
Tree structures

AVL-tree and balancing

28/11/2016 DFR/JS Trees 3 2

Agenda

 Balanced trees
 AVL-tree

 Definition
 Properties
 Rotations

Left / Right
Single / Double
 SLR SRR DLR DRR

 The meaning behind
BSTs is that search
should be as fast as
possible

 The quickest searching
is when the height is
log(N) where N = the
number of nodes in the
tree

28/11/2016 DFR/JS Trees 3 3

NB: check definitions of height and depth

 Some textbooks give the height of a tree as
 The maximum number of nodes on any

path from the root to a leaf
 Others define height as

 The maximum number of edges on any path
from the root to a leaf

 Some use both height and depth – CHECK!!!

28/11/2016 DFR/JS Trees 3 4

Balancing: NB: check definitions of height and depth

 By imposing a balance invariant on the tree, logarithmic height may be
attained

 The “ultimate” balance invariant is achieved in the form of a complete tree
 A complete tree is never higher than log(N) where N = the number of

nodes
 The great disadvantage of this is that is is very difficult to maintain the

completeness invariant

4 nodes
= 2.58
7 nodes
= 3
9 nodes
= 3.16
15 nodes
= 4

6

4 7

2 5 8 9

1 3

h

 )1log( Nh

28/11/2016 DFR/JS Trees 3 5

AVL-tree
 Adelson-Velskii and Landis

discovered a method of balancing
a BST

 An AVL-tree is a BST where
 For each node n,

|Height(Left(n)) - Height(Right(n))| < 2

must be satisfied

 The height of one sub-tree
may be no more than 1 unit
compared with the other sub-
tree

2|))(())((|  nRightHeightnLeftHeight

Binary Search Tree

+

AVL
=

28/11/2016 DFR/JS Trees 3 6

AVL-tree (contd.)

AVL-tree (sub-tree 5)
and tree at 7

A + 1

BST-tree B (NOT AVL!)

7

9

8

5

63

42
1

7

9

8

5

63

42

1

2

No AVL-balance

1

3

2|))"5("())"5("(|  RightHeightLeftHeight

28/11/2016 DFR/JS Trees 3 7

AVL-tree (contd.)

BST-tree B (NOT AVL!)

7

9

8

5

63

42

1

2

No AVL-balance

1

3

2|))"5("())"5("(|  RightHeightLeftHeight

7

9

8

3

52

61 4
2

AVL-balance

2

Single right rotation (SRR)

28/11/2016 DFR/JS Trees 3 8

AVL-tree (contd.)

 The invariant for an AVL tree requires balancing
mechanisms

 These mechanisms are called rotations
 These mechanisms may be applied in 2 ways

 Executed as part of operations such as Add and
Remove

 Executed as a separate operation (Balance) after
operations such as Add and Remove

 This latter method is preferred (& is simpler)

28/11/2016 DFR/JS Trees 3 9

Rotation (correcting imbalance)

 Moves the “centre of gravity” from one side of the (sub-)tree to another
 In order to correct imbalances, there are 4 cases to consider. If an

imbalance occurs at X, the following may have taken place :
1. An insertion in the left sub-tree of the left child of X requires a

simple right rotation (SRR – single right rotation)
2. An insertion in the right sub-tree of the left child of X requires a

left-right rotation. (DRR - double right rotation)
3. An insertion in the left sub-tree of the right child of X requires a

right-left rotation. (DLR - double left rotation)
4. An insertion in the right sub-tree of the right child of X requires a

simple left rotation (SLR – single left rotation)
After a rotation the BST-invariant still applies

 Value(Left(n)) < Value(n) < Value(Right(n))
 DRR = SLR(LC(T)) + SRR(T); DLR = SRR(RC(T)) + SLR(T)
 SLR/DLR is mirror image of an SRR/DRR respectively

28/11/2016 DFR/JS Trees 3 10

Rotation (contd.) (add “outside”)

 When the AVL-invariant is violated at n2 and ”the centre of gravity” is
displaced to the left, a right rotation around n2 is required

 Add to left child of left child / right child of right child (outside)

A

B

C

n1

n2

A B C

n1

n2
Right rotation

around n2

28/11/2016 DFR/JS Trees 3 11

Rotation (contd.) (add “inside”)

 If the tree is not wholly displaced to the left, then a
simple rotation will not work

 Add to right child of left child / left child of right child (inside)

B

A

C

n1

n2

A

B

C

n1

n2

Right rotation
around n2

28/11/2016 DFR/JS Trees 3 12

Rotation (contd.)
 In order to correct this

problem, a third node must be
taken into consideration - n3

 Two rotations are required
 FIRST a left-rotation

around n1 in order to
better place the “centre of
gravity””

 THEN a right rotation in
the ”normal” order around
the node (n2) where the
imbalance has occurred

 NB the first rotation is
always a single rotation.

