
Trees 1

General Binary

DFR/JS TREES 1 2

General & Binary Trees

 General tree Binary Tree
Root

Parent Node

Child Leaf

Root

Parent Node

Child Leaf

11/21/2016

Ordered & Unordered Trees

 A tree is ORDERED if the child nodes
are considered to be a SEQUENCE

 A tree is UNORDERED if the child
nodes are considered to be a SET

DFR/JS TREES 1 311/21/2016

Ordered & Unordered Trees

 A general tree may thus be
ORDERED or UNORDERED

 A general tree with 2 children may be
ORDERED or UNORDERED

 An ORDERED general tree with 2
children is a Binary Tree

 The children are denoted LEFT & RIGHT

DFR/JS TREES 1 411/21/2016

The Binary Tree Family

 Binary Tree (BT) – ordered + 2 children
 Binary Search Tree (BST) is BT plus

 value of left child < value of the node
 value of right child > value of the node

 AVL Tree (Adelson-Velsky Landis)
 A BST where the height difference < 2
 | height(LC) – height(RC) | < 2

DFR/JS TREES 1 511/21/2016

General & Binary Trees
Unordered Trees Ordered Trees

DFR/JS TREES 1 6

Unordered General Tree Ordered General Tree

Binary tree
Binary search tree

AVL
Tree

B-Tree family (DBs)

11/21/2016

DFR/JS TREES 1 7

Properties & Operations

 General tree
 Root

 In-degree 0
 Out-degree n (max)

 Node
 In-degree 1
 Out-degree n (max)

 Leaf Node
 In-degree 1
 Out-degree 0

 Binary Tree
 Root

 In-degree 0
 Out-degree 2 (max)

 Node
 In-degree 1
 Out-degree 2 (max)

 Leaf Node
 In-degree 1
 Out-degree 0

11/21/2016

DFR/JS TREES 1 8

Properties & Operations

 ORDERED (left to right)
 The children of a node are a SEQUENCE

 UNORDERED
 The children of a node are a SET

 Hierarchical (parent/child) organisation
 Navigation: tree sequence

 Depth-first search (pre-, in-, post-order; stack)
 Breadth-first search (breadth-first order; queue)

11/21/2016

DFR/JS TREES 1 9

Tree Traversals

 Breadth
First
Search

 level by
level

 uses a
Queue.

a

b c d

e f g h i j

a, b, c, d, e, f, g, h, i, j

11/21/2016

DFR/JS TREES 1 10

Definition: General Tree

GT ::= RN C1…Cn | empty RN = Root Node

RN ::= element Ci = Child Node

C1 ::= GT
…
Cn ::= GT

Empty tree; tree with 1 node; tree with n nodes
A collection of nodes and relationships (parent/child)

11/21/2016

DFR/JS TREES 1 11

Definition: Binary Tree

BT ::= LC RN RC | empty RN = Root Node
RN ::= element LC = left child
LC ::= BT RC = right child
RC ::= BT

 ordered tree (LC, RC) – required for depth-first searches

Empty tree; tree with 1 node; tree with n nodes
A collection of nodes and relationships (parent/child)

11/21/2016

DFR/JS TREES 1 12

General Tree Binary Tree

Guess what the transformation rules are!

a

b c d

e f g h i j

a

b

e c

df

g

h

i

j

11/21/2016

DFR/JS TREES 1 13

General Tree Binary Tree

1. The first child becomes the left child
of the parent

2. The subsequent children become
the right child of their predecessor

 Example: a with children (b, c, d)
 b is the left child of a (rule 1)
 c is the right child of b (rule 2)
 d is the right child of c (rule 2)

11/21/2016

DFR/JS TREES 1 14

Properties & Operations

 Height – general tree (number nodes / levels)
 Height(empty tree) = 0
 Height(one node) = 1
 Height(T) = 1 + max(height(C1), …,height(Cn))

 Height – binary tree (number nodes / levels)
 Height(empty tree) = 0
 Height(one node) = 1
 Height(BT) = 1 + max(height(LC), height(RC))

