
Graphs Introduction

Definitions
Structure
Properties

04/12/2016 DFR - DSA - Graphs 0 2

Graphs Definition G = (V, E)

 V = set of nodes set  unique, unordered
 E = set of edges (v,w) v,w nodes in V
 Degree of a node = number of incident edges

 Directed graph – in-degree / out-degree

 Edges may be
 Undirected v  u – undirected graph
 Directed v  u – directed graph
 An edge connects 2 nodes – represents a relationship
 An edge may be weighted – i.e. have a value attribute

 A graph may be empty; contain nodes only; contain nodes & edges
 Remember this definition G = (V, E)!!!

04/12/2016 DFR - DSA - Graphs 0 3

Meaning & Use

 A graph is used to represent arbitrary
relationships among data objects

 e.g. undirected graphs
 communications network
 transport network (road, rail, air, sea) with costs/distances
 (travelling salesman problem)

 e.g. directed graphs (digraph)
 flow of control in computer programs
 University course planning (dependency graph)
 state transition diagrams

04/12/2016 DFR - DSA - Graphs 0 4

Examples: Undirected Graph

04/12/2016 DFR - DSA - Graphs 0 5

Examples: Directed Graph

04/12/2016 DFR - DSA - Graphs 0 6

Implementations: undirected

 Adjacency list |V| + |E|
 Weights (costs may be included in the edge list)

a b

c d

a

b

c

d

b d

a d

d

a b c

04/12/2016 DFR - DSA - Graphs 0 7

Implementations: directed

 Adjacency list |V| + |E|
 Weights (costs may be included in the edge list)

a b

c d

a

b

c

d

b

d

a c

04/12/2016 DFR - DSA - Graphs 0 8

Implementations: undirected

 Adjacency matrix |V| * |V|
 4 edges - implementation 8 directed edges

 Symmetrical about the left diagonal

a b

c d

a b
a
b
c

dc

d
1

1
0

001
100

0
1

1

11 0
0

04/12/2016 DFR - DSA - Graphs 0 9

Implementations: directed

 Adjacency matrix |V| * |V|
 4 edges - implementation 4 directed edges

a b
a
b
c

dc

d
0

1
0

000
000

0
1

1

01 0
0

a b

c d

04/12/2016 DFR - DSA - Graphs 0 10

Implementations: undirected

 A Cost matrix
 Weighted graphs

 Symmetrical about the left diagonal

a b

c d

a b
a
b
c

dc

d
3

3
0

004
600

0
5

4

56 0
0

6

3

5

4

04/12/2016 DFR - DSA - Graphs 0 11

Implementations: directed

 A Cost matrix
 Weighted graphs

a b
a
b
c

dc

d
0

3
0

000
000

0
5

4

06 0
0

a b

c d

4

56

3

04/12/2016 DFR - DSA - Graphs 0 12

Implementation operations

insert
remove

find
vertex
edge

navigate

list
operations

is_path
is_cycle

shortest
path

spanning
forest

a

b

c

d

b d

a d

d

a b c

Implementation operations

 add node - if node exists error else add node
 add edge – (v, w) – nodes v & w must exist else error

 find node – found or not found
 find edge – found or not found

 remove node – the node must exist else error
all incident edges must also be removed

 remove edge – the edge must exist else error

 count nodes / count edges

04/12/2016 DFR - DSA - Graphs 0 13

04/12/2016 DFR - DSA - Graphs 0 14

Terminology

 Vertex (source / sink)
 Edge (bridge)
 Weight (positive/negative)

 Degree (in / out)
 Directed
 Undirected
 Path
 Simple path
 Cycle
 Simple cycle

 Subgraph
 Induced subgraph
 Complete graph
 Connected graph
 Connected

Components
 Bipartite graph
 Spanning tree
 Spanning forest
 Shortest path tree
 DAG

