
Tree structures

B-tree



19/06/2015 DFR/JS Trees 4 2

Agenda In this lesson

 B-tree
 Definition
 Properties 
 Operations
 Example
 Implementation
 Application areas

 Efficiency is gained at 
the cost of unused 
space in the indexes

 Confusions to avoid!
 Be aware of the 

terminology used for 
B-trees

 Be aware of the 
“family” of B-trees:
 B-tree
 B+-Tree
 B*-Tree



19/06/2015 DFR/JS Trees 4 3

B-tree - Definition

 B-tree is an abbreviation for BALANCED TREE
 B-tree is completely balanced
 B-tree can have different “degrees” (or “order” not to be 

confused with order in a sequence), from 3 and upwards
(the definition can vary between textbooks)

 The degree determines
 the number of children per parent
 the number of search keys per node (max degree-1)

 E.g. degree 4 key1 key2 key3



19/06/2015 DFR/JS Trees 4 4

B+-tree – An Example degree (order) 3

7

5 9

17

12 20 40

2
3
4

5
6

7
8

9
10
11

12
13
14

17
18
19

20
22
34

40
42
43da

ta

Order M = 3 (no of children)

L = 3 (no of records
in the leaf nodes)



19/06/2015 DFR/JS Trees 4 5

B-tree Properties

 A B-tree has the following properties & invariants
 M-ary tree (cf. Binary, Ternary, Quaternary, etc) where

 The root is either a leaf or has between 2 and m children
 All non-leaf nodes contain between 1 and M - 1 search keys
 All non-leaf nodes have between Ceil(M/2) and M children 
 All leaves are at the same depth

 Ceil is a mathematical function - ”Ceiling” which converts a real 
number to the nearest integer above

 Example: degree 3 
 All non-leaf nodes have 1 or 2 keys; 
 All non-leaf nodes contain between 2 and 3 children



19/06/2015 DFR/JS Trees 4 6

B-tree Properties (contd)

 Data (information) is stored in the leaves
 All leaf nodes are on the same level
 There is space for L elements in each leaf node 
 each node holds between Ceil(L/2) and L 

children
 Data elements are stored in a sorted sequence, 

usually an array
 Since the data elements are sorted, a binary 

search may be used to find each element



19/06/2015 DFR/JS Trees 4 7

B-tree Properties (contd)

 What does ”search key” mean?
 A search key specifies where in the tree 

the data value is to be found
 In a BST – less than left, greater than 
 right

 In a B-tree we have a generalisation of ” 
less than” and ”greater than” to ”less 
than”, ”between” and ”greater than”



19/06/2015 DFR/JS Trees 4 8

B-tree Properties (contd)

 Search keys continued
 For a B-tree with M = 4 there are 3 

search keys in each non-leaf node
 Suppose these keys are: 10, 20, 30
 Data elements may thus be stored in four 

ways 
 x<10, 10x<20, 20x<30, 30<=x
 Less than 10 and greater than 30
 between 10 and 20, and between 20 and 30



19/06/2015 DFR/JS Trees 4 9

B-tree - Operations

Operation In Out

Create  BT 

Add BT x v BT 

Remove BT x v BT 

Find BT x v R 

IsEmpty BT True or false 
 

 



19/06/2015 DFR/JS Trees 4 10

B+-tree - Construction

 How is a B+-tree constructed?
 As with a ”normal” tree we begin from the 

empty case and build up the tree node 
for node

 This is done using the Add operation



19/06/2015 DFR/JS Trees 4 11

B+-tree – Construction (contd)

 How does Add work?
 Empty Tree + 5
 Key + data  + 5 5

5

 Invariant violation!!!! 1 barn < Ceil(M/2) = 2
 The root node is an exception

 otherwise it would be impossible to create a B-tree from 
scratch

M = 3
L = 3

key

data



19/06/2015 DFR/JS Trees 4 12

B+-tree – Construction (contd)

+ 45

5 5

5

4



19/06/2015 DFR/JS Trees 4 13

B-tree – Construction (contd)

+ 6

5

5

4 5

5

4

6



19/06/2015 DFR/JS Trees 4 14

B+-tree – Construction (contd)

+ 3

5

5

4

6
5

5

3

64



19/06/2015 DFR/JS Trees 4 15

B+-tree – Construction (contd)

+ 2

5

5

3

64
5

5

2

63
4



19/06/2015 DFR/JS Trees 4 16

B+-tree – Construction (contd)

+ 8

5

5

2

63
4

5

5

2

63
4 8



19/06/2015 DFR/JS Trees 4 17

B+-tree – Construction (contd)

