
Tree structures

AVL-tree and balancing
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Agenda

 Balanced trees
 AVL-tree

 Definition
 Properties
 Rotations

Left / Right
Single / Double
 SLR SRR DLR DRR

 The meaning behind 
BSTs is that search 
should be as fast as 
possible

 The  quickest searching 
is when the height is 
log(N) where N = the 
number of nodes in the 
tree
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NB: check definitions of height and depth

 Some textbooks give the height of a tree as
 The maximum number of nodes on any 

path from the root to a leaf
 Others define height as

 The maximum number of edges on any path 
from the root to a leaf

 Some use both height and depth – CHECK!!!
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Balancing: NB: check definitions of height and depth

 By imposing a balance invariant on the tree, logarithmic height may be 
attained

 The “ultimate” balance invariant is achieved in the form of a complete tree
 A complete tree is never higher than log(N) where N = the number of 

nodes 
 The great disadvantage of this is that is is very difficult to maintain the 

completeness invariant

4 nodes
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AVL-tree
 Adelson-Velskii and Landis

discovered a method of balancing 
a BST

 An AVL-tree is a BST where
 For each node n,

|Height(Left(n)) - Height(Right(n))| < 2

must be satisfied

 The height of one sub-tree 
may be no more than 1 unit 
compared with the other sub-
tree
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AVL-tree (contd.)

AVL-tree (sub-tree 5)
and tree at 7
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AVL-tree (contd.)

BST-tree B (NOT AVL!)
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AVL-tree (contd.)

 The invariant for an AVL tree requires balancing 
mechanisms

 These mechanisms are called rotations
 These mechanisms may be applied in 2 ways

 Executed as part of operations such as Add and 
Remove

 Executed as a separate operation (Balance) after 
operations such as Add and Remove

 This latter method is preferred (& is simpler)
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Rotation (correcting imbalance)

 Moves the “centre of gravity” from one side of the (sub-)tree to another
 In order to correct imbalances, there are 4 cases to consider. If an 

imbalance occurs at X, the following may have taken place :
1. An insertion in the left sub-tree of the left child of X requires a

simple right rotation (SRR – single right rotation)
2. An insertion in the right sub-tree of the left child of X requires a

left-right rotation. (DRR  - double right rotation) 
3. An insertion in the left sub-tree of the right child of X requires a

right-left rotation. (DLR  - double left rotation) 
4. An insertion in the right sub-tree of the right child of X requires a

simple left rotation (SLR – single left rotation)
After a rotation the BST-invariant still applies

 Value(Left(n)) < Value(n) < Value(Right(n))
 DRR = SLR(LC(T) ) + SRR(T); DLR = SRR(RC(T)) + SLR(T)
 SLR/DLR is  mirror image of an SRR/DRR respectively
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Rotation (contd.) (add “outside”)

 When the AVL-invariant is violated at  n2 and ”the centre of gravity” is 
displaced to the left, a right rotation around n2 is required

 Add to left child of left child / right child of right child (outside)
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Rotation (contd.) (add “inside”)

 If the tree is not wholly displaced to the left, then a 
simple rotation will not work

 Add to right child of left child / left child of right child (inside)
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Rotation (contd.)
 In order to correct this 

problem, a third node must be 
taken into consideration - n3

 Two rotations are required
 FIRST a left-rotation

around  n1 in order to 
better place the “centre of 
gravity””

 THEN a right rotation in 
the ”normal” order around 
the node (n2) where the 
imbalance has occurred 

 NB the first rotation is 
always a single rotation.
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Rotation (contd.)

STEP 1
Left rotation around n1

D

n3

n2

n1

A B

C

B

A

n1

n2

C

n3

D



28/11/2016 DFR/JS Trees 3 14

Rotation (contd.)
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Rotation - Algorithms

 A simple right rotation can be 
implemented as follows

RotateRight(n2)
n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
end RotateRight

 Similarly for a simple left 
rotation (mirror image)

A

B

C

n1

n2



28/11/2016 DFR/JS Trees 3 16

Rotation – Algorithms - SRR

A
B C

n1

n2

n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
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Rotation – Algorithms (contd.)

 A double left-right rotation
DLR can be implemented as 
follows

RotateDoubleLeftRight(n2)
n2.left = RotateLeft(n2.left)
return RotateRight(n2)

end RotateDoubleLeftRight

 Similarly for a double right 
left rotation (mirror image)

B

A

D

n1

n2

C

n3



28/11/2016 DFR/JS Trees 3 18

Rotation – Algorithms (contd.)

BA

D

n1

n2

C

n3

n2.left = RotateLeft(n2.left)
return RotateRight(n2)
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Rotation – Algorithms (contd.)
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The “code”

 SLR (+ outside right)
RotateLeft(n2)

n1 = n2.right
n2.right = n1.left
n1.left = n2
return n1
end RotateLeft

 DLR (+ inside right)
RotateDoubleRightLeft(n2)

n2.right = RotateRight(n2.right)
return RotateLeft(n2)

end RotateDoubleRightLeft

 SRR (+ outside left)
RotateRight(n2)

n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
end RotateRight

 DRR (+ inside left)
RotateDoubleLeftRight(n2)

n2.left = RotateLeft(n2.left)
return RotateRight(n2)

end RotateDoubleLeftRight
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SLR (+ outside right)

 SLR (+ outside right)

RotateLeft(n2)
n1 = n2.right
n2.right = n1.left
n1.left = n2
return n1
end RotateLeft

n1 = (¤ 10 11)
n2.right = ¤
n1.left = 9

return n1 = (9, 10, 11)

 Example: bf = H(LC) - H(RC)
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9 h=3 bf = -2

10 h=2

11 h=1

* h=0

10 h=2 bf = 0

9 h=1 11  h=1

10 
11 

9 n2 n1

n1

n2
bf = balance factor



DLR (+ inside right)

 DLR (+ inside right)

RotateDoubleRightLeft(n2)        DLR
n2.right = RotateRight(n2.right)
return RotateLeft(n2)

end RotateDoubleRightLeft

RotateRight(n2) RR
n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
end RotateRight

 Example: bf = H(LC) - H(RC)

n1 = 10 (NB: in RR n2 = 11)
n2.left      = ¤
n1.right   = 11
return n1 = (¤, 10, 11)
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