the tree 
 
 
 
  
 
 
Which in turn is returned to the first cons above –  
 
cons(remove(LC(T), max), create_el(max), RC(T)) i.e. cons(remove(3, 4), 4, 10) 
 
to give the tree 
  
 
 
 
 
  
 
 
 
Which is the required result. 
 
Exercise repeat the above for the case where the minimum of the right child is used 
instead.  

5 

10 3 

1 8 4 12 

3 

1 

4 

10 3 

1 8 12 

remove(5,5)  
remove_Root(5,5) 
cons(remove(3, 4), 4, 10) 
cons(1, 3, remove(4, 4)) 
remove_Root(4,4)    STOP! 
return ¤ 
return (1,3,¤) 
return (3,4,10) result 
root values given for LC, RC 
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Graphs: Directed & Undirected  G=(V, E) – set of vertices + set of edges 
 
Graphs may be implemented with adjacency lists or adjacency matrices. (See above). 
 
Note that a graph is a collection of vertices (nodes) + edges. Edges require 2 nodes for 
their existence and may be specified by (a, b) where a and b are nodes. 
 
The edge may be directed (one way) (a, b) or undirected (two-way) {a, b} with the latter 
being implemented by 2 directed edges (a,b) and (b,a). This shows up as symmetry in the 
adjacency matrix, about the diagonal top-left to bottom-right. 
 
Examples – Directed Graphs 
  

 
 
Examples – Undirected Graphs 
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For terminology and more information see Wikipedia Graphs16,17 
 
In computer science graphs are used to model computer networks. They may also model 
transport networks. Graphs have also been used to model systems in other disciplines. 
 
Examples of issues involving graphs are 
 
CONNECTIVITY18 – the degree to which nodes are connected 
e.g. in a network (computer, transport) it is desirable that each node is connected to every 
other node for sending messages from A to B or travelling from A to B. Dijkstra’s 
algorithm gives the shortest path from a given node to all other nodes. Warshal’s 
algorithm gives the transitive closure of a graph showing whether all nodes are connected 
(the resultant matrix contains only one’s) or not 
 
The A2B (Dijkstra/Floyd) problem is one we look at in the labs. 
 
Since graphs are slightly more complex data structures, there is more terminology19 
associated with a graph. Learn the following:- 
 

 Vertex (Node) 
o Source node – a node with only outgoing edges 
o Sink node – a node with only incoming edges  
o Adjacent nodes – endpoints of the same edge 
o Articulation point – a node which when removed results in a disconnected 

graph 
 Edge – connection between 2 nodes, a and b 

o Directed edge (a, b) a, b are nodes 
o Undirected edge {a, b} a, b are nodes 
o Weighted edge – the edge has a cost c associated with it 
o Parallel edges – multiple edges of the same type and end nodes 
o Self loop – an edge with the start and end vertex  
o Bridge edge – an edge which when removed results in a disconnected 

graph 
 Graph 

o Simple Graph – no parallel edges nor self-loops 
o Directed Graph (DiGraph) – a graph with directed edges only 
o Undirected Graph – a graph with undirected edges only 
o Weighted Graph – a graph with weighted edges 
o Mixed Graph - a graph with both directed  and undirected edges 
o Sub-graph – a subset of vertices and edges 
o Spanning sub-graph – a sub-graph containing all the vertices 

                                                 
16 http://en.wikipedia.org/wiki/Graph_%28mathematics%29  
17 http://en.wikipedia.org/wiki/Graph_theory  
18 http://en.wikipedia.org/wiki/Connectivity_%28graph_theory%29  
19 http://www.csl.mtu.edu/cs2321/www/newLectures/24_Graph_Terminology.html  
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o Spanning Tree – a spanning sub-graph that is also a tree 
o Tree – an undirected connected graph with no cycles 
o Acyclic Graph – a graph with no cycles 

 Degree 
o In-degree – number of edges arriving at a node 
o Out-degree – number of edges leaving a node 

 Path  - a sequence of alternating vertices and edges starting and ending on a 
vertex 

o Simple path – a path with distinct vertices 
o Directed path – a path containing only directed edges 
o Length of a path is the number of edges in the path 

 Cycle – a path that starts and ends on the same vertex 
o Simple Cycle – a path with unique vertices except for the first and last 
o Directed cycle – a cycle containing only directed edges 

 Connected Graph – is any 2 vertices can be joined by a path  
 Disconnected graph (has several components) – not connected 

 
If you find any more definitions, bring then to the class and we can add these to the list. 
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SEQUENCES 
 
