DSA Topics

Collections

Abstraction

Abstract Data Type (ADTs) = ADS + operations

Recursion = definitions & functions

Performance = O(1), O(log n), O(n), O(n log n), O(n?), O(n3)
Algorithms

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

=
iel
o

>

(&)
o
S~
<
(%]
()

e Sequence = sorting, searching, hashing, heap
* Tree =>» general = BT =» BST = AVL; DFS, BFS
* Graph =>» Dijkstra / Floyd / Warshall / Prim / Kruskal
=>» topological sort, Travelling Salesman
* Greedy =>» Dijkstra, Prim — what does greedy mean here?

TERMINOLOGY - know by heart




Collections

General collection operations
* add, remove, find, count, is_empty, join 2 collections

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

* Set + set operations (from set theory)

Sequence + sequence operations

* Restrictions on a sequence =@ stack & queue

DSA/Revision

* Tree + tree operations + navigation (DFS, BFS)

Graph + graph operations




Definitions

* Collections = entities (elements) + relationships
 SET
unique elements, unordered, no relationships
 SEQUENCE
elements, ordered, successor relationship, elements may be sorted
* TREE
elements, ordered/unordered, parent/child relationship
* GRAPH is (V,E)
V set of elements, E set of edges (general relationships)

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

DSA/Revision




Applications

* Set

* Collections with no relationships, Relational Data Bases

Sequence

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

* Text (text handling, editors, program text)
e Execution of a program — sequence of instructions

Tree — hierarchical systems

DSA/Revision

* Computer file directories, taxonomies, family trees
* Arithmetic operations, parse trees (in compilers)

Graph
* Network systems

Computer, telephone, transport, disease vectors
State diagrams, Flow problems




Abstraction

* Modelling abstraction

e Real world = computer model

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

* Implementation abstraction
* Hiding the actual implementation

E.g. arrays + indexes / pointers + structures

DSA/Revision

Collection of elements and references to an element

* Collection abstraction

* Set/sequence/tree/graph = collection with common operations




ADTs + operations

* An ADT is implementation independent
* Implemented as an entity + attributes + relationships

* The actual data structure is hidden using get/set functions for
each attribute + create_entity to give a reference to an entity

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

* Other operations are implemented as implementation
independent (abstract) functions (methods)

DSA/Revision

* In this way an abstract sequence can be used as a
e Stack — add / remove restricted to position 1
° Queue - add restricted to position last / remove to position 1




Recursion

* Recursive definitions — know these by heart

* Sequence S:=HT | empty; H::=element; T::=S; 3
* Binary tree BT ::=LC N RC | empty; N ::=element §

LC ::= BT; RC ::= BT;

c
iel
o

>

(&)
o
S~
<
(%]
(@]

* Recursive functions for sequences and trees
* These follow from the recursive definitions

e Pattern for recursive code
* The stop condition - usually is_empty (the empty case)
* The non-recursive operation (at head or on node for BT)
* The recursive call — often in a cons function




Performance

Know what Big-oh means

Know Big-oh for common operations: add, remove, find

Know Big-Oh for common algorithms
* Sort & search
* Dijkstra, Floyd, Warshall, Prim, Kruskal

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i
=
iel
o
>
(&)
o
S~
<
(%]
()

How to measure and interpret performance




Algorithms

* Sequence
e Sort algorithms
swap =» bubble, insert, selection, Shell
divide and conquer =>» quicksort, merge sort
e Search algorithms =>» linear, binary
* Hashing & collision detection
* Heap
* Tree

* Navigation = depth-first (pre-/in-/post-order), breadth-first
* General tree to BT, AVL & tree balancing & rotation, heap
* Graph —directed / undirected
* Depth-first search & spanning forest
* DAGs & topological sort (+ alternative = in-degree = 0)
* Dijkstra’s (+SPT), Floyd, Warshall, Prim, Kruskal, TSP heuristic

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

DSA/Revision




Terminology

Sequences

 First, next, last, head, tail, (total) order, successor, predecessor
Trees

e Parent/child, root, node, leaf, full, perfect, complete

Graphs

* Degree (in/out), node, edge, path, simple path, cycle, simple cycle
SPT (Shortest Path Tree — extension to Dijkstra)

DAG (Directed Acyclic Graph), partial order

Free tree, spanning tree/forest, MST (minimal spanning tree)

Strong components, connectivity, reachability

Algorithms

* Computable, non-computable, tractable, intractable, polynomial

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

DSA/Revision




Motivation for the course

* To introduce a greater degree of abstraction into your thinking
and programming —a mental toolbox

* To introduce a programming style (abstract) independent of
the programming language

* To present the ADTs set, sequence, tree and graph together
with their implementations, use and some common
algorithms — these are found throughout computer science

~
o
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i
=
iel
o
>
(&)
o
S~
<
(%]
()

* To introduce performance and Big-oh

* To improve your reading and understanding of the principles
behind algorithms




Exam hints

* Before * During
* Prepare —read the * Plan your time
lecture notes and * Read all questions

other material » Do the easiest

* Work through the questions first
given examples

~
=
(o))
o
LN
i
o
(9]
S~
(o]
o
S~
(e)}
i

=
iel
o

>

(&)
o
S~
<
(%]
()

* Note key words:

. Knoyv the principles briefly or in detail or
behind the algorithms stepwise

* Check previous exams « The process as well as
and facits the answer is

important




