
Tree structures

B-tree

19/06/2015 DFR/JS Trees 4 2

Agenda In this lesson

 B-tree
 Definition
 Properties
 Operations
 Example
 Implementation
 Application areas

 Efficiency is gained at
the cost of unused
space in the indexes

 Confusions to avoid!
 Be aware of the

terminology used for
B-trees

 Be aware of the
“family” of B-trees:
 B-tree
 B+-Tree
 B*-Tree

19/06/2015 DFR/JS Trees 4 3

B-tree - Definition

 B-tree is an abbreviation for BALANCED TREE
 B-tree is completely balanced
 B-tree can have different “degrees” (or “order” not to be

confused with order in a sequence), from 3 and upwards
(the definition can vary between textbooks)

 The degree determines
 the number of children per parent
 the number of search keys per node (max degree-1)

 E.g. degree 4 key1 key2 key3

19/06/2015 DFR/JS Trees 4 4

B+-tree – An Example degree (order) 3

7

5 9

17

12 20 40

2
3
4

5
6

7
8

9
10
11

12
13
14

17
18
19

20
22
34

40
42
43da

ta

Order M = 3 (no of children)

L = 3 (no of records
in the leaf nodes)

19/06/2015 DFR/JS Trees 4 5

B-tree Properties

 A B-tree has the following properties & invariants
 M-ary tree (cf. Binary, Ternary, Quaternary, etc) where

 The root is either a leaf or has between 2 and m children
 All non-leaf nodes contain between 1 and M - 1 search keys
 All non-leaf nodes have between Ceil(M/2) and M children
 All leaves are at the same depth

 Ceil is a mathematical function - ”Ceiling” which converts a real
number to the nearest integer above

 Example: degree 3 
 All non-leaf nodes have 1 or 2 keys;
 All non-leaf nodes contain between 2 and 3 children

19/06/2015 DFR/JS Trees 4 6

B-tree Properties (contd)

 Data (information) is stored in the leaves
 All leaf nodes are on the same level
 There is space for L elements in each leaf node
 each node holds between Ceil(L/2) and L

children
 Data elements are stored in a sorted sequence,

usually an array
 Since the data elements are sorted, a binary

search may be used to find each element

19/06/2015 DFR/JS Trees 4 7

B-tree Properties (contd)

 What does ”search key” mean?
 A search key specifies where in the tree

the data value is to be found
 In a BST – less than left, greater than
 right

 In a B-tree we have a generalisation of ”
less than” and ”greater than” to ”less
than”, ”between” and ”greater than”

19/06/2015 DFR/JS Trees 4 8

B-tree Properties (contd)

 Search keys continued
 For a B-tree with M = 4 there are 3

search keys in each non-leaf node
 Suppose these keys are: 10, 20, 30
 Data elements may thus be stored in four

ways
 x<10, 10x<20, 20x<30, 30<=x
 Less than 10 and greater than 30
 between 10 and 20, and between 20 and 30

19/06/2015 DFR/JS Trees 4 9

B-tree - Operations

Operation In Out

Create BT

Add BT x v BT

Remove BT x v BT

Find BT x v R

IsEmpty BT True or false

19/06/2015 DFR/JS Trees 4 10

B+-tree - Construction

 How is a B+-tree constructed?
 As with a ”normal” tree we begin from the

empty case and build up the tree node
for node

 This is done using the Add operation

19/06/2015 DFR/JS Trees 4 11

B+-tree – Construction (contd)

 How does Add work?
 Empty Tree + 5
 Key + data  + 5 5

5

 Invariant violation!!!! 1 barn < Ceil(M/2) = 2
 The root node is an exception

 otherwise it would be impossible to create a B-tree from
scratch

M = 3
L = 3

key

data

19/06/2015 DFR/JS Trees 4 12

B+-tree – Construction (contd)

+ 45

5 5

5

4

19/06/2015 DFR/JS Trees 4 13

B-tree – Construction (contd)

+ 6

5

5

4 5

5

4

6

19/06/2015 DFR/JS Trees 4 14

B+-tree – Construction (contd)

+ 3

5

5

4

6
5

5

3

64

19/06/2015 DFR/JS Trees 4 15

B+-tree – Construction (contd)

+ 2

5

5

3

64
5

5

2

63
4

19/06/2015 DFR/JS Trees 4 16

B+-tree – Construction (contd)

+ 8

5

5

2

63
4

5

5

2

63
4 8

19/06/2015 DFR/JS Trees 4 17

B+-tree – Construction (contd)

+ 7

5

5

2

63
4 8

5

5

2

63
4 7

8

Split required, 4 > L = 3

5

5

2

63
4

7
8

7 NB the search key
value (7) is also
moved up (promoted)
to the parent!

Key space

Data space

19/06/2015 DFR/JS Trees 4 18

B+-tree – Construction (contd)

5

5

2

63
4

7
8

7 + 9

5

5

2

63
4

7
8

7

9

19/06/2015 DFR/JS Trees 4 19

B+-tree – Construction (contd)
+ 10

5

5

2

63
4

7
8

7

9

5

5

2

63
4

7
8

7

9
10

Split required, 4 > L = 3

5

5

2
63

4

7
8

7

9
10

9

The height of the tree is increased, 3 > M - 1 = 2

7

5 9

2
3
4

5
6

7
8

9
10

A new
ROOT
NODE is
created!