+ 7

5

5

2

63
4 8

5

5

2

63
4 7

8

Split required, 4 > L = 3

5

5

2

63
4

7
8

7 NB the search key 
value (7) is also 
moved up (promoted) 
to the parent!

Key space

Data space



19/06/2015 DFR/JS Trees 4 18

B+-tree – Construction (contd)

5

5

2

63
4

7
8

7 + 9

5

5

2

63
4

7
8

7

9



19/06/2015 DFR/JS Trees 4 19

B+-tree – Construction (contd)
+ 10

5

5

2

63
4

7
8

7

9

5

5

2

63
4

7
8

7

9
10

Split required, 4 > L = 3

5

5

2
63

4

7
8

7

9
10

9

The height of the tree is increased, 3 > M - 1 = 2

7

5 9

2
3
4

5
6

7
8

9
10

A new 
ROOT 
NODE is 
created!



19/06/2015 DFR/JS Trees 4 20

B+-tree – Construction (contd)

7

5 9

2
3
4

5
6

7
8

9
10

+ 11 7

5 9

2
3
4

5
6

7
8

9
10
11



19/06/2015 DFR/JS Trees 4 21

B+-tree – Construction (contd)

+ 127

5 9

2
3
4

5
6

7
8

9
10
11 7

5 9

2
3
4

5
6

7
8

9
10

11

11

12



19/06/2015 DFR/JS Trees 4 22

B+-tree – Construction (contd)

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12

+ 13

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12
13



19/06/2015 DFR/JS Trees 4 23

B+-tree – Construction (contd)

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12
13

+ 14

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12

13

13
14



19/06/2015 DFR/JS Trees 4 24

B+-tree - remove

 This is the “reverse” of add – recall
 The root is either a leaf or has between 2 and m children
 All non-leaf nodes contain between 1 and M - 1 search keys
 All non-leaf nodes have between Ceil(M/2) and M children 
 All leaves are at the same depth

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12

13

13
14

remove 7



19/06/2015 DFR/JS Trees 4 25

B+-tree - Implementation

 A B-tree contains 2 search spaces
 The search keys
 The data elements

 The search key space is held in 
PRIMARY memory (faster access)

 The data space is held in SECONDARY 
memory



19/06/2015 DFR/JS Trees 4 26

B+-tree - Implementation

 The data space is usually considerable 
larger than the search key space
 Today 1 gigabyte internal (primary) 

memory is usual for a server
 Several thousand gigabytes is not 

uncommon for the secondary memory
 For data collections larger than 1 

gigabyte secondary memory is required



19/06/2015 DFR/JS Trees 4 27

B+-tree - Implementation

 As an example, consider a database of images 
where some search key has been defined

 The size of each image is 100 kilobyte
 The number of images is 2000000 (2106)
 Therefore 200000000 kilobyte 200 gigabytes are 

required
 If you have 1 gigabyte of primary memory, B-tree 

might be a useful structure in which to store the 
images



19/06/2015 DFR/JS Trees 4 28

B+-tree - Implementation

 The B-tree required to catalogue the images 
(the search key space) is much smaller that 
the total storage required for the images – in 
this case perhaps as little as 10 megabytes

 SEARCH KEYS - primary memory

 DATA ELEMENTS - secondary memory



19/06/2015 DFR/JS Trees 4 29

B+-tree – Application Areas

 The main area for B-trees is databases (DBs)
 There are DBs larger than terabyte (~1012 bytes) 

and B-trees are useful in such applications
 B-trees have also been used in file systems

 It is not uncommon that one has around 10000 
files at home in a PC – some servers handle 
even more files

 Hence  it has been found that B-trees are even 
applicable in file systems



19/06/2015 DFR/JS Trees 4 30

B-Tree, B+-Tree, B*-Tree

 B-Tree
 Nodes contain keys + data

 B+-Tree (from Knuth’s definition)
 Non-leaf nodes contain keys
 Load factor in key space about 50%
 Leaf-nodes contain data

 B*-Tree
 Load factor in key space about 66%



19/06/2015 DFR/JS Trees 4 31

Summary: B-Tree

 Properties
 DEGREE (M)
 The number of data 

items per leaf (L)
 Operations

 How Add and Remove 
work is not so trivial

 Implementation
 Search keys in primary 

memory
 Data in secondary 

memory
 Application Areas

 Databases
 File systems

 B-Tree
 B+-tree
 B*-tree



19/06/2015 DFR/JS Trees 4 32

Reference Literature

 Data Structures and Problem Solving Using C++, 
[Weiss]
 sid. 709-717

 Introduction to Algorithms, [Cormen, Leiserson, 
Rivest]
 sid. 381-399

 B-Tree Visualization (Program)*, Sebastian
 ftp://ftp.cdrom.com/pub/simtelnet/win95/prog/btree10.zip1

1 requires Microsoft Windows
* Very informative - recommended


