
19/06/2015 JS - DSA - Analysis 1

Algorithm Analysis

 Performance Relations
 Time and Space

 Classification of algorithms
 Comparison between classes
 Statistical cases – best, average, worst
 Example analysis

 Bubble sort
 Binary search

19/06/2015 JS - DSA - Analysis 2

Time & Space Performance estimates

 Time performance
 the relationship between the size of the data

collection and time to process
 Example: sort an array of n elements –

 Space performance
 the relationship between the memory required

to solve a problem and the problem size
 Example: sort a list of integers with 2 stacks –

the extra stack space represents an overhead.

19/06/2015 JS - DSA - Analysis 3

Performance

 T and S are described in terms of the
size of the problem (number of elements)

 Time = T(n)
 time to solve a problem with input size n

 Space = S(n)
 space to solve a problem with input size n

19/06/2015 JS - DSA - Analysis 4

Performance

 The relationship between the input
size and time/space

 If n is the size of the input
 Ex: T(n) = n2 + 3n
 Ex: S(n) = log(n)

19/06/2015 JS - DSA - Analysis 5

Performance

 To compare the performance of algorithms we use
T(n) and S(n)

 These are written in the form: O(n)
 O is pronounced (Big-Oh) - O is the Order of growth
 O determines a performance class
 Comparing algorithms on an abstract level uses

Big-O as an INDICATOR of the performance

19/06/2015 JS - DSA - Analysis 6

O(n) – how is T(n) used?

 Rule of thumb: for T(n) = 3n4 + n2 the class is O(n4)
 For large values of n, n4 is more significant than n2

 Mathematically for T(n) = 3n4 + n2 there exists a class O(cn4)
where cn4 >= T(n) for some c
 For T(n) = n2 + 2n + 1, for what c is cn2 >= T(n)?
 c = 4, n = 1, therefore the class is O(4n2)

 Constants in O-notation disappear, O(5n2 + 3)  O(n2)
 The reason: the constant does not depend on n
 Since O denotes a class T(n) belongs to some class O,

T(n) = n2 + 2n + 1  O(n2)

19/06/2015 JS - DSA - Analysis 7

O(n) (continued)

 How many different classes are there??
 Infinitely many… BUT only a few are of interest

O(1), O(log (n)), O(n), O(n log(n)), O(n2), O(n3),
…, O(xn), …, O(n!), …, O(nn) …

 The performance is given in decreasing order

19/06/2015 JS - DSA - Analysis 8

Diagram

0

1000

2000

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

n

T(
n)

nn O(nn) n!  O(n!) 2n  O(2n) n3/2  O(n3) 7n2  O(n2) 25n log(n)  O(n log(n))

100n  O(n)

100 log(n)  O(log(n))

19/06/2015 JS - DSA - Analysis 9

From the diagram

 Certain problems do not fall into these classes

 Ex: 7n2 is better than 100n for problem with size < 14
 This is despite the fact that O(n2) is worse than O(n)

 Assume that n is quite large:- therefore big-O is significant

 Implementing an algorithm which is O(n!) is not a good idea!

19/06/2015 JS - DSA - Analysis 10

Sorting has different Big-Oh solutions

1. To sort a sequence with 2 elements is O(1)
 requires max 2 operations:
 compare the elements and swap.

2. To sort an already sorted sequence in reverse
order requires O(n2)

3. To sort a random sequence takes O(n log(n))
(quicksort)

 These are called best, worst and average cases
 In general, the average case is of most interest as

long as the worst case does not occur often

19/06/2015 JS - DSA - Analysis 11

Analysis of bubble sort

 n = array size
 Outer loop executes n times
 Inner loop executes x times

 x är n - i

bubble(A)
for i = 1 upto A.size - 1

for j = A.size downto i+1
if A[j-1] > A[j]
then swap(A[j-1], A[j])

end for
end for

end bubble

swapifsats
n

i

in

nj
&

1

1









19/06/2015 JS - DSA - Analysis 12

Bubble sort (continued)

 The inner loop executes n-1 times
 i is decided by the outer loop
 The if and swap execute (n - 1) + (n - 2) + (n - 3) + … + (n - n) times
 If you remember arithmetic series then (n - 1) * n / 2 times
 This gives (n2 - n) / 2  O(n2)

swapifsats
n

i

in

nj

&
1

1









)(
2

)(2
2

nOnnnT 




19/06/2015 JS - DSA - Analysis 13

Example analysis (continued)
 Binary search analysis
 n = array size
 The first time we are looking for

1 element in n
 The next time 1 element in n / 2
 The next time n / 2 / 2 element

…
 …
 Finally there is one element left

in the search space
 How many times did we

divide the search space?

binsearch(A, v, l, r)
let m = (l + r) / 2
if A[m] == v then return m
else if l==r then return NOTFOUND
else if v < A[m]
then return binsearch(A,v,l,m-1)
else return binsearch(A,v,m+1,r)

end binsearch

2 3 4 5 6 7 8 9

l m r

19/06/2015 JS - DSA - Analysis 14

Example analysis (continued)
 In other words how many times do we have to partition the

search space before we have 1 element (worst case)?
 Suppose that the number of partitions is k and array size n
 Then:

ncknkn
k loglog1

2 2 

 since k is the number of operations required to solve a problem
with input size n, therefore T(n) = k

 if T(n) = c log(n), then T(n)  O(log(n))

19/06/2015 JS - DSA - Analysis 15

Rules of Thumb for Analysis

 Ex 1: Nested loops. Big-O is
 O(nnumber of loops) if the loop depends on N

 Ex 2: ”divide and conquer” algorithm.
 Such algorithms are logarithmic.
 A decision is made which divides the problem

space, the choice eliminates a part of the
problem.

 The rule is O(log(n))

19/06/2015 JS - DSA - Analysis 16

Tips

 Do not analyse algorithms – waste of time! (wot )
 Do not write your own algorithms to solve known problems
 Use already proven and certified algorithms

 If you have to choose between well-known algorithms
 Choose on the basis of problem size (n)
 If (n) is of arbitrary size

 choose the algorithm with the best Big-O classification

 If the algorithms have the same Big-O classification
 Consider T(n) and/or S(n) performance
 Consider the best / worst / average case

