

General \rightarrow Binary

General \& Binary Trees

- General tree

Child

- Binary Tree

殿

Root

Leaf

DFR/JS TREES 1
Root

2

Ordered \& Unordered Trees

- A tree is ORDERED if the child nodes are considered to be a SEQUENCE
- A tree is UNORDERED if the child nodes are considered to be a SET

Ordered \& Unordered Trees

- A general tree may thus be ORDERED or UNORDERED
- A general tree with 2 children may be ORDERED or UNORDERED
- An ORDERED general tree with 2 children is a Binary Tree
- The children are denoted LEFT \& RIGHT

The Binary Tree Family

- Binary Tree (BT) - ordered + 2 children
- Binary Search Tree (BST) is BT plus
- value of left child < value of the node
- value of right child > value of the node
- AVL Tree (Adelson-Velsky Landis)
- A BST where the height difference <2
- | height(LC) - height(RC) |<2

General \& Binary Trees

Unordered Trees

Ordered Trees

Properties \& Operations

- General tree
- Root
- In-degree 0
- Out-degree n (max)
- Node
- In-degree 1
- Out-degree n(max)
- Leaf Node
- In-degree 1
- Out-degree 0
- Binary Tree
- Root
- In-degree 0
- Out-degree 2 (max)
- Node
- In-degree 1
- Out-degree 2 (max)
- Leaf Node
- In-degree 1
- Out-degree 0

Properties \& Operations

- ORDERED (left to right)
- The children of a node are a SEQUENCE
- UNORDERED
- The children of a node are a SET
- Hierarchical (parent/child) organisation
- Navigation: tree \rightarrow sequence
- Depth-first search (pre-, in-, post-order; stack)
- Breadth-first search (breadth-first order; queue)

Tree Traversals

- Breadth First Search
- level by level
- uses a Queue.

Definition: General Tree

$$
\begin{array}{lll}
\text { GT } & ::=\text { RN } C_{1} \ldots \mathrm{C}_{\mathrm{n}} \text { l empty } \\
\text { RN } & ::=\text { element } & \\
& & \\
\mathrm{C}_{1} & ::=\mathrm{GT} \\
\ldots & & \begin{array}{l}
\text { RN }=\text { Root Node } \\
\mathrm{C}_{\mathrm{i}}=\text { Child Node }
\end{array} \\
\mathrm{C}_{\mathrm{n}} & ::=\text { GT } &
\end{array}
$$

Empty tree; tree with 1 node; tree with n nodes A collection of nodes and relationships (parent/child)

Definition: Binary Tree

BT ::= LC RN RC | empty
RN ::= element
LC ::= BT
RC ::= BT

$$
\begin{aligned}
& \text { RN = Root Node } \\
& \text { LC = left child } \\
& \text { RC = right child }
\end{aligned}
$$

\rightarrow ordered tree (LC, RC) - required for depth-first searches

Empty tree; tree with 1 node; tree with n nodes
A collection of nodes and relationships (parent/child)

General Tree $\boldsymbol{\rightarrow}$ Binary Tree

Guess what the transformation rules are!

General Tree \rightarrow Binary Tree

1. The first child becomes the left child of the parent
2. The subsequent children become the right child of their predecessor

- Example: \mathbf{a} with children (b, c, d)
$\circ \mathbf{b}$ is the left child of $\mathbf{a} \quad$ (rule 1)
$\circ \mathbf{c}$ is the right child of $\mathbf{b} \quad$ (rule 2)
$\circ \mathbf{d}$ is the right child of $\mathbf{c} \quad$ (rule 2)

Properties \& Operations

- Height - general tree (number nodes $/$ levels)
- Height(empty tree) $=0$
- Height(one node) =1
- Height(T) $=1+\max \left(h e i g h t\left(C_{1}\right), \ldots\right.$, height $\left.\left(C_{n}\right)\right)$
- Height - binary tree (number nodes $/$ levels)
- Height(empty tree) $=0$
- Height(one node) =1
- Height(BT) = $1+\max (h e i g h t(L C)$, height(RC))
- Operations on collections apply
- Is_empty, add, find, remove, cardinality, ...

Height (Depth) revisited

- Height - general tree (number edges / path length)
- Height(empty tree) =-1
- Height(one node) $=0$
- $\operatorname{Height}(\mathrm{T})=0+\max \left(\operatorname{height}\left(\mathrm{C}_{1}\right), \ldots\right.$, height $\left.\left(\mathrm{C}_{\mathrm{n}}\right)\right)$
- Height - binary tree (number edges/path length)
- Height(empty tree) =-1
- Height(one node) $=0$
- Height(BT) $=0+\max (h e i g h t(L C)$, height(RC))
- Operations on collections apply
- Is_empty, add, remove, cardinality, ...

Caveat Emptor! A Warning

- Be aware of the possibility of different definitions
- Check which definition the article you are reading is in fact using
- This applies also to other structures for example B-Trees (degree)

Binary Tree: properties

FULL: every node has exactly 2 or 0 children

PERFECT: BT height h with exactly $2^{\mathrm{h}}-1$ elements (NB sometimes called COMPLETE)

COMPLETE: perfect on the next lowest level AND the lowest level is filled from the left

Binary Tree: properties

- The number of nodes, \boldsymbol{k}, in a binary tree, with height h, is defined as $h \leq k \leq 2^{h}-1$
- Example 1
- Height = 4, \#nodes = 7
- $4 \leq 7 \leq 15$
- Example 2

- Height = 2, \#nodes = 3
- $2 \leq 3 \leq 3$

Binary Tree: traversals

- Breadth-first
- Depth-first
- pre-order
- in-order
- post-order

NLR
$\mathrm{N}=$ node
LNR
L = left
LRN
$\mathrm{R}=$ right

- general-order
$\mathrm{N}_{1} \mathrm{go}(\mathrm{L}) \mathrm{N}_{\mathbf{2}} \mathrm{go}(\mathrm{R}) \mathrm{N}_{3}$
- Where 1 = pre-, 2 = in-, 3 = post-order

Traversals are tree \rightarrow sequence

Binary Tree: Traversal Algorithms

```
BreadthFirst(T) {
    if T is not Empty {
        Q = Empty;
        Q = AddQ(Q, T);
        while(Q != Empty) {
            p = front(Q); Q = deQ(Q);
            process(Root(p));
            if(Left(p) != Empty) Q = AddQ(Q, Left(p));
            if(Right(p) != Empty) Q = AddQ(Q, Right(p));
        }
    }
}
```


Binary Tree: Traversal Algorithms

```
PreOrder(T) {
if !is_Empty(T){process(Root(T)); PreOrder(Left(T)); PreOrder(Right(T));}
}
```

```
InOrder(T) {
if !is_Empty(T){ InOrder(Left(T)); process(Root(T)); InOrder(Right(T));}
}
PostOrder(T) {
if !is_Empty(T){ PostOrder(Left(T)); PostOrder(Right(T)); process(Root(T));}
}
```


Binary Tree: arithmetic expressions

- Arithmetic expressions
- (a+b) * (c-d)

- Infix \rightarrow pre-/post-fix

Exercise: infix \rightarrow postfix

(a+b) * (c-d)
stack: (o/p:
stack: (o/p: a
stack: (+ olp: a
stack: (+ o/p: ab
stack: o/p: ab+
stack: * o/p: ab+
stack: * (o/p: ab+
o/p = output
stack: * o/p: ab+c
stack: * (-o/p: ab+c
stack: * (-o/p: ab+cd stack: * olp:ab+cdstack: olp: ab+cd-*

Exercise: postfix \rightarrow tree

 $a b+c d-*$