19/06/2015 DFR/JS Trees 4 20

B+-tree – Construction (contd)

7

5 9

2
3
4

5
6

7
8

9
10

+ 11 7

5 9

2
3
4

5
6

7
8

9
10
11

19/06/2015 DFR/JS Trees 4 21

B+-tree – Construction (contd)

+ 127

5 9

2
3
4

5
6

7
8

9
10
11 7

5 9

2
3
4

5
6

7
8

9
10

11

11

12

19/06/2015 DFR/JS Trees 4 22

B+-tree – Construction (contd)

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12

+ 13

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12
13

19/06/2015 DFR/JS Trees 4 23

B+-tree – Construction (contd)

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12
13

+ 14

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12

13

13
14

19/06/2015 DFR/JS Trees 4 24

B+-tree - remove

 This is the “reverse” of add – recall
 The root is either a leaf or has between 2 and m children
 All non-leaf nodes contain between 1 and M - 1 search keys
 All non-leaf nodes have between Ceil(M/2) and M children
 All leaves are at the same depth

7

5 9

2
3
4

5
6

7
8

9
10

11

11

12

13

13
14

remove 7

19/06/2015 DFR/JS Trees 4 25

B+-tree - Implementation

 A B-tree contains 2 search spaces
 The search keys
 The data elements

 The search key space is held in
PRIMARY memory (faster access)

 The data space is held in SECONDARY
memory

19/06/2015 DFR/JS Trees 4 26

B+-tree - Implementation

 The data space is usually considerable
larger than the search key space
 Today 1 gigabyte internal (primary)

memory is usual for a server
 Several thousand gigabytes is not

uncommon for the secondary memory
 For data collections larger than 1

gigabyte secondary memory is required

19/06/2015 DFR/JS Trees 4 27

B+-tree - Implementation

 As an example, consider a database of images
where some search key has been defined

 The size of each image is 100 kilobyte
 The number of images is 2000000 (2106)
 Therefore 200000000 kilobyte 200 gigabytes are

required
 If you have 1 gigabyte of primary memory, B-tree

might be a useful structure in which to store the
images

19/06/2015 DFR/JS Trees 4 28

B+-tree - Implementation

 The B-tree required to catalogue the images
(the search key space) is much smaller that
the total storage required for the images – in
this case perhaps as little as 10 megabytes

 SEARCH KEYS - primary memory

 DATA ELEMENTS - secondary memory

19/06/2015 DFR/JS Trees 4 29

B+-tree – Application Areas

 The main area for B-trees is databases (DBs)
 There are DBs larger than terabyte (~1012 bytes)

and B-trees are useful in such applications
 B-trees have also been used in file systems

 It is not uncommon that one has around 10000
files at home in a PC – some servers handle
even more files

 Hence it has been found that B-trees are even
applicable in file systems

19/06/2015 DFR/JS Trees 4 30

B-Tree, B+-Tree, B*-Tree

 B-Tree
 Nodes contain keys + data

 B+-Tree (from Knuth’s definition)
 Non-leaf nodes contain keys
 Load factor in key space about 50%
 Leaf-nodes contain data

 B*-Tree
 Load factor in key space about 66%

19/06/2015 DFR/JS Trees 4 31

Summary: B-Tree

 Properties
 DEGREE (M)
 The number of data

items per leaf (L)
 Operations

 How Add and Remove
work is not so trivial

 Implementation
 Search keys in primary

memory
 Data in secondary

memory
 Application Areas

 Databases
 File systems

 B-Tree
 B+-tree
 B*-tree

19/06/2015 DFR/JS Trees 4 32

Reference Literature

 Data Structures and Problem Solving Using C++,
[Weiss]
 sid. 709-717

 Introduction to Algorithms, [Cormen, Leiserson,
Rivest]
 sid. 381-399

 B-Tree Visualization (Program)*, Sebastian
 ftp://ftp.cdrom.com/pub/simtelnet/win95/prog/btree10.zip1

1 requires Microsoft Windows
* Very informative - recommended

