| Algorithm Analysis]

m Performance Relations
o Time and Space

Classification of algorithms
Comparison between classes
Statistical cases — best, average, worst

Example analysis

o Bubble sort
o Binary search

19/06/2015 JS - DSA - Analysis 1

Time & Space Performance estimates

s Time performance

o the relationship between the size of the data
collection and time to process

o Example: sort an array of n elements —

m Space performance

o the relationship between the memory required
to solve a problem and the problem size

o Example: sort a list of integers with 2 stacks —
the extra stack space represents an overhead.

19/06/2015 JS - DSA - Analysis

| Performance

= T and S are described in terms of the
size of the problem (number of elements)

o Time =T(n)
= time to solve a problem with input size n
o Space = S(n)

= Space to solve a problem with input size n

19/06/2015 JS - DSA - Analysis

| Performance

= The relationship between the input
size and time/space

m If nis the size of the input
o Ex: T(n)=n?+ 3n
o Ex: S(n) =log(n)

19/06/2015 JS - DSA - Analysis

Performance

= To compare the performance of algorithms we use
T(n) and S(n)

= These are written in the form: O(n)

= O is pronounced (Big-Oh) - O is the Order of growth
= O determines a performance class

= Comparing algorithms on an abstract level uses
Big-O as an INDICATOR of the performance

19/06/2015 JS - DSA - Analysis

O(n) — how Is T(n) used?

= Rule of thumb: for T(n) = 3n4 + n? the class is O(n%)
o For large values of n, n# is more significant than n?

= Mathematically for T(n) = 3n“4 + n? there exists a class O(cn?)
where cn* >= T(n) for some ¢

o ForT(n)=n?+2n + 1, for what cis cn? >=T(n)?
o ¢ =4,n =1, therefore the class is O(4n?)

= Constants in O-notation disappear, O(5n? + 3) = O(n?)
o The reason: the constant does not depend on n
o Since O denotes a class T(n) belongs to some class O,
T(n)=n2+2n +1 € O(n?

19/06/2015 JS - DSA - Analysis

| O(n) (continued)]

= How many different classes are there??
= Infinitely many... BUT only a few are of interest

O(1), O(log (n)), O(n), O(n log(n)), O(n?), O(n?),

ey O(X, ..., O, ..., O(N") ...

s The performance is given in decreasing order

19/06/2015 JS - DSA - Analysis 7

Diagram

T(n)

n%2 < O(n3)

25n log(n) € O(n log(n))

100n ¢ O(n)

100 log(n) e O(log(n))

11 12 13 14 15

21 22 23 24 25

3000
n" e O(n") n! €|0O(nY) 2" ¢ 02"
2000
1000
0 T
1 2 3 4 5 6 7 8 9 10
19/06/2015

JS - DSA - Analysis

From the diagram

= Certain problems do not fall into these classes

o Ex: 7n?is better than 100n for problem with size < 14
o This is despite the fact that O(n?) is worse than O(n)

= Assume that n is quite large:- therefore big-O is significant

= Implementing an algorithm which is O(n!) is not a good idea!

19/06/2015 JS - DSA - Analysis

Ifferent Big-Oh solutions

1. To sort a sequence with 2 elements is O(1)
O requires max 2 operations:
o compare the elements and swap.

2. To sort an already sorted sequence Iin reverse
order requires O(n?)

3. To sort a random sequence takes O(n log(n))
(quicksort)

These are called best, worst and average cases

In general, the average case is of most interest as
long as the worst case does not occur often

19/06/2015 JS - DSA - Analysis

10

Analysis of bubble sort
/Bubble(A) \

for 1 = 1 upto A.size - 1
for J = A_.size downto 1+l
1T A[j-1]1 > Af}l
then swap(A[j-11, AlID

end for
end for
\end bubble)
= N =array size (1 o ™

Outer loop executes n times -
Inner loop executes x times Z : Ifsats & swap

. . |
O Xarn-I 9 y

19/06/2015 JS - DSA - Analysis 11

Bubble sort (continued)

The inner loop executes n-1 times
| is decided by the outer loop

The if and swap execute (n-1)+(n-2)+(n-3)+ ... +(n -n)times
If you remember arithmetic series then (n - 1) * n / 2 times

This gives (n2-n)/2 = O(n?)

s

-

_)
n—-1 n-—lI

> > ifsats & swap

I=1 |=n
: Y

19/06/2015

-

T(n)=

n

—N

e O(n?%)

JS - DSA - Analysis

12

Example analysis (continued)

Binary search analysis

n = array size

The first time we are looking for
1 elementinn

The nexttime 1 elementinn/ 2
The nexttime n/ 2/ 2 element

Finally there is one element left
in the search space

How many times did we
divide the search space?

19/06/2015

ﬁinsearch(A, v, I, r) \

let m=U+r) /2

iIT A[m] == v then return m

else 1T I==r then return NOTFOUND
else 1T v < A[m]

then return binsearch(A,v,1,m-1)
else return binsearch(A,v,m+1,r)

end binsearch

3

JS - DSA - Analysis 13

Example analysis (continued)

= In other words how many times do we have to partition the
search space before we have 1 element (worst case)?

= Suppose that the number of partitions is k and array size n
= Then:

1—1:>k:Iogzn:>k:c-Iogn

- =

= since Kk is the number of operations required to solve a problem
with input size n, therefore T(n) = k

= if T(n) =clog(n), then T(n) € O(log(n))

19/06/2015 JS - DSA - Analysis 14

| Rules of Thumb for Analysis]

= Ex 1: Nested loops. Big-O is
o O(nnumberofioops) if the loop depends on N

= Ex 2:’divide and conquer” algorithm.

o Such algorithms are logarithmic.

o A decision is made which divides the problem
space, the choice eliminates a part of the
problem.

o Theruleis O(log(n))

19/06/2015 JS - DSA - Analysis 15

TIipS

Do not analyse algorithms — waste of time! (wot ©)
Do not write your own algorithms to solve known problems
Use already proven and certified algorithms

= If you have to choose between well-known algorithms
o Choose on the basis of problem size (n)

o If (n)is of arbitrary size
m choose the algorithm with the best Big-O classification

o If the algorithms have the same Big-O classification
= Consider T(n) and/or S(n) performance
m Consider the best / worst / average case

19/06/2015 JS - DSA - Analysis 16

