General=>» Binary

General & Binary Trees

= General tree = Binary Tree

Root Root

Parent Parent

Child Leaf Child Leaf

11/21/2016 DFR/JS TREES 1 2

| Ordered & Unordered Trees]

m Atreeis ORDERED Iif the child nodes
are considered to be a SEQUENCE

m Atreeis UNORDERED Iif the child
nodes are considered to be a SE

11/21/2016 DFR/JS TREES 1 3

| Ordered & Unordered Trees]

= A general tree may thus be
ORDERED or UNORDERED

= A general tree with 2 children may be
ORDERED or UNORDERED

= An ORDERED general tree with 2
children is a Binary Tree

m The children are denoted LEFT & RIGHT

11/21/2016 DFR/JS TREES 1 4

|The Binary Tree Family

= Binary Tree (BT) — ordered + 2 children

= Binary Search Tree (BST) Is BT plus
o value of left child < value of the node
o value of right child > value of the node

= AVL Tree (Adelson-Velsky Landis)

o A BST where the height difference < 2
o | height(LC) — height(RC) | < 2

11/21/2016 DFR/JS TREES 1

General & Binary Trees

Unordered Trees

Unordered General Tree

11/21/2016

Ordered Trees

Ordered General Tree

Binary tree
Binary search tree

AVL
Tree

B-Tree family (DBSs)

DFR/JS TREES 1

| Properties & Operations]

= General tree = Binary Tree
= Root = Root

o In-degree 0 o In-degree 0

o Out-degree n (max) o Out-degree 2 (max)
= Node = Node

o In-degree 1 o In-degree 1

o Out-degree n (max) o Out-degree 2 (max)
= Leaf Node = Leaf Node

o In-degree 1 o In-degree 1

o Out-degree 0 o Out-degree 0

11/21/2016 DFR/JS TREES 1

| Properties & Operations

= ORDERED (left to right)
o The children of a node are a SEQUENCE

= UNORDERED
o The children of a node are a SET

m Hierarchical (parent/child) organisation
= Navigation: tree =» sequence

o Depth-first search (pre-, in-, post-order; stack)
o Breadth-first search (breadth-first order; queue)

11/21/2016 DFR/JS TREES 1

Tree Traversals

s Breadth
First
Search

= level by
level

m uUses a
Queue.

a,b,c,d, e f g, hij

11/21/2016 DFR/JS TREES 1

| Definition: General Tree

GT :=RNC,...C, | empty RN = Root Node
RN = element C, = Child Node
C, :=GT
C =GT

n

Empty tree; tree with 1 node; tree with n nodes
A collection of nodes and relationships (parent/child)

11/21/2016 DFR/JS TREES 1 10

BT
RN
| C
RC

.= LC RN RC | empty

.= element
=BT
=BT

Definition: Binary Tree

RN = Root Node
LC = left child
RC =right child

> ordered tree (LC, RC) — required for depth-first searches

Empty tree; tree with 1 node; tree with n nodes
A collection of nodes and relationships (parent/child)

11/21/2016

DFR/JS TREES 1

11

|General Tree = Binary Tree]

Guess what the transformation rules are! \@

11/21/2016 DFR/JS TREES 1 12

|General Tree =» Binary Tree]

1. The first child becomes the left child

of the parent

2. The subsequent children become
the right child of their predecessor

= Example: a with children (b, c, d)

o b isthe left chilo
o cistheright chi
o disthe right chi

of a
d of b
dofc

11/21/2016 DFR/JS TREES 1

(ru
(ru
(ru

el)
e 2)
e 2)

13

| Properties & Operations]

s Height — general tree (oumbernodesievels) N
o Height(empty tree) =0 {!/ A
o Height(one node) =1 ®
o Height(T) =1 + max(height(C,), ...,height(C,))
m Height — binary tree (aumber nodes /tevels)
o Height(empty tree) =0
o Height(one node) =1
o Height(BT) =1+ max(height(LC), height(RC))
= Operations on collections apply
o Is_empty, add, find, remove, cardinality, ...

