
DSA: Rational – Why do this?

Donald F. Ross
21D 413
donald.ross@kau.se

Expected Workload (200 hours)

02/11/2016 DFR/DSA Start 2

Component Time
Assessment - Exam 40p 66%
Assessment - Labs 20p 33%
16 Lectures à 2 hours 32
16 Labs à 2 hours 32
Contact time 64
Self-study Coursework 104
Self-study Lab 32
Total Time 200
Lab groups 1-2 students

Labs total
Seq Ex 12
1. Tree 17
2. Performance 18
3. Graph 17
Time 64

lecture lab lab or
study

lab or
study

2 2 2 2

Daily Plan: am + pm

02/11/2016 DFR/DSA Start 3

Goals

 Hard
 Data structures

 Set
 Sequence
 Tree
 Graph

 Algorithms
 Modelling
 Implementations
 Improve C

programming

 Soft
 Abstraction
 Generalisation
 Recursion
 Mental “toolkit”
 Change mindset
 Articulate Ideas

 Terminology
 50% of u-grad

course
 important

02/11/2016 DFR/DSA Start 4

Data Structures & Algorithms

 Data: info about real world entities
 Structures: ways of organising data
 Algorithms: operations on data

structures
 Sorting & searching
 Navigating through the data structure
 Manipulating collections

Course content

02/11/2016 DFR/DSA Start 5

Content Details
Data Structures Set, sequence, tree, graph (collections)
Operations Add, find, remove, size, is_empty, display
ADT ALGORITHMS
Sequence Sorting & searching, hashing, heap
Trees: BST, AVL In-, pre-, post-order, depth/breadth-first search
Graphs Dijkstra, SPT, Floyd, Warshall, Prim, Kruskal,

topological sort, TSP
ABSTRACTION Collection, modelling, ***implementation***
RECURSION Definitions (sequence & tree) + code
Analysis Big-Oh and performance analysis

02/11/2016 DFR/DSA Start 6

ABSTRACTION:

1. Reality to a model
 Entities & relationships + attributes

2. Data Structures (set, sequence, tree, graph)
 Collections + operations

3. Implementation Independence
– ADT = ADS + operations (algorithms)
– ADS: set, sequence, tree, graph
– DT = DS + operations (algorithms)
– DS: arrays / structures & pointers

modelling, collection
& implementation

02/11/2016 DFR/DSA Start 7

Collections (set, sequence, tree, graph)

 2 levels
 Collection
 Entities (members of the collection)

 Operations
 Collection: create, destroy, display, sort,

navigate, count, is_empty,
merge, compare,

 Entities: add, remove, find, display

02/11/2016 DFR/DSA Start 8

ADT: set (non-linear; unordered)

 Properties: a collection of unique entities
 Relationship: none

 Operations:
 As for collections
 Mathematical set operations

 Implementations:
 Structures + pointers (linked lists) / arrays
 NB: the implementation is a sequence hence can use recursion!

 Used for: Relational Databases

02/11/2016 DFR/DSA Start 9

ADT: sequence (linear; ordered)

 Properties: a collection of ordered entities
 Relationships: successor (En, En+1) (next)

predecessor (En-1, En) (previous)
 Operations
 As for collections
 Sorting & Searching

 Implementations: struct+ptrs (linked lists) / arrays
NB: the implementation is a sequence hence can use recursion!

 Used for: hashing, heaps, implementing graphs

02/11/2016 DFR/DSA Start 10

ADT: tree (non-linear; (un)ordered)

 Properties: a collection of hierarchical entities
 Relationships: parent/child
 Kinds:
 general, binary, binary search, AVL, B-trees

 Operations
 As for collections
 Searching depth/breadth first

 Implementations: struct+ptrs / arrays
 NB: the implementation uses recursion!

 Used for: DB indexes, hierarchies

02/11/2016 DFR/DSA Start 11

ADT: graph – G =(V, E) (non-linear; unordered)

 Properties: a collection of entities
 Relationships: directed (Nx, Ny)

undirected (Nx, Ny), (Ny, Nx)
 Operations
 As for collections
 Searching depth / breadth first
 A 2 B problem shortest distance

 Implementations: struct+ptrs (linked lists) / arrays

 Used for: computer networks

 Algorithms: Dijkstra (SPT), Floyd, TSP, Warshall, Prim, Kruskal

02/11/2016 DFR/DSA Start 12

Summary

 Course Goals – Learn about
1. abstraction model implementation
2. abstraction  ADTs as collections
3. abstraction  implementation independence
4. ADTs – set, sequence, tree, graphs + ops
5. Algorithms + some implementations
6. Labs – application of the above

Sequence (linear; ordered) ; Set & Graph G=(V,E) (non-linear; unordered)
Tree (non-linear; unordered (GT) / ordered (GT, BT, BST, AVL))

real
world model implementation