B

A

D

n1

n2

C

n3

28/11/2016 DFR/JS Trees 3 13

Rotation (contd.)

STEP 1
Left rotation around n1

D

n3

n2

n1

A B

C

B

A

n1

n2

C

n3

D

28/11/2016 DFR/JS Trees 3 14

Rotation (contd.)

D

n3

n2

n1

A B

C D

n2

n3

n1

A B C

Step 2
Right rotation around n2

28/11/2016 DFR/JS Trees 3 15

Rotation - Algorithms

 A simple right rotation can be
implemented as follows

RotateRight(n2)
n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
end RotateRight

 Similarly for a simple left
rotation (mirror image)

A

B

C

n1

n2

28/11/2016 DFR/JS Trees 3 16

Rotation – Algorithms - SRR

A
B C

n1

n2

n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1

A

B

C

n1

n2

A B C

n1

n2

28/11/2016 DFR/JS Trees 3 17

Rotation – Algorithms (contd.)

 A double left-right rotation
DLR can be implemented as
follows

RotateDoubleLeftRight(n2)
n2.left = RotateLeft(n2.left)
return RotateRight(n2)

end RotateDoubleLeftRight

 Similarly for a double right
left rotation (mirror image)

B

A

D

n1

n2

C

n3

28/11/2016 DFR/JS Trees 3 18

Rotation – Algorithms (contd.)

BA

D

n1

n2

C

n3

n2.left = RotateLeft(n2.left)
return RotateRight(n2)

B

A

D

n1

n2

C

n3

28/11/2016 DFR/JS Trees 3 19

Rotation – Algorithms (contd.)

BA D

n1
n2

C

n3

n2.left = RotateLeft(n2.left)
return RotateRight(n2)

BA

D

n1

n2

C

n3

The “code”

 SLR (+ outside right)
RotateLeft(n2)

n1 = n2.right
n2.right = n1.left
n1.left = n2
return n1
end RotateLeft

 DLR (+ inside right)
RotateDoubleRightLeft(n2)

n2.right = RotateRight(n2.right)
return RotateLeft(n2)

end RotateDoubleRightLeft

 SRR (+ outside left)
RotateRight(n2)

n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
end RotateRight

 DRR (+ inside left)
RotateDoubleLeftRight(n2)

n2.left = RotateLeft(n2.left)
return RotateRight(n2)

end RotateDoubleLeftRight

28/11/2016 DFR/JS Trees 3 20

SLR (+ outside right)

 SLR (+ outside right)

RotateLeft(n2)
n1 = n2.right
n2.right = n1.left
n1.left = n2
return n1
end RotateLeft

n1 = (¤ 10 11)
n2.right = ¤
n1.left = 9

return n1 = (9, 10, 11)

 Example: bf = H(LC) - H(RC)

28/11/2016 DFR/JS Trees 3 21

9 h=3 bf = -2

10 h=2

11 h=1

* h=0

10 h=2 bf = 0

9 h=1 11 h=1

10
11

9 n2 n1

n1

n2
bf = balance factor

DLR (+ inside right)

 DLR (+ inside right)

RotateDoubleRightLeft(n2) DLR
n2.right = RotateRight(n2.right)
return RotateLeft(n2)

end RotateDoubleRightLeft

RotateRight(n2) RR
n1 = n2.left
n2.left = n1.right
n1.right = n2
return n1
end RotateRight

 Example: bf = H(LC) - H(RC)

n1 = 10 (NB: in RR n2 = 11)
n2.left = ¤
n1.right = 11
return n1 = (¤, 10, 11)

28/11/2016 DFR/JS Trees 3 22

9 h=3

11 h=2

10 h=1

10 h=2

11 h=1

* h=0

bf = -2

bf = 0

9 h=3

10 h=2

11 h=1

* h=0

9

bf = -2

h=1

