
19/06/2015 DFR - DSA - Analysis Introduction 1

Time, Space & Complexity

 Problems are divided into
classes
 non-computable

(icke beräkningsbara)
 computable

(beräkningsbara)
 tractable (hanterliga)

 polynomial time
 log n, n, nlogn, n2

 intractable
(ohanterliga)
 non- polynomial

time
 2n, n!, nn

 NP complete problems -
class of intractable
problems - use heuristics

tractable

intractable

computable non
computable

19/06/2015 DFR - DSA - Analysis Introduction 2

Program running time

 Depends on
 input e.g. # items in

a sort
 code quality

generated by
compiler

 machine speed
 time complexity of

underlying
algorithm

 Complexity functions
may be defined
 T(n) - running time
 S(n) - space

required
 Balance space / time

 e.g. Hashing slots
 reduced T => higher S

and vice versa

19/06/2015 DFR - DSA - Analysis Introduction 3

Best, average, worst case

 Tavg(n), Tworst(n), Tbest(n)
 what do these

mean???

 Tworst(n) is usually given
as a measure of T(n)
 not always

representative
 Complexity given as

O(g(n)) “Big-Oh”
 where T(n) <= c * g(n)

 g(n) - growth rate

 For tractable algorithms
 O(logn), O(n),

O(n*logn), O(n2),
O(n3)

 plot these values against
n to compare algorithms

 E.g.
T(n) = (n+1)2 => O(n2)
if n0 =1, c=4, T(n) <= 4n2

19/06/2015 DFR - DSA - Analysis Introduction 4

Interpretation of n, T(n), O(n)

 BE VERY CAREFUL HOW THESE ARE
INTERPRETED !!!

 BE VERY CAREFUL THAT YOU UNDERSTAND
HOW THESE HAVE BEEN ARRIVED AT !!!

 O(n) IS AN APPROXIMATION TO ALLOW
COMPARISON OF ORDERS OF MAGNITUDE
FOR DIFFERENT ALGORITHMS

 O(n) determines the size of a problem which can
be solved using a computer
(everything is relative!)

19/06/2015 DFR - DSA - Analysis Introduction 5

Interpretation (Caveat emptor!)

 T(n) / O(n) - represent worst case
 one-off programs - choose simplest algorithm
 small input => O(n) may be less important than c

(the constant) in T(n) <= c * g(n)
 beware of complex algorithms (KISS !!!)
 S(n) may also be a consideration (T(n) versus S(N))

 NB numerical accuracy may be more important than
efficiency

19/06/2015 DFR - DSA - Analysis Introduction 6

Calculating T(n)

 For two program fragments P1, P2 with
running times T1(n) and T2(n) respectively
and T1(n) is O(f(n)) and T2(n) is O(g(n)) then

the running time of P1; P2 (a sequence)
is O(max(f(n), g(n)))

hence a sequence of instructions may be calculated

19/06/2015 DFR - DSA - Analysis Introduction 7

General Rules for running times
 Assignment / read / write / usually O(1) (constant)

exceptions: array assignment / assignment with function calls

 sequence of statements given by sum rule (i.e. max)

 if-statement cost of conditional evaluation -- O(1)
+ time of conditionally executed statements

if-else-statement cost(conditional) + max(cost(true), cost(false))

 loops cost(termination condition evaluation)
+ sum(cost(loop body)) - often n*cost(loop body)

 functions sum of costs of each fn in calling sequence

(non-recursive) (start with those without calls to other fns)

19/06/2015 DFR - DSA - Analysis Introduction 8

Recursive functions

 Associate T(n)
(unknown) with each fn

 find a recurrence
relationship for T(n)

 E.g.
int fact (n) {

if (n<=1) fact = 1;
else fact = n * fact(n-1);
}

 For some constants c & d
T(n) = c + T(n-1) if n>1

d if n<=1
T(1) = d
T(2) = c + d
T(3) = 2c + d
T(4) = 3c + d
T(i) = c(i-1) + d
T(n) = c(n-1) + d
hence conclude T(n) is O(n)

