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Time, Space & Complexity

 Problems are divided into 
classes
 non-computable  

(icke beräkningsbara)
 computable 

(beräkningsbara)
 tractable (hanterliga)

 polynomial time
 log n, n, nlogn, n2

 intractable 
(ohanterliga)
 non- polynomial 

time
 2n, n!, nn

 NP complete problems -
class of intractable 
problems - use heuristics

tractable

intractable

computable non 
computable
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Program running time

 Depends on
 input e.g. # items in 

a sort
 code quality 

generated by 
compiler

 machine speed
 time complexity of 

underlying 
algorithm

 Complexity functions 
may be defined
 T(n) - running time
 S(n) - space 

required
 Balance space / time

 e.g. Hashing slots
 reduced T => higher S 

and vice versa
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Best, average, worst case

 Tavg(n), Tworst(n), Tbest(n)
 what do these 

mean???

 Tworst(n) is usually given 
as a measure of T(n)
 not always 

representative
 Complexity given as 

O(g(n)) “Big-Oh”
 where T(n) <= c * g(n)

 g(n) - growth rate

 For tractable algorithms
 O(logn), O(n), 

O(n*logn), O(n2), 
O(n3)

 plot these values against 
n to compare algorithms

 E.g. 
T(n) = (n+1)2 => O(n2)
if n0 =1, c=4, T(n) <= 4n2
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Interpretation of n, T(n), O(n)

 BE VERY CAREFUL HOW THESE ARE 
INTERPRETED !!!

 BE VERY CAREFUL THAT YOU UNDERSTAND 
HOW THESE HAVE BEEN ARRIVED AT !!!

 O(n) IS AN APPROXIMATION TO ALLOW 
COMPARISON OF ORDERS OF MAGNITUDE 
FOR DIFFERENT ALGORITHMS

 O(n) determines the size of a problem which can 
be solved using a computer
(everything is relative!)
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Interpretation (Caveat emptor!)

 T(n) / O(n) - represent worst case
 one-off programs - choose simplest algorithm
 small input => O(n) may be less important than c 

(the constant) in T(n) <= c * g(n)
 beware of complex algorithms (KISS !!!)
 S(n) may also be a consideration (T(n) versus S(N))

 NB numerical accuracy may be more important than 
efficiency
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Calculating T(n)

 For two program fragments P1, P2 with 
running times T1(n) and T2(n) respectively 
and T1(n) is O(f(n)) and T2(n) is O(g(n)) then

the running time of P1; P2 (a sequence)
is O( max( f(n), g(n) ) )

hence a sequence of instructions may be calculated
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General Rules for running times
 Assignment / read / write / usually O(1) (constant)

exceptions: array assignment / assignment with function calls

 sequence of statements given by sum rule (i.e. max)

 if-statement cost of conditional evaluation  -- O(1)
+ time of conditionally executed statements

if-else-statement cost(conditional) + max(cost(true), cost(false))

 loops cost(termination condition evaluation)
+ sum(cost(loop body)) - often n*cost(loop body)

 functions sum of costs of each fn in calling sequence

(non-recursive) (start with those without calls to other fns)
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Recursive functions

 Associate T(n) 
(unknown) with each fn

 find a recurrence 
relationship for T(n)

 E.g.
int fact (n) {

if  (n<=1) fact = 1;
else fact = n * fact(n-1);
}

 For some constants c & d
T(n) = c + T(n-1)   if n>1

d if n<=1
T(1)  =  d
T(2)  =  c  +  d
T(3)  =  2c  +  d
T(4)  =  3c  +  d
T(i)  =  c(i-1)  +  d
T(n)  = c(n-1)  +  d
hence conclude T(n) is O(n)