04/12/2016 DFR - DSA - Graphs 0 15

Properties

 A graph with V vertices has at most V(V-1)/2 edges
 A digraph with V vertices has at most V(V-1) edges
 Path – a sequence of adjacent vertices
 Simple path – edges and vertices are distinct
 Simple cycle – simple path where 1st/final vertices

same Graph (3 vertices) / digraph (2 vertices)
 Connected graph – path from every v to every other w
 An acyclic connected graph is called a TREE

 Spanning tree / spanning forest
 Note the difference between a directed acyclic graph

(DAG) and a tree

04/12/2016 DFR - DSA - Graphs 0 16

Issues

 Finding paths (shortest A2B) and cycles
 Finding connectivity
 Separability

 Edge separable (bridge edge)
 Vertex separable (articulation point)

 Biconnectivity (k-edge-connected)
 Every pair of vertices connected by 2 disjoint paths
 No articulation points

04/12/2016 DFR - DSA - Graphs 0 17

Algorithms

 Is_path(a, b)
 Is_cycle(G)
 Is_connected(G)
 Is_strongly_connected(DG) Directed Graph
 Transitive closure (G) Warshall
 Minimal spanning tree (MST) Prim / Kruskal
 Single-source shortest paths Dijkstra
 All-pairs shortest paths Floyd
 Topological sort (DAG) Directed Acyclic Graph
 Depth / breadth first search

Traversing a graph

 Mark each node when visited
 Depth-first search: a  b  d  c
 Breadth-first search: a, one step (b, d), two steps c

04/12/2016 DFR - DSA - Graphs 0 18

a b

c d

a

b

c

d

b d

a d

d

a b c

04/12/2016 DFR - DSA - Graphs 0 19

Visiting Nodes – 2 methods

1. Mark as visited (sometimes recursive calls)

2. Cut
 Divide the graph into components (n nodes)
 Merge the components by adding edges

 Independent components (Kruskal) (using a PQ)

 Choose one start node (in a component)
 2 sets: visited (S) and not visited (V-S)
 Merge the components by adding edges

 Tree formation (Prim, Dijkstra)

04/12/2016 DFR - DSA - Graphs 0 20

Depth-first search (dfs)

 Recursive search (stack)

 Depth-first numbering
 Preorder (order that processing starts)

 Postorder (order that processing finishes)

 Cost
 O(|V|+|E|) (adjacency list)
 O(V2) (adjacency matrix)

04/12/2016 DFR - DSA - Graphs 0 21

Depth-first search (dfs) used for

 Simple path
 Simple connectivity (dfs called once)
 Topological sort (digraphs - DAGs)
 Finding strongly connected components
 Cycle detection (back edges)
 Finding bridge edges
 Finding articulation points

04/12/2016 DFR - DSA - Graphs 0 22

Digraph (Directed Graph) Algorithms

 dfs / bfs O(|V|+|E|) O(V2)
 Dijkstra O(V2) (cheaper variants exist)

 Floyd O(V3) (cheaper variants exist)

 Warshall O(V3)
 Alternative dfs on each node O(V2)

 Topological sort (DAG) - dfs O(|V|+|E|)
 Strong components (dfs)

 Kosaraju O(|V|+|E|) or O(V2)
 Tarjan
 Gabow (1999) (we will not consider these 3 algorithms in this course)

04/12/2016 DFR - DSA - Graphs 0 23

Graph Algorithms

 dfs / bfs O(|V|+|E|) O(V2)
 MST

 Prim O(V2) (1961)

 Kruskal O(E lg E) (1956)

 Other problems
 Travelling Salesman (Hamiltonian path)
 Königsberg Bridges (Euler)
 Matching (bipartite graphs)

Summary

 Collection of nodes + relationships
 G = (V,E) directed; undirected
 Edges may be weighted
 Implementation: adjacency list, matrix
 Digraphs: represent dependencies
 Graphs: represent networks

04/12/2016 DFR - DSA - Graphs 0 24