Sorting and Searching 
 
For efficient search a sorted collection is often preferred. There are 2 classes of sorting 
algorithms for sequences 
 

1. swap methods: e.g. Bubble20, insertion21, selection22, shellsort23 
2. divide and conquer methods: quicksort24, mergesort25 

 
 
Hashing26 
 
Hash function is a mapping of an input value (key) to an index value (usually integer). 
A Simple hashing function may be for example.  H(key)  n where H is key mod p and 
p is usually a prime number. The distribution of the index values should be relatively 
uniform. If not collisions may occur i.e. H(key1)  and H(key2)  n 
 
Collision handling and resolution is another area of Hashing. If collisions arise, the 
resolution algorithm must find a new space for the information i.e. a different index value. 
Usually this is H(key) + f(i) where I is the number of the collision (1, 2, …) 
 
Some techniques are 

1. separate chaining – create a list of elements at i  
(disadvantage search  O(n) instead of O(1)) 

2. linear probing – try n+1, n+2, … until a free position is found  f(i) = i 
(disadvantage primary clustering) 

3. quadratic probing – try n+12, n+22, …     f(i) = i2    
(disadvantage secondary clustering especially if load > 50%) 

4. double hashing – f(i) is another hash function H2 
 
Other methods for disk systems involves overflow slots in the same page and on different 
pages. 
 
Much research has been carried out on more sophisticated hash functions. 
 
 
 
 
                                                 
20 http://en.wikipedia.org/wiki/Bubble_sort  
21 http://en.wikipedia.org/wiki/Insertion_sort 
22 http://en.wikipedia.org/wiki/Selection_sort  
23 http://en.wikipedia.org/wiki/Shellsort  
24 http://en.wikipedia.org/wiki/Quicksort  
25 http://en.wikipedia.org/wiki/Merge_sort  
26 http://en.wikipedia.org/wiki/Hash_function  
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PERFORMANCE 
 
Performance is often stated in terms of big-oh – for example O(1) (constant), O(log n) 
(logarithmic), O(n) (linear), O(n log n) (loglinear), O(n2) (quadratic), O(n3) (cubic), 
O(nc) (polynomial), O(cn) (exponential), O(n!) (factorial) where n is the number of items 
in the collection. Usually this is a time performance e.g. time to sort n elements quicksort 
(O(n log n)), insertsort (O(n2)). See the diagram below. 
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ALGORITHMS 
 
TREES (1) 
 
 
Convert a General Tree to a Binary Tree: 
 

1. The first child becomes the left child of the parent 
2. The subsequent children become the right child of their predecessor 

 
 
Breadth-first Traversal: 
 
BreadthFirst(T) { 
 if T is not Empty { 
  Q = Empty; 
  Q = AddQ(Q, T); 
  while(Q != Empty) { 
   p = front(Q); Q = deQ(Q); 
   process(Root(p)); 
   if(Left(p)  != Empty) Q = AddQ(Q, Left(p)); 
   if(Right(p) != Empty) Q = AddQ(Q, Right(p)); 
  } 
 } 
} 
 
Depth-first Traversal: Pre-order, In-order and Post-order: 
 
PreOrder(T) { 
if !is_empty(T) { process(Root(T)); PreOrder(Left(T)); PreOrder(Right(T)); } 
} 
 
InOrder(T) { 
if !is_empty(T) { InOrder(Left(T)); process(Root(T)); InOrder(Right(T)); } 
} 
 
PostOrder(T) { 
if !is_empty(T) { PostOrder(Left(T)); PostOrder(Right(T)); process(Root(T)); } 
} 
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HASHING 
 
For a hash function HF:          0 <= HF(key) <= M-1 
 
 
Collision handling:-  
 
Separate chaining:-  the collisions are handled by building a separate list from the  

position given by HF(key) 
  
OR 
a new position is calculated using HF(key) + f(i) where i is the ith collision 
 

1. Linear probing   f(i)  =  i 
2. Quadratic probing  f(i)  =  i2 
3. Double hashing  f(i)  = HF2(key) 

 
Examples of HF:-    key mod x        (x is usually a prime number) 
   key mod 10 (used in the examples for teaching purposes since  

the calculation is easy) 
 
Example of HF2:- R - (key mod R)   where R is a prime number < size(Hash Table) 
 
In the lecture notes R = 7 was used (R < 10). 
 
