Graphs Introduction

Definitions

Structure

 Properties
Graphs Definition G = (V, E)

- $\mathrm{V}=$ set of nodes
set \rightarrow unique, unordered
- $E=$ set of edges $(v, w) v, w$ nodes in V
- Degree of a node = number of incident edges
- Directed graph - in-degree lout-degree
- Edges may be
- Undirected $v \leftrightarrow u$ - undirected graph
- Directed $\quad v \rightarrow u \quad$ - directed graph
- An edge connects 2 nodes - represents a relationship
- An edge may be weighted - i.e. have a value attribute
- A graph may be empty; contain nodes only; contain nodes \& edges
- Remember this definition $\mathrm{G}=(\mathrm{V}, \mathrm{E})!!!$

Meaning \& Use

- A graph is used to represent arbitrary relationships among data objects
- e.g. undirected graphs
- communications network
- transport network (road, rail, air, sea) with costs/distances
- (travelling salesman problem)
- e.g. directed graphs
(digraph)
- flow of control in computer programs
- University course planning (dependency graph)
- state transition diagrams

Examples: Undirected Graph

Implementations: undirected

- Adjacency list $|V|+|E|$
- Weights (costs may be included in the edge list)

Implementations: directed

- Adjacency list $|V|+|E|$
- Weights (costs may be included in the edge list)

Implementations: undirected

- Adjacency matrix $|\mathrm{V}|$ * $|\mathrm{V}|$
- 4 edges - implementation 8 directed edges

	a	b	c	d
a	Q	1	0	1
b	1	Q	0	1
c	0	0		1
d	1	1	1	Q

- Symmetrical about the left diagonal

Implementations: directed

- Adjacency matrix
$|\mathrm{V}|$ * $|\mathrm{V}|$
- 4 edges - implementation 4 directed edges

	a	b	c
d			
a	0	1	0
b	0	0	0
c	0	0	1
d	$\mathbf{1}$	0	0
	$\mathbf{0}$	$\mathbf{1}$	0

Implementations: undirected

- A Cost matrix
- Weighted graphs

	a	b	c	d
a	Q	4	0	6
b	4	Q	0	5
c	0	0	Q	3
d	6	5	3	Q

- Symmetrical about the left diagonal

Implementations: directed

- A Cost matrix
- Weighted graphs

	a	b		d
a	0	4	0	0
b	0	0	0	5
c	0	0	0	0
d	6	0		

Implementation operations

Implementation operations

- add node - if node exists error else add node
- add edge - (v, w) - nodes v \& w must exist else error
- find node - found or not found
- find edge - found or not found
- remove node - the node must exist else error all incident edges must also be removed
- remove edge - the edge must exist else error
- count nodes / count edges

Terminology

- Vertex (source / sink)
- Subgraph
- Edge (bridge)
- Weight (positive/negative)
- Degree (in / out)
- Directed
- Undirected
- Path
- Simple path
- Cycle
- Simple cycle
- Induced subgraph
- Complete graph
- Connected graph
- Connected Components
- Bipartite graph
- Spanning tree
- Spanning forest
- Shortest path tree
- DAG

Properties

- A graph with V vertices has at most $\mathrm{V}(\mathrm{V}-1) / 2$ edges
- A digraph with V vertices has at most V(V-1) edges
- Path - a sequence of adjacent vertices
- Simple path - edges and vertices are distinct
- Simple cycle - simple path where 1st/final vertices same Graph (3 vertices) / digraph (2 vertices)
- Connected graph - path from every v to every other w
- An acyclic connected graph is called a TREE
- Spanning tree / spanning forest
- Note the difference between a directed acyclic graph (DAG) and a tree

Issues

- Finding paths (shortest A2B) and cycles
- Finding connectivity
- Separability
- Edge separable (bridge edge)
- Vertex separable (articulation point)
- Biconnectivity (k-edge-connected)
- Every pair of vertices connected by 2 disjoint paths
- No articulation points

Algorithms

- Is_path(a, b)
- Is_cycle(G)
- Is_connected(G)
- Is_strongly_connected(DG) Directed Graph
- Transitive closure (G)
- Minimal spanning tree (MST)

Warshall

- Single-source shortest paths
- All-pairs shortest paths
- Topological sort (DAG)

Prim / Kruskal

- Depth / breadth first search

Traversing a graph

- Mark each node when visited
- Depth-first search: $\quad a \rightarrow b \rightarrow d \rightarrow c$
- Breadth-first search: a, one step (b, d), two steps C

Visiting Nodes - 2 methods

1. Mark as visited (sometimes recursive calls)
2. Cut

- Divide the graph into components (n nodes)
- Merge the components by adding edges
- Independent components (Kruskal) (using a PQ)
- Choose one start node (in a component)
- 2 sets: visited (S) and not visited (V-S)
- Merge the components by adding edges
- Tree formation (Prim, Dijkstra)

Depth-first search (dfs)

- Recursive search
(stack)
- Depth-first numbering
- Preorder
- Postorder
(order that processing starts)
(order that processing finishes)
- Cost
- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
(adjacency list)
- $\mathrm{O}\left(\mathrm{V}^{2}\right)$

Depth-first search (dfs) used for

- Simple path
- Simple connectivity (dfs called once)
- Topological sort (digraphs - DAGs)
- Finding strongly connected components
- Cycle detection (back edges)
- Finding bridge edges
- Finding articulation points

Digraph (Directed Graph) Algorithms

- dfs / bfs

$$
\mathrm{O}(|\mathrm{~V}|+|\mathrm{E}|) \quad \mathrm{O}\left(\mathrm{~V}^{2}\right)
$$

- Dijkstra
$\mathrm{O}\left(\mathrm{V}^{2}\right)$
(cheaper variants exist)
- Floyd
$\mathrm{O}\left(\mathrm{V}^{3}\right)$
(cheaper variants exist)
- Warshall
$\mathrm{O}\left(\mathrm{V}^{3}\right)$
- Alternative dfs on each node $\mathrm{O}\left(\mathrm{V}^{2}\right)$
- Topological sort (DAG) - dfs $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- Strong components (dfs)
- Kosaraju
$\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ or $\quad \mathrm{O}\left(\mathrm{V}^{2}\right)$
- Tarjan
- Gabow (1999) (we will not consider these 3 algorithms in this course)

Graph Algorithms

- dfs / bfs
$\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
$\mathrm{O}\left(\mathrm{V}^{2}\right)$
- MST
- Prim
$\mathrm{O}\left(\mathrm{V}^{2}\right)$
- Kruskal
$O(E \lg E)$

Other problems

- Travelling Salesman (Hamiltonian path)
- Königsberg Bridges (Euler)
- Matching
(bipartite graphs)

Summary

- Collection of nodes + relationships
- $G=(V, E) \quad$ directed; undirected
- Edges may be weighted
- Implementation: adjacency list, matrix
- Digraphs: represent dependencies
- Graphs: represent networks

