SPT versus MST

Graph

SPT - cost 22

MST - cost 15
counter example: in the MST the path a to d is NOT the shortest path (7 versus 5 in the SPT)
ditto: a to e
(9 versus 7 in the SPT)

Dijkstra - worked example

- Principle
- Given a path $x \rightarrow z$ check if there exists a node y such that the path length $x \rightarrow y \rightarrow z$ is shorter than the currently calculated path length $x \rightarrow z$
- Node y is chosen to be the shortest path from x
- An example using the above graph follows

Dijkstra - worked example

- Graph \& initialisation (edges) from node a
- Path a-1-c (cost 1) is the cheapest path

- Now calculate alternative paths via c

Dijkstra - worked example

- Calculate paths via c to unvisited $=\{b, d, e, f\}$, visited $=\{a, c\}$

- a-1-c-5-b (cost 6) - not cheaper than a-6-b (cost 6)
- a-1-c-5-d (cost 6) - not cheaper than a-5-d (cost 5)
- a-1-c-6-e (cost 7) - cheaper than a-8-e (no path)
- a-1-c-4-f (cost 5) - cheaper than a-§-f (no path)

Dijkstra - worked example

- Calculate paths via d to unvisited $=\{b, e, f\}$, visited $=\{a, c, d\}$
- a-5-d (cost 5) is the cheapest path to an unvisited node

- a-5-d-§-b (cost §) - not cheaper than a-6-b (cost 6)
- a-5-d-§-e (cost §) - not cheaper than a-1-c-6-e (cost 7)
- a-5-d-2-f (cost 7) - not cheaper than a-1-c-4-f (cost 5)
- No change to the SPT

Dijkstra - worked example

- Calculate paths via f to $u n v i s i t e d=\{b, e\}$, visited $=\{a, c, d, f\}$
- a-1-c-4-f (cost 5) is the cheapest path to an unvisited node

- a-1-c-4-f-§-b (cost §) - not cheaper than a-6-b (cost 6)
- a-1-c-4-f-6-e (cost 11) - not cheaper than a-1-c-6-e (cost 7)
- No change to the SPT

Dijkstra - worked example

- Calculate paths via b to unvisited $=\{e\}$, visited $=\{a, c, d, f, b\}$
- a-6-b (cost 6) is the cheapest path to an unvisited node

- a-6-b-3-e (cost 9) - not cheaper than a-1-c-6-e (cost 7)
- No change to the SPT

Dijkstra - worked example

- Calculate paths via e to unvisited $=\{a\}$, visited $=\{a, c, d, f, b, e\}$
- a-1-6-e (cost 7) is the cheapest path to an unvisited node

- The unvisited node set is empty - STOP
- No change to the SPT

Prim - worked example

- Graph \& initialisation (edges) from node a
- Edge a-1-c (cost 1) is the cheapest edge

(e) (f)
- Now calculate alternative edges from c

Prim - worked example

- Calculate edges from c to unvisited $=\{b, d, e, f\}$, visited $=\{a, c\}$

- c-5-b - is cheaper than a-6-b - replace a-6-b with c-5-b
- c-6-e - is cheaper than a-§-e (no edge)
- c-4-f - is cheaper than a-§-f (no edge)

Prim - worked example

- Calculate edges from f to unvisited $=\{b, d, e\}$, visited $=\{a, c, f\}$
- c-4-f is the cheapest edge from component a-c

- f-§-b - is not cheaper than c-5-b
- f-2-d - is cheaper than a-5-e - replace a-5-d with f-2-d
- f-6-e - is not cheaper than c-6-e

Prim - worked example

- Calculate edges from d to unvisited $=\{b, e\}$, visited $=\{a, c, f, d\}$
- f-2-d is the cheapest edge from component a-c-f

- d-§-b - is not cheaper than c-5-b
- d-§-e - is not cheaper than c-6-e
- No change

Prim - worked example

- Calculate edges from b to unvisited $=\{e\}$, visited $=\{a, c, f, d, b\}$
- c-5-b is the cheapest edge from component a-c-f-d

- b-3-e - is cheaper than c-6-e - replace c-6-e with b-3-e

Prim - worked example

- unvisited $=\{a\}$ i.e. is empty, visited $=\{a, c, f, d, b, e\}$

- Prims has finished
- The result may be confirmed using Kruskal (see below)
- PQ: a-1-c, d-2-f, b-3-e, c-4-f, c-5-b, $a-5-d, c-5-d, a-6-b, c-6-e, ~ e-6-f$

Kruskal - worked example

- PQ: a-1-c, d-2-f, b-3-e, c-4-f, c-5-b, a-5-d, c-5-d, a-6-b, c-6-e, e-6-f

Comments: Dijkstra \& Prim

- Dijkstra uses path lengths
- Prim uses edges
- remember this!!!
- remember this!!!
- Both Dijkstra \& Prim "grow" a single component
- Kruskals "grows" several components which merge
- Dijkstra yields an SPT - Shortest Path Tree
- Prim yields an MST - Minimal Spanning Tree
- Kruskal yields an MST - Minimal Spanning Tree
- Dijkstra \& Prim are frequently confused in the exam!!!