 Operations on collections apply
 Is_empty, add, find, remove, cardinality, …

11/21/2016

DFR/JS TREES 1 15

Height (Depth) revisited

 Height – general tree (number edges / path length)
 Height(empty tree) = -1
 Height(one node) = 0
 Height(T) = 0 + max(height(C1), …,height(Cn))

 Height – binary tree (number edges / path length)
 Height(empty tree) = -1
 Height(one node) = 0
 Height(BT) = 0 + max(height(LC), height(RC))

 Operations on collections apply
 Is_empty, add, remove, cardinality, …

11/21/2016

DFR/JS TREES 1 16

Caveat Emptor! A Warning

 Be aware of the possibility of different
definitions

 Check which definition the article you
are reading is in fact using

 This applies also to other structures for
example B-Trees (degree)

11/21/2016

DFR/JS TREES 1 17

Binary Tree: properties

FULL: every node has
exactly 2 or 0 children

PERFECT: BT height h with
exactly 2h-1 elements
(NB sometimes called COMPLETE)

COMPLETE: perfect on the
next lowest level AND the
lowest level is filled from the
left

a

b c

d e f g

h i

11/21/2016

This allows sequential add to the
tree in breadth-first position 1
(root), 2, 3, etc. remove is the
reverse of this. The BT may be
represented as an array (lab1 T2Q)

DFR/JS TREES 1 18

Binary Tree: properties
 The number of nodes,

k, in a binary tree, with
height h, is defined as
h k 2h – 1

 Example 1
 Height = 4, #nodes = 7
 4 7 15

 Example 2
 Height = 2, #nodes = 3
 2 3 3

a

b c

d e

f g

11/21/2016

DFR/JS TREES 1 19

Binary Tree: traversals

 Breadth-first
 Depth-first

 pre-order NLR N = node
 in-order LNR L = left
 post-order LRN R = right
 general-order N1 go(L) N2 go(R) N3

 Where 1 = pre-, 2 = in-, 3 = post-order

 Traversals are tree sequence
11/21/2016

DFR/JS TREES 1 20

Binary Tree: Traversal Algorithms

BreadthFirst(T) {
if T is not Empty {

Q = Empty;
Q = AddQ(Q, T);
while(Q != Empty) {

p = front(Q); Q = deQ(Q);
process(Root(p));
if(Left(p) != Empty) Q = AddQ(Q, Left(p));
if(Right(p) != Empty) Q = AddQ(Q, Right(p));

}
}

}

11/21/2016

DFR/JS TREES 1 21

Binary Tree: Traversal Algorithms

PreOrder(T) {
if !is_Empty(T){process(Root(T)); PreOrder(Left(T)); PreOrder(Right(T));}
}

InOrder(T) {
if !is_Empty(T){ InOrder(Left(T)); process(Root(T)); InOrder(Right(T));}
}

PostOrder(T) {
if !is_Empty(T){ PostOrder(Left(T)); PostOrder(Right(T)); process(Root(T));}
}

11/21/2016

DFR/JS TREES 1 22

Binary Tree: arithmetic expressions

 Arithmetic
expressions
 (a+b) * (c-d)
 Pre *+ab-cd
 In - a+b*c-d !!
 In - (a+b)*(c-d)
 Post ab+cd-*

 Note “(“ & “)” have to be
reinserted to re-create the infix!

 Infix pre-/post-fix

*

+ -

a b c d

11/21/2016

DFR/JS TREES 1 23

Exercise: infix postfix

(a+b) * (c-d)
stack: (o/p:
stack: (o/p: a
stack: (+ o/p: a
stack: (+ o/p: ab
stack: o/p: ab+
stack: * o/p: ab+
stack: * (o/p: ab+

o/p = output

stack: * (o/p: ab+c
stack: * (-o/p: ab+c
stack: * (-o/p: ab+cd
stack: * o/p:ab+cd-
stack: o/p: ab+cd-*
Operator (: Push

): Pop to (
*,+ stack / pop

but note precedence!
a+b*c abc*+
a*b+c ab*c+
NB: Operand: Output (o/p)

11/21/2016

DFR/JS TREES 1 24

Exercise: postfix tree

ab+cd-*

a

a b

+

a b

+

a b c d

-

*

a b c d

+ -

11/21/2016

