
19/06/2015 DFR - DSA - Analysis Introduction 1

Time, Space & Complexity

 Problems are divided into
classes
 non-computable

(icke beräkningsbara)
 computable

(beräkningsbara)
 tractable (hanterliga)

 polynomial time
 log n, n, nlogn, n2

 intractable
(ohanterliga)
 non- polynomial

time
 2n, n!, nn

 NP complete problems -
class of intractable
problems - use heuristics

tractable

intractable

computable non
computable

19/06/2015 DFR - DSA - Analysis Introduction 2

Program running time

 Depends on
 input e.g. # items in

a sort
 code quality

generated by
compiler

 machine speed
 time complexity of

underlying
algorithm

 Complexity functions
may be defined
 T(n) - running time
 S(n) - space

required
 Balance space / time

 e.g. Hashing slots
 reduced T => higher S

and vice versa

19/06/2015 DFR - DSA - Analysis Introduction 3

Best, average, worst case

 Tavg(n), Tworst(n), Tbest(n)
 what do these

mean???

 Tworst(n) is usually given
as a measure of T(n)
 not always

representative
 Complexity given as

O(g(n)) “Big-Oh”
 where T(n) <= c * g(n)

 g(n) - growth rate

 For tractable algorithms
 O(logn), O(n),

O(n*logn), O(n2),
O(n3)

 plot these values against
n to compare algorithms

 E.g.
T(n) = (n+1)2 => O(n2)
if n0 =1, c=4, T(n) <= 4n2

19/06/2015 DFR - DSA - Analysis Introduction 4

Interpretation of n, T(n), O(n)

 BE VERY CAREFUL HOW THESE ARE
INTERPRETED !!!

 BE VERY CAREFUL THAT YOU UNDERSTAND
HOW THESE HAVE BEEN ARRIVED AT !!!

 O(n) IS AN APPROXIMATION TO ALLOW
COMPARISON OF ORDERS OF MAGNITUDE
FOR DIFFERENT ALGORITHMS

 O(n) determines the size of a problem which can
be solved using a computer
(everything is relative!)

19/06/2015 DFR - DSA - Analysis Introduction 5

Interpretation (Caveat emptor!)

 T(n) / O(n) - represent worst case
 one-off programs - choose simplest algorithm
 small input => O(n) may be less important than c

(the constant) in T(n) <= c * g(n)
 beware of complex algorithms (KISS !!!)
 S(n) may also be a consideration (T(n) versus S(N))

 NB numerical accuracy may be more important than
efficiency

19/06/2015 DFR - DSA - Analysis Introduction 6

Calculating T(n)

 For two program fragments P1, P2 with
running times T1(n) and T2(n) respectively
and T1(n) is O(f(n)) and T2(n) is O(g(n)) then

the running time of P1; P2 (a sequence)
is O(max(f(n), g(n)))

hence a sequence of instructions may be calculated

19/06/2015 DFR - DSA - Analysis Introduction 7

General Rules for running times
 Assignment / read / write / usually O(1) (constant)

exceptions: array assignment / assignment with function calls

 sequence of statements given by sum rule (i.e. max)

 if-statement cost of conditional evaluation -- O(1)
+ time of conditionally executed statements

if-else-statement cost(conditional) + max(cost(true), cost(false))

 loops cost(termination condition evaluation)
+ sum(cost(loop body)) - often n*cost(loop body)

 functions sum of costs of each fn in calling sequence

(non-recursive) (start with those without calls to other fns)

19/06/2015 DFR - DSA - Analysis Introduction 8

Recursive functions

 Associate T(n)
(unknown) with each fn

 find a recurrence
relationship for T(n)

 E.g.
int fact (n) {

if (n<=1) fact = 1;
else fact = n * fact(n-1);
}

 For some constants c & d
T(n) = c + T(n-1) if n>1

d if n<=1
T(1) = d
T(2) = c + d
T(3) = 2c + d
T(4) = 3c + d
T(i) = c(i-1) + d
T(n) = c(n-1) + d
hence conclude T(n) is O(n)

