
31/08/2016 DSA - SPT vs MST 1

SPT versus MST

counter example: in the MST the path a to d is NOT the
shortest path (7 versus 5 in the SPT)
ditto: a to e (9 versus 7 in the SPT)

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe 4

15

23

a
b

c
d

fe
6

4

1
56

Graph SPT – cost 22 MST – cost 15

Dijkstra – worked example

• Principle
– Given a path x z check if there exists a

node y such that the path length x y z
is shorter than the currently calculated path
length x z

– Node y is chosen to be the shortest path
from x

– An example using the above graph follows

31/08/2016 DSA - SPT vs MST 2

Dijkstra – worked example

• Graph & initialisation (edges) from node a
• Path a-1-c (cost 1) is the cheapest path

• Now calculate alternative paths via c

31/08/2016 DSA - SPT vs MST 3

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56 a

b
c

d

fe

1
56

Dijkstra – worked example
• Calculate paths via c to unvisited = {b, d, e, f}, visited = {a, c}

• a-1-c-5-b (cost 6) – not cheaper than a-6-b (cost 6)
• a-1-c-5-d (cost 6) – not cheaper than a-5-d (cost 5)
• a-1-c-6-e (cost 7) – cheaper than a-§-e (no path)
• a-1-c-4-f (cost 5) – cheaper than a-§-f (no path)

31/08/2016 DSA - SPT vs MST 4

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56 a

b
c

d

fe

1
56

6
4

Dijkstra – worked example
• Calculate paths via d to unvisited = {b, e, f}, visited = {a, c, d}
• a-5-d (cost 5) is the cheapest path to an unvisited node

• a-5-d-§-b (cost §) – not cheaper than a-6-b (cost 6)
• a-5-d-§-e (cost §) – not cheaper than a-1-c-6-e (cost 7)
• a-5-d-2-f (cost 7) – not cheaper than a-1-c-4-f (cost 5)
• No change to the SPT

31/08/2016 DSA - SPT vs MST 5

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56

6
4

a
b

c
d

fe

1
56

6
4

Dijkstra – worked example
• Calculate paths via f to unvisited = {b, e}, visited = {a, c, d, f}
• a-1-c-4-f (cost 5) is the cheapest path to an unvisited node

• a-1-c-4-f-§-b (cost §) – not cheaper than a-6-b (cost 6)
• a-1-c-4-f-6-e (cost 11) – not cheaper than a-1-c-6-e (cost 7)
• No change to the SPT

31/08/2016 DSA - SPT vs MST 6

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56

6
4

a
b

c
d

fe

1
56

6
4

Dijkstra – worked example
• Calculate paths via b to unvisited = {e}, visited = {a, c, d, f, b}
• a-6-b (cost 6) is the cheapest path to an unvisited node

• a-6-b-3-e (cost 9) – not cheaper than a-1-c-6-e (cost 7)
• No change to the SPT

31/08/2016 DSA - SPT vs MST 7

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56

6
4

a
b

c
d

fe

1
56

6
4

Dijkstra – worked example
• Calculate paths via e to unvisited = {¤}, visited = {a, c, d, f, b, e}
• a-1-6-e (cost 7) is the cheapest path to an unvisited node

• The unvisited node set is empty - STOP
• No change to the SPT

31/08/2016 DSA - SPT vs MST 8

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56

6
4

a
b

c
d

fe

1
56

6
4

Prim – worked example

• Graph & initialisation (edges) from node a
• Edge a-1-c (cost 1) is the cheapest edge

• Now calculate alternative edges from c

31/08/2016 DSA - SPT vs MST 9

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56 a

b
c

d

fe

1
56

Prim – worked example
• Calculate edges from c to unvisited = {b, d, e, f}, visited = {a, c}

• c-5-b – is cheaper than a-6-b – replace a-6-b with c-5-b
• c-6-e – is cheaper than a-§-e (no edge)
• c-4-f – is cheaper than a-§-f (no edge)

31/08/2016 DSA - SPT vs MST 10

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
56 a

b
c

d

fe

1
5

6
4

5

Prim – worked example
• Calculate edges from f to unvisited = {b, d, e}, visited = {a, c, f}
• c-4-f is the cheapest edge from component a-c

• f-§-b – is not cheaper than c-5-b
• f-2-d – is cheaper than a-5-e – replace a-5-d with f-2-d
• f-6-e – is not cheaper than c-6-e

31/08/2016 DSA - SPT vs MST 11

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1
5

6
4

5

a
b

c
d

fe

1

6
4

5

2

Prim – worked example
• Calculate edges from d to unvisited = {b, e}, visited = {a, c, f, d}
• f-2-d is the cheapest edge from component a-c-f

• d-§-b – is not cheaper than c-5-b
• d-§-e – is not cheaper than c-6-e
• No change

31/08/2016 DSA - SPT vs MST 12

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1

6
4

5

2

a
b

c
d

fe

1

6
4

5

2

Prim – worked example
• Calculate edges from b to unvisited = {e}, visited = {a, c, f, d, b}
• c-5-b is the cheapest edge from component a-c-f-d

• b-3-e – is cheaper than c-6-e – replace c-6-e with b-3-e

31/08/2016 DSA - SPT vs MST 13

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1

6
4

5

2

a
b

c
d

fe

1

4

5

23

Prim – worked example
• unvisited = {¤} i.e. is empty, visited = {a, c, f, d, b, e}

• Prims has finished
• The result may be confirmed using Kruskal (see below)
• PQ: a-1-c, d-2-f, b-3-e, c-4-f, c-5-b,

a-5-d, c-5-d, a-6-b, c-6-e, e-6-f

31/08/2016 DSA - SPT vs MST 14

a
b

c
d

fe
6

4
5

15

2

6

3

56 a
b

c
d

fe

1

6
4

5

2

a
b

c
d

fe

1

4

5

23

Kruskal – worked example
• PQ: a-1-c, d-2-f, b-3-e, c-4-f, c-5-b,

a-5-d, c-5-d, a-6-b, c-6-e, e-6-f

31/08/2016 DSA - SPT vs MST 15

a
b

c
d

fe

1
a

b
c

d

fe

1

2

a
b

c
d

fe

1

23

a
b

c
d

fe

1

4
23

a
b

c
d

fe

1

4

5

23

Comments: Dijkstra & Prim
• Dijkstra uses path lengths - remember this!!!
• Prim uses edges - remember this!!!

• Both Dijkstra & Prim “grow” a single component
• Kruskals “grows” several components which merge
• Dijkstra yields an SPT – Shortest Path Tree
• Prim yields an MST – Minimal Spanning Tree
• Kruskal yields an MST – Minimal Spanning Tree

• Dijkstra & Prim are frequently confused in the exam!!!

31/08/2016 DSA - SPT vs MST 16

