Tree structures

AVL-tree and balancing

Agenda

- Balanced trees
- AVL-tree
- Definition
- Properties
- Rotations

■Left / Right

- Single / Double
- SLR SRR DLR DRR
- The meaning behind BSTs is that search should be as fast as possible
The quickest searching is when the height is $\log (\mathrm{N})$ where $\mathrm{N}=$ the number of nodes in the tree

NB: check definitions of height and depth 」

- Some textbooks give the height of a tree as
- The maximum number of nodes on any path from the root to a leaf
- Others define height as
- The maximum number of edges on any path from the root to a leaf
- Some use both height and depth - CHECK!!!

Balancing: nв: check definitions of height and depth

By imposing a balance invariant on the tree, logarithmic height may be attained

- The "ultimate" balance invariant is achieved in the form of a complete tree
- A complete tree is never higher than $\log (N)$ where $N=$ the number of nodes
- The great disadvantage of this is that is is very difficult to maintain the completeness invariant

AVL-tree

- Adelson-Velskii and Landis discovered a method of balancing
a BST
- An AVL-tree is a BST where
- For each node n,
\mid Height(Left(n)) - Height(Right(n))| < 2

AVL

 $=$Binary Search Tree
$+$

- The height of one sub-tree may be no more than 1 unit compared with the other subtree
\mid Height (Left (n)) - Height (Right (n)) |< 2

AVL-tree (contd.)

AVL-tree (contd.)

No AVL-balance

BST-tree B (NOT AVL!)

AVL-balance

Single right rotation (SRR)
| Height (Left ("5")) - Height (Right ("5")) |= 2

AVL-tree (contd.)

- The invariant for an AVL tree requires balancing mechanisms
- These mechanisms are called rotations
- These mechanisms may be applied in 2 ways
- Executed as part of operations such as Add and Remove
- Executed as a separate operation (Balance) after operations such as Add and Remove
- This latter method is preferred (\& is simpler)

Rotation (correcting imbalance)

- Moves the "centre of gravity" from one side of the (sub-)tree to another
- In order to correct imbalances, there are 4 cases to consider. If an imbalance occurs at X, the following may have taken place :

1. An insertion in the left sub-tree of the left child of X requires a simple right rotation (SRR - single right rotation)
2. An insertion in the right sub-tree of the left child of X requires a left-right rotation.
(DRR - double right rotation)
3. An insertion in the left sub-tree of the right child of X requires a right-left rotation.
(DLR - double left rotation)
4. An insertion in the right sub-tree of the right child of X requires a simple left rotation
(SLR - single left rotation)
After a rotation the BST-invariant still applies

- Value(Left(n)) < Value(n) < Value(Right(n))
- $\operatorname{DRR}=\operatorname{SLR}(L C(T))+\operatorname{SRR}(T) ; \quad \operatorname{DLR}=\operatorname{SRR}(R C(T))+\operatorname{SLR}(T)$
- SLR/DLR is mirror image of an SRRIDRR respectively

Rotation (contd.) (add "outside")

- When the AVL-invariant is violated at n_{2} and "the centre of gravity" is displaced to the left, a right rotation around n_{2} is required
- Add to left child of left child / right child of right child (outside)

Rotation (contd.) (add "inside")

- If the tree is not wholly displaced to the left, then a simple rotation will not work
- Add to right child of left child / left child of right child (inside)

Rotation (contd.)

- In order to correct this problem, a third node must be taken into consideration - n_{3}
- Two rotations are required
- FIRST a left-rotation around n_{1} in order to better place the "centre of gravity"'"
- THEN a right rotation in the "normal" order around the node $\left(\mathrm{n}_{2}\right)$ where the imbalance has occurred
- NB the first rotation is always a single rotation.

Rotation (contd.)

Rotation (contd.)

Rotation - Algorithms

- A simple right rotation can be implemented as follows

RotateRight(n2)

```
n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
end RotateRight
```

- Similarly for a simple left rotation (mirror image)

Rotation - Algorithms - SRR

Rotation - Algorithms (contd.)

- A double left-right rotation DLR can be implemented as follows

RotateDoubleLeftRight(n2) n2.left = RotateLeft(n2.left) return RotateRight(n2) end RotateDoubleLeftRight

- Similarly for a double right left rotation (mirror image)

Rotation - Algorithms (contd.)

n2.left = RotateLeft(n2.left)
return RotateRight(n2)
return RotateRight(n2)

Rotation - Algorithms (contd.)

n2.left = RotateLeft(n2.left)
return RotateRight(n2)

DFR/JS Trees 3

The "code"

SLR
 (+ outside right)

- SLR (+ outside right)

$\mathrm{n} 1 \quad=\left(\begin{array}{lll}\mathrm{a} \\ 10 & 11\end{array}\right)$
n2.right $=a$
n1.left $=9$
return $\mathrm{n} 1=(9,10,11)$
- Example: bf = $\mathrm{H}(\mathrm{LC})-\mathrm{H}(\mathrm{RC})$

(+ inside right)

- Example: bf $=\mathrm{H}(\mathrm{LC})-\mathrm{H}(\mathrm{RC})$