11/21/2016 DFR/JS TREES 1 14

| Height (Depth) revisited

N He|ght - genel’a| tree (number edges / path length) .\
6%

o Height(empty tree) =-1

o Height(one node) =0

o Height(T) = 0 + max(height(C,), ...,height(C,))
H He|ght — binary tree (number edges / path length)

o Height(empty tree) =-1

o Height(one node) =0

o Height(BT) =0 + max(height(LC), height(RC))
= Operations on collections apply

o Is_empty, add, remove, cardinality, ...

11/21/2016 DFR/JS TREES 1 15

| Caveat Emptor! A Warning]

= Be aware of the possibility of different
definitions

= Check which definition the article you
are reading Is In fact using

= This applies also to other structures for
example B-Trees (degree)

11/21/2016 DFR/JS TREES 1 16

Binary Tree: properties

FULL: every node has
exactly 2 or O children

PERFECT: BT height h with

exactly 2"-1 elements
(NB sometimes called COMPLETE)

COMPLETE: perfect on the

This allows sequential add to the

next lowest level AND the tree in breadth-first position 1
lowest level is filled from the (root), 2, 3, etc. remove is the
left reverse of this. The BT may be

represented as an array (labl T2Q)

11/21/2016 DFR/JS TREES 1 17

Binary Tree: properties

= The number of nodes,
K, In a binary tree, with
height h, Is defined as
h<k<2h-1

= Example 1 | (a) \®
o Height =4, #nodes =7 i /‘}
o 4<7<15 @ (o)

= Example 2 e ,

o Height =2, #nodes =3
o 2<3<3

11/21/2016 DFR/JS TREES 1

18

| Binary Tree: traversals]

» Breadth-first
= Depth-first

O

O
O
O

pre-order NLR N = node
In-order LNR L = left
post-order LRN R =right

general-order N; go(L) N, go(R) N,
s Where 1 = pre-, 2 =in-, 3 = post-order

m| Traversals are tree = sequence

11/21/2016

DFR/JS TREES 1 19

Binary Tree: Traversal Algorithms

BreadthFirst(T) {
iIT T 1s not Empty {
Q = Empty;
Q = AddQ(Q, T);
while(Q = Empty) {
p = front(Q); Q = deQ(Q);
process(Root(p));
if(Left(p) !'= Empty) Q = AddQ(Q, Left(p));
if(Right(p) != Empty) Q = AddQ(Q, Right(p));
+
+
+

11/21/2016 DFR/JS TREES 1

20

Binary Tree: Traversal Algorithms

PreOrder(T) {

iIT 1is Empty(T){process(Root(T)); PreOrder(Left(T)); PreOrder(Right(T));}
+

INOrder(T) {
it lis Empty(T){ InOrder(Left(T)); process(Root(T)); InOrder(Right(T));}
+

PostOrder(T) {

1T lis_Empty(T){ PostOrder(Left(T)); PostOrder(Right(T)); process(Root(T));}
+

11/21/2016 DFR/JS TREES 1 21

Binary Tree: arithmetic expressions

= Arithmetic
expressions

(a+b) * (c-d)

Pre *+ab-cd @

In - at+b*c-d ! 1

In - (a+b)*(C-d) ‘ b
o Post ab+cd-* /

) rNe?ﬁ\eser(te% tg rgizvrz;?ebt?\e infix! Q @

= Infix =» pre-/post-fix

O|lO0O|O O

11/21/2016 DFR/JS TREES 1

Exercise: infix =» postfix

(a+b) * (c-d) stack: *(o/p: ab+c
stack: (ol/p: stack: * (-o/p: ab+c
stack: (o/p: a stack: * (-o/p: ab+cd
stack: (+ o/p: a stack: * o/p:ab+cd-
stack: (+ o/p: ab stack: o/p: ab+cd-*

. : Operator (: Push
stack: o/p: ab+ Y. Pop 1 (
stack: * o/p: ab+ * + stack / pop

. _ but note precedence!
stack: *(o/p: ab+ A+b*C D AbCH

a*b+c =» ab*c+

o/p = output NB: Operand: Output (o/p)

11/21/2016 DFR/JS TREES 1 23

| Exercise: postfix =» tree

ab+cd-*

- SOO®
~ pa

@ ® G

RRRRRRRRRRRR

|