Disadvantages:- 
 

1. Linear probing  primary clusters (around the first position found)  linear 
search 

2. Quadratic probing  secondary clusters (requires a rehash when load > 50% 
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HEAP 
 
Heapify & Build 
 
Heapify(A, i)  

Determine the left and right children - "l" and "r"  

       l = Left(i)  
       r = Right(i)  

Determine if the left child exists (i.e. that i is not a leaf node) and if so whether the value 
at the left child is greater than than the value at the parent - otherwise largest is the parent 
node  

       if l <= A.size and A[l] > A[i] then largest = l else largest = i  

Determine if the right child exists and if so whether the value at the right child is greater 
than than the value of largest.  
Now we have the biggest value for the parent and left and right children  

       if r <= A.size and A[r] > A[largest] then largest = r 

If the largest value is NOT the parent then swap the parent value with the child value and 
heapify the child sub-tree  

       if largest != i then  
          swap(A[i], A[largest])  
          Heapify(A, largest)  
          end if  

end Heapify  
 
 

Build(A) 

       for i = [A.size / 2] downto 1 do Heapify(A, i) 

       end Build 

Why does the algorithm start with A.size/2?  
 
See the revision notes for a worked example 
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?heapify=1  
See the animation on 
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/Heapify.pps  
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Add 
 
Add(H, v) 
 let A = H.array 
 A.size++ 
 i = A.size 
 while i > 1 and A[Parent(i)] < v 
  do A[i] = A[Parent(i)] 
   i = Parent(i) 
   end while 
 A[i] = v 
end Add  
 
 
 
See the animation on 
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/HAdd.pps  
 
 
Remove 
 
Remove(H) 
 let A = H.array 
 A[1] = A[A.size] 
 A.size-- 
 Heapify(A, 1) 
end Remove 
  
 
See the animation on 
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/HRemove.pps   
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TREES (2) 
 
AVL-add 
 
 
void AvlTree::insert( const Comparablke & x, AvlNode * & t ) const 
 
{ if (t == NULL)    t = new AvlNode(x, NULL, NULL);  
 
else if ( x < t->element) {    /*** add to left child ***/  
 
 insert(x, t->left);   
 
 if ( height(t->left) - height(t->right) == 2 )      
  if ( x < t->left->element ) rotateWithLeftChild(t);  /*LSTof LC*/      
  else doubleWithLeftChild(t);                            /*RSTof LC*/  
  } 
  
else if ( t->element < x) {    /*** add to right child ***/   
  
 insert(x, t->right);  
   
 if ( height(t->right) - height(t->left) == 2 )       
  if (t->right->element < x) rotateWithRightChild(t); /*RSTof RC */       
  else doubleWithRightChild(t);                            /*LSTof RC */   
  }  
 
else ; /*** duplicate - do nothing ***/   
 
t->height = max( height(t->left), height(t->right)) + 1;   /*** recalculate height ***/ 
 
}  
 
LST = Left sub tree  LC = Left child 
RST = Right sub tree RC = Right child 
 
 
REMEMBER: 
 
Adding to the “outside” requires a single rotation 
Adding to the “inside” requires a double rotation 
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Rotations – remember that these are “mirror images” (right  left) 
 
SINGLE ROTATIONS:- 
 
Void rotateWithLeftChild(AvlNode * & k2 )  {  // single right rotation 
 
      AvlNode *k1  = k2->left;  
 
      k2->left   = k1->right;  
      k1->right   = k2;  
      k2->height = max(height(k2->left), height(k2->right)) + 1; 
      k1->height = max(height(k1->left), k2->height) + 1;  
      k2   = k1; 
}  
 
Void rotateWithRightChild(AvlNode * & k2 )  {  // single left rotation 
  
      AvlNode *k1  = k2->right;  
 
      k2->right   = k1->left;  
      k1->left   = k2;  
      k2->height = max(height(k2->right), height(k2->left)) + 1; 
      k1->height = max(height(k1->right), k2->height) + 1;  
      k2   = k1; 
}  
 
DOUBLE ROTATIONS:- 
 
Void doubleWithLeftChild( AvlNode * & k3 )  {  // double right rotation 
 

rotateWithRightChild( k3->left );   // single left rotation 
 rotateWithLeftChild( k3 );    // single right rotation 
}  
 
Void doubleWithRightChild( AvlNode * & k3 ) {  // double left rotation 
 
 rotateWithLeftChild( k3->right );   // single right rotation  
 rotateWithRightChild( k3 );   // single left rotation 
}  
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GRAPHS 
 
Dijkstra 
 
Dijkstra ( a ) 
{  
        S = {a}    -- start node 
 for (i in V-S) D[i] = C[a, i] -- initialise D 
 
