Definitions

$\mathrm{G}=(\mathrm{V}, \mathrm{E}) \quad \mathrm{V}=$ set of vertices (vertex / node)

$$
E=\text { set of edges }(v, w) \quad(v, w \text { in } V)
$$

(v, w) ordered $\quad=>$ directed graph (digraph)
(v, w) non-ordered => undirected graph
digraph:
w is adjacent to v if there is an edge from v to w
edge may be ($\mathrm{v}, \mathrm{w}, \mathrm{c}$) where c is a cost component (e.g. distance)

Meaning \& Use

- A graph is used to represent arbitrary relationships among data objects
- e.g. undirected graphs
- communications network
- transport network (road, rail, air, sea) with costs/distances
- (travelling salesman problem)
- e.g. directed graphs
(digraph)
- flow of control in computer programs
- University course planning (dependency graph)
- state transition diagrams

Other ADTs

linked list

directed acyclic graph (dag)
tree
(dag)

Terminology

PATH: a sequence of vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$ such that $v_{1}->v_{2}, v_{2}->v_{3}, \ldots v_{n-1}->v_{n}$ are edges

LENGTH: number of edges in a path (v denotes a path length 0 from v to v)
SIMPLE PATH: all vertices are distinct
(except possibly the first and the last)
SIMPLE CYCLE: simple path of length >= 1 that begins (directed graph) and ends at the same vertