
Sort: bubble, insertion, quicksort
Search: sequence: linear, binary

DSA – Performance Lab

Sorting & searching

 Bubble sort O(n2)

 Insertion sort O(n2)

 Quicksort O(n log n) worst case O(n2)

 Linear search in a sequence O(n)

 Binary search in a sequence O(log n)

19/11/2016 DFR - DSA Performance Lab 2

What to measure

 Sort/Search Data - array of int
 Size: 1024, 2046, 4096, 8192, 16384
 Case: best, random, worst

how do you decide these?
what are the big-O for these?
do some research!

19/11/2016 DFR - DSA Performance Lab 3

Timing

 Start time
 Run test
 Stop time
 Time = Stop time – Start time

 Look at C clock and timing possibilities

19/11/2016 DFR - DSA Performance Lab 4

Timing – other factors

 Run each test (say) 10 times
 Sum and take the average value

 This may give you more stable results
===

 In performance tests, the program start-up
overhead for first 1 or 2 runs (here 1024, 2048) may
be significant.
I.e. the system has not reached steady state.
 The results for the first runs are often ignored!

19/11/2016 DFR - DSA Performance Lab 5

Linear search for x

 Best case x is the first element
 Worst case x is the last element

what is an alternative?
 Random case what does this mean?

 Expected result O(1), O(n), O(n)
 O(1) is constant time

19/11/2016 DFR - DSA Performance Lab 6

Goals for this project

 To
 Introduce performance measurement

 Theory versus practice
 Show the given big-O’s for each

algorithm and each case, are true
 Compare algorithms

 E.g. it is said that insertion sort is better than
bubble sort (bubble sort is a worst case sort example)

19/11/2016 DFR - DSA Performance Lab 7

Analysis

 Choose 3 big-O’s
1. The expected big-O e.g. O(n2)
2. A lower big-O e.g. O(n)
3. A higher big-O e.g. O(n3)

 The values for the expected big-O
should converge to a constant
 See http://www.cs.kau.se/cs/education/courses/dvgb03/lab_info/index.php?Weiss=1

19/11/2016 DFR - DSA Performance Lab 8

Documentation

 See http://www.cs.kau.se/cs/DFR/index.php?labreqs=1

 Otherwise the format is open
 This is an “engineering project”
 You decide on the methods
 We are looking for initiative and

originality!
 Good luck!
19/11/2016 DFR - DSA Performance Lab 9

Design Framework

 See
http://www.cs.kau.se/cs/education/courses/dvgb03/lab_info/index.php?PerfLabDesign=1

 Model: UI (menu) + FE + BE
 Menu: 15 cases + run all + show menu
 Focus on 1 case e.g. bubble sort best
 Implement this case:

 Menu choice c FE function BE function
 FE function calls BE function 5 times (1024, 2048, 4096, 8192, 16384)

 BE function: (1) initialise array; (2) start timer; (3) bubble
sort; (4) stop timer; (5) return time (stop time – start time)

19/11/2016 DFR - DSA Performance Lab 10

Design Framework

 Reflect on what is required in the FE & BE
 FE

 Call BE function 5 times
 Each call returns a time
 The 5 times are then displayed and analysed (table)

 BE
 Requires an array + initialising functions
 Requires a timing mechanism (start & stop)
 Each sort / search may be executed (say) 10 times and an

average result (time) returned ((sum of times)/10)

19/11/2016 DFR - DSA Performance Lab 11

Table Structure (FE output)

19/11/2016 DFR - DSA Performance Lab 12

table

table header column headers row values

headers

N CPU T/N T/N2 T/N3

N CPU T/N T/N2 T/N3

Table Display

 Note that the table display (for each table type)
needs only 1 parameter
 The heading for the table string constant

 The table types are determined by the analysis
 The column headers may be defined globally
 The # of rows is controlled by the # of tests (5)
 The array of timing result values comes from the

tests and may be defined globally
 All other values are known (1024…) or calculated

19/11/2016 DFR - DSA Performance Lab 13

Visualising the Design

19/11/2016 DFR - DSA Performance Lab 14

UI menu Front End Back End

a: menu
b: all tests
c: FE_BSBC

d:
e:
…
r: quit

BE_BSBC * 5
Display results
as table

Timing
Sort & Search
Init array
Start time
Bubble sort
Stop time
Return result

test

Table display
& calculations

Generalising the Design

 Look for “magic numbers” and “parameterise” them
 FE: 5 values: 1024, 2048, 4096, 8192, 16384

 int numtest = 5 (default) but user changeable via menu
 int startsize = 1024 – double this for each run (numtest)

 BE: 10 runs:
 int nruns = 10 (default) but user changeable via menu

 Table Structure – e.g. (input is title + results array)
o Table type 1: T/N T/N2 T/N3 bubble / insertion sort

o Table type 2: T/logN T/N T/N2 linear / binary search

o etc.
 Further generalisation might lead to 2 FE functions and 1 BE function!

19/11/2016 DFR - DSA Performance Lab 15

Advantages of the Design

 By implementing one case only, the whole process
is covered
 Menu choice  FE call  BE calls (5)  results  display
 BE test: initialise array  start timer bubble sort  stop timer 

return result

 Array initialisation, timing, sorting is done in the BE
 Once this case is working, the rest is copy & paste!
 The main tasks are

 Implementing a working timing mechanism
 Implementing sort / search algorithms (total 5)

 A working demonstration is achieved more quickly!!!

19/11/2016 DFR - DSA Performance Lab 16