 -- D[i] represents the distance from node a to the remaining  
 -- nodes in the graph (i.e. the edges. Distance = infinity if  
 -- there is no edge from node a to some node x) 
 
 while (!is_empty(V-S)) { -- “unvisited nodes” 
     -- i.e. nodes not in the  
     -- component (S) 
 
  choose w in V-S such that D[w] is a minimum 
  -- i.e. D[w] is the shortest path from a to w (so far) 
 
  S = S + {w} 
  -- add node w to the component (i.e. visited nodes) 
 
  foreach ( v in V-S ) D[v] = min(D[v], D[w]+C[w,v])* 
  -- check if there is a shorter path VIA node w 
  -- than that already calculated – if so update D[v] 
  } 
 } 
 
*could also be written  
foreach ( v in V-S ) if (D[w]+C[w,v] < D[v]) D[v] = D[w]+C[w,v] 
 
The “essence” of this algorithm is the row 
 
 foreach ( v in V-S ) D[v] = min(D[v], D[w]+C[w,v]) 
 
this may be visualised as 
 
 
 
 
 
 
 
 
 
 
 
 
See the worked example in the revision notes  
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/DijkstraEx4.pdf  
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/DijkstraEx.pdf    

w 

a each v in V-S 

D[w] path cost a w C[w,v] edge cost w  v 

D[v] path cost a  v 
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Dijkstra + SPT (Shortest Path Tree) 
 
 
Dijkstra_SPT ( a ) 
{  
        S = {a}   -- start node 
 
 for (i in V-S) { 
    D[i] = C[a, i]   --- initialise D - (edge cost) 
 
 -- D[i] represents the distance from node a to the remaining  
 -- nodes in the graph (i.e. the edges. Distance = infinity if  
 -- there is no edge from node a to some node x) 
 
    E[i] = a         --- initialise E - SPT (edge) 
 
 -- E[i] represents the edge from E[i] to each node in V-a 
 
           L[i] = C[a, i]   --- initialise L - SPT (edge cost) 
 
 -- L[i] represents the edge COST from E[i] to each node in V-a 
 
 -- together E[i] & L[i] represent the SPT in its different  
 -- stages of development 
 
           } 
 
 while (!is_empty(V-S)) { 
 
  choose w in V-S such that D[w] is a minimum 
  -- i.e. D[w] is the shortest path from a to w (so far) 
 
  S = S + {w} 
  -- add node w to the component (i.e. visited nodes) 
 
  foreach ( v in V-S )  
                   if (D[w]+C[w,v] < D[v]) { 
   -- check if there is a shorter path VIA node w 
 
                      D[v] = D[w]+C[w,v] -- update path cost to v 
                      E[v] = w   -- save the edge w  v 
                      L[v] = C[w,v]  -- save the COST w  v 
 
  -- i.e. the edge w  v gives a shorter path a  v and  
  -- thus should be added to the SPT 
 
                      } 
  } 
 } 
 
See the worked example in revision notes 
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/DijkstraSPTEx
4.pdf  
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GRAPHS 
 
 
Floyd’s Algorithm – all pairs shortest path 
 
Floyd ( ) 
{  
  
 for (i in 1..n) for (j in 1..n) if (i <> j) A[i, j] = C[i, j]  -- initialisation 
 for (i in 1..n) A[i, i] = 0   
 
 for (k in 1..n) for (i in 1..n) for (j in 1..n)  
  if ( A[i, k] + A[k, j] < A[i, j])  A[i, j] = A[i, k] + A[k, j]  
 } 
 
 
 
 
Warshall’s Algorithm – transitive closer (i.e. does a path exist between nodes x and y?) 
 
 
Warshall ( ) 
{ 
   
 for (i in 1..n) for (j in 1..n) A[i, j] = C[i, j]  -- initialisation 
  for (i in 1..n) A[i, i] = 0 
   
  for (k in 1..n) for (i in 1..n) for (j in 1..n)  
  if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j]  
  } 
 
Note that both use a similar principle to Dijkstra’s algorithm 
 
this may be visualised as 
 
 
 
 
 
 
 
 
 
 
 
   

k 

i j 

A[i,k] path cost/existence i j C[k,j] path cost/existence k  j 

A[i,j] path cost/existence  i  j 
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DIGRAPHS   (Directed Graphs) 
 
 
Depth-first search:- 
 
select one v in V and mark as visited; enqueue v in Q 
 
 while not is_empty(Q) { 
 
  x = front(Q); dequeue(Q); 
 
  for each y in adjacent (x) if unvisited (y) { 
   mark(y); enqueue y in Q; process (x,y);        // (e.g. add to tree) 
 
    } 
 
Topological Sort:- 
 
 
tsort(v) { 
 
          mark v visited 
  for each w adjacent to v if w unvisited tsort(w); 
 
  display(v); 
 
