
19/06/2015 JS - DSA - Analysis 1

Algorithm Analysis

 Performance Relations
 Time and Space

 Classification of algorithms
 Comparison between classes
 Statistical cases – best, average, worst
 Example analysis

 Bubble sort
 Binary search

19/06/2015 JS - DSA - Analysis 2

Time & Space Performance estimates

 Time performance
 the relationship between the size of the data

collection and time to process
 Example: sort an array of n elements –

 Space performance
 the relationship between the memory required

to solve a problem and the problem size
 Example: sort a list of integers with 2 stacks –

the extra stack space represents an overhead.

19/06/2015 JS - DSA - Analysis 3

Performance

 T and S are described in terms of the
size of the problem (number of elements)

 Time = T(n)
 time to solve a problem with input size n

 Space = S(n)
 space to solve a problem with input size n

19/06/2015 JS - DSA - Analysis 4

Performance

 The relationship between the input
size and time/space

 If n is the size of the input
 Ex: T(n) = n2 + 3n
 Ex: S(n) = log(n)

19/06/2015 JS - DSA - Analysis 5

Performance

 To compare the performance of algorithms we use
T(n) and S(n)

 These are written in the form: O(n)
 O is pronounced (Big-Oh) - O is the Order of growth
 O determines a performance class
 Comparing algorithms on an abstract level uses

Big-O as an INDICATOR of the performance

19/06/2015 JS - DSA - Analysis 6

O(n) – how is T(n) used?

 Rule of thumb: for T(n) = 3n4 + n2 the class is O(n4)
 For large values of n, n4 is more significant than n2

 Mathematically for T(n) = 3n4 + n2 there exists a class O(cn4)
where cn4 >= T(n) for some c
 For T(n) = n2 + 2n + 1, for what c is cn2 >= T(n)?
 c = 4, n = 1, therefore the class is O(4n2)

 Constants in O-notation disappear, O(5n2 + 3) O(n2)
 The reason: the constant does not depend on n
 Since O denotes a class T(n) belongs to some class O,

T(n) = n2 + 2n + 1 O(n2)

19/06/2015 JS - DSA - Analysis 7

O(n) (continued)

 How many different classes are there??
 Infinitely many… BUT only a few are of interest

O(1), O(log (n)), O(n), O(n log(n)), O(n2), O(n3),
…, O(xn), …, O(n!), …, O(nn) …

 The performance is given in decreasing order

19/06/2015 JS - DSA - Analysis 8

Diagram

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

n

T(
n)

nn O(nn) n! O(n!) 2n O(2n) n3/2 O(n3) 7n2 O(n2) 25n log(n) O(n log(n))

100n O(n)

100 log(n) O(log(n))

19/06/2015 JS - DSA - Analysis 9

From the diagram

 Certain problems do not fall into these classes

 Ex: 7n2 is better than 100n for problem with size < 14
 This is despite the fact that O(n2) is worse than O(n)

 Assume that n is quite large:- therefore big-O is significant

 Implementing an algorithm which is O(n!) is not a good idea!

19/06/2015 JS - DSA - Analysis 10

Sorting has different Big-Oh solutions

1. To sort a sequence with 2 elements is O(1)
 requires max 2 operations:
 compare the elements and swap.

2. To sort an already sorted sequence in reverse
order requires O(n2)

3. To sort a random sequence takes O(n log(n))
(quicksort)

 These are called best, worst and average cases
 In general, the average case is of most interest as

long as the worst case does not occur often

19/06/2015 JS - DSA - Analysis 11

Analysis of bubble sort

 n = array size
 Outer loop executes n times
 Inner loop executes x times

 x är n - i

bubble(A)
for i = 1 upto A.size - 1

for j = A.size downto i+1
if A[j-1] > A[j]
then swap(A[j-1], A[j])

end for
end for

end bubble

swapifsats
n

i

in

nj
&

1

1

19/06/2015 JS - DSA - Analysis 12

Bubble sort (continued)

 The inner loop executes n-1 times
 i is decided by the outer loop
 The if and swap execute (n - 1) + (n - 2) + (n - 3) + … + (n - n) times
 If you remember arithmetic series then (n - 1) * n / 2 times
 This gives (n2 - n) / 2 O(n2)

swapifsats
n

i

in

nj

&
1

1

)(
2

)(2
2

nOnnnT

19/06/2015 JS - DSA - Analysis 13

Example analysis (continued)
 Binary search analysis
 n = array size
 The first time we are looking for

1 element in n
 The next time 1 element in n / 2
 The next time n / 2 / 2 element

…
 …
 Finally there is one element left

in the search space
 How many times did we

divide the search space?

binsearch(A, v, l, r)
let m = (l + r) / 2
if A[m] == v then return m
else if l==r then return NOTFOUND
else if v < A[m]
then return binsearch(A,v,l,m-1)
else return binsearch(A,v,m+1,r)

end binsearch

2 3 4 5 6 7 8 9

l m r

19/06/2015 JS - DSA - Analysis 14

Example analysis (continued)
 In other words how many times do we have to partition the

search space before we have 1 element (worst case)?
 Suppose that the number of partitions is k and array size n
 Then:

ncknkn
k loglog1

2 2

 since k is the number of operations required to solve a problem
with input size n, therefore T(n) = k

 if T(n) = c log(n), then T(n) O(log(n))

19/06/2015 JS - DSA - Analysis 15

Rules of Thumb for Analysis

 Ex 1: Nested loops. Big-O is
 O(nnumber of loops) if the loop depends on N

 Ex 2: ”divide and conquer” algorithm.
 Such algorithms are logarithmic.
 A decision is made which divides the problem

space, the choice eliminates a part of the
problem.

 The rule is O(log(n))

19/06/2015 JS - DSA - Analysis 16

Tips

 Do not analyse algorithms – waste of time! (wot)
 Do not write your own algorithms to solve known problems
 Use already proven and certified algorithms

 If you have to choose between well-known algorithms
 Choose on the basis of problem size (n)
 If (n) is of arbitrary size

 choose the algorithm with the best Big-O classification

 If the algorithms have the same Big-O classification
 Consider T(n) and/or S(n) performance
 Consider the best / worst / average case

