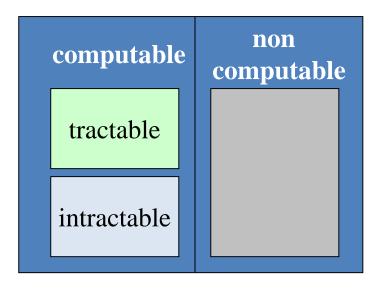
Time, Space & Complexity

- Problems are divided into classes
 - non-computable (icke beräkningsbara)
 - o computable (beräkningsbara)
 - tractable (hanterliga)
 - polynomial time
 - $\circ \quad \log_n, n, n \log_n, n^2$
 - intractable (ohanterliga)
 - non- polynomial time
 - 2ⁿ, n!, nⁿ

 NP complete problems class of intractable problems - use heuristics



Program running time

- Depends on
 - input e.g. # items in a sort
 - code quality generated by compiler
 - o machine speed
 - time complexity of underlying algorithm

- Complexity functions may be defined
 - T(n) running time
 - S(n) space
 required
- Balance space / time
 e.g. Hashing slots
- reduced T => higher S and vice versa

Best, average, worst case

- $\mathbf{T}_{avg(n)}, \mathbf{T}_{worst(n)}, \mathbf{T}_{best(n)}$
 - what do these mean???
 - T_{worst(n)} is usually given as a measure of T(n)
 - not always representative
- Complexity given as O(g(n)) "Big-Oh"
 - where $T(n) \le c * g(n)$
 - o g(n) growth rate

- For tractable algorithms
 - $\begin{array}{ll} & O(log_n), \, O(n), \\ & O(n^*log_n), \, O(n^2), \\ & O(n^3) \end{array}$
- plot these values against n to compare algorithms

• E.g. $T(n) = (n+1)^2 => O(n^2)$ if $n_0 = 1$, c=4, T(n) <= 4n²

Interpretation of n, T(n), O(n)

- BE VERY CAREFUL HOW THESE ARE INTERPRETED !!!
- BE VERY CAREFUL THAT YOU UNDERSTAND HOW THESE HAVE BEEN ARRIVED AT !!!
- O(n) IS AN APPROXIMATION TO ALLOW COMPARISON OF ORDERS OF MAGNITUDE FOR DIFFERENT ALGORITHMS
- O(n) determines the size of a problem which can be solved using a computer (everything is relative!)

Interpretation (Caveat emptor!)

- T(n) / O(n) represent worst case
- one-off programs choose simplest algorithm
- small input => O(n) may be less important than c (the constant) in T(n) <= c * g(n)
- beware of complex algorithms (KISS !!!)
- S(n) may also be a consideration (T(n) versus S(N))
- NB numerical accuracy may be more important than efficiency

Calculating T(n)

- For two program fragments P₁, P₂ with running times T₁(n) and T₂(n) respectively and T₁(n) is O(f(n)) and T₂(n) is O(g(n)) then
 - the running time of P_1 ; P_2 (a sequence) is O(max(f(n), g(n)))

hence a sequence of instructions may be calculated

DFR - DSA - Analysis Introduction

General Rules for running times

- Assignment / read / write / usually O(1) (constant) exceptions: array assignment / assignment with function calls
- sequence of statements given by sum rule (i.e. max)
- if-statement cost of conditional evaluation -- O(1)
 + time of conditionally executed statements

if-else-statement cost(conditional) + max(cost(true), cost(false))

- loops
 cost(termination condition evaluation)
 + sum(cost(loop body)) often n*cost(loop body)
- functions
 sum of costs of each fn in calling sequence
 (non-recursive)
 (start with those without calls to other fns)

Recursive functions

- Associate T(n) (unknown) with each fn
- find a recurrence relationship for T(n)
- E.g.
 int fact (n) {
 if (n<=1) fact = 1;</p>
 else fact = n * fact(n-1);
 }

For some constants c & d $T(n) = c + T(n-1) \quad \text{if } n > 1$ $d \quad \text{if } n <= 1$ T(1) = d T(2) = c + d T(2) = c + d T(3) = 2c + d T(4) = 3c + d T(4) = 3c + d T(i) = c(i-1) + d T(n) = c(n-1) + d hence conclude T(n) is O(n)