  } 
 

NB: prints reverse topological order of a DAG from v 
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Strong Components Algorithm:- 
 
 
 Perform a dfs and assign a number to each vertex 

 
  dfs(v) {  mark v visited 
   for each w adjacent to v if w unvisited dfs(w) 
   number v 
   } 
 
 construct digraph Gr by reversing every edge in G 

 
 perform a dfs on Gr starting at highest numbered vertex (repeat on next highest if 

all vertices not reached) 
 
 each tree in resulting spanning forest is an SCC of G 
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GRAPHS 
 
Kruskal’s 
 

S = set of connected components   (V from G=(V,E)) 
 
merge(A, B, S) -- merge components A & B in S - rename A 
find(v, S)  -- return name of component X in S : v in X 
initial(‘A’, v, S) -- make A the name of component in S           

containing only vertex v initially 
insert(e, S) -- add a given edge to S 
remove_pq() -- remove an edge from the PQ 
(x, y, c)  -- edge (x, y) in PQ with cost c 

 
 
for each v in S initial ( next(name), v, S)  -- initiliase 
 
while (size(S) > 1 {    -- size = number of components 
 get_PQ ( );    -- get (x, y, c) from PQ 
 
 if ( find(x, S) != find(y, S) ) {  -- x, y in different components 
  merge ( find (x, S), find (y, S), S ); 
  insert (get_PQ ( ), S); 
  } 
 remove_pq( ); 
 } 
 
-- this is a “less obvious” statement of what is a relatively simple algorithm if you look at  
-- the explanation in the lecture notes  
-- http://www.cs.kau.se/cs/education/courses/dvgb03/lectures/graphs3.pdf  
-- and the summary on 
-- http://www.cs.kau.se/cs/education/courses/dvgb03/revision/Kruskal.pdf  
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Prim’s 
 
Prim ( node v)   -- v is the start node 
                    
 { U = {v};  for i in (V-U) { low-cost[i] = C[v,i]; closest[i] = v; } 
 
 -- U is the set of “visited nodes” i.e. the component which will eventually  

-- become the MST 
-- V is the set of nodes in the graph G = (V, E) 
-- V-U is the set of “unvisited nodes” i.e. nodes which are NOT part of the  
-- component 

 
 -- low_cost[i] represents the cost of an edge from x  y in the graph 
 -- initially this is the cost from the start node v to the remaining nodes 
 -- closest[i] is the value of this edge (initially may be infinite) 
 
 while (!is_empty (V-U) ) {             -- find the closest vertex in V-U 
 
  i = first(V-U); min = low-cost[i]; k = i; -- minimum cost edge 
  for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; } 
 
  -- this computes the closest (least cost) node NOT in the component 
 
  display(k, closest[k]);   -- display edge (just to check) 
  U = U + k;    -- k added to U i.e. the component 
 
  for j in (V-U) if ( C[k,j] < low-cost[j] ) ) -- readjust costs 
   {low-cost[j] = C[k,j]; closest[j] = k; } 
  } 
  
  -- if there is an edge from k to any (unvisited) node in V-U (i.e. not in  

-- the component) replace the current edge with the edge k  j  
-- (j in V-U) and update low_cost[j]  

 
 } 
 
See the worked example in the revision notes 
http://www.cs.kau.se/cs/education/courses/dvgb03/revision/PrimExa.pdf  
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Articulation Points Algorithm:- 
 
 
 Perform a dfs of the graph, computing the df-number for each vertex v 

 (df-numbers order the vertices as in a pre-order traversal of a tree) 
 
 for each vertex v, compute low(v) - the smallest df-number of v or any vertex w 

reachable from v by following down 0 or more tree edges to a descendant x of v 
(x may be v) and then following a back edge (x, w) 
 

 compute low(v) for each vertex v by visiting the vertices in post-order traversal 
 
 

 when v is processed, low(y) has already been computed for all children y of v 
 
Note that the post-order traversal implies a bottom-up solution 
 
 the root is an AP iff it has 2 or more children 

 since it has no cross edges, removal of the root must disconnect the sub-
trees rooted at its children 

 removing a => {b, d, e} and {c, f, g} 
 

 a vertex v (other than the root) is an AP iff there is some child w of v such that 
low(w) >= df-number(v) 
 
 v disconnects w and its descendants from the rest of the graph 
 if low(w) < df-number(v) there must be a way to get from w down the 

tree and back to a proper ancestor of v (the vertex whose df-number is 
low(w)) and therefore deletion of v does not disconnect w or its 
descendants from the rest of the graph 

 
 
 
 
 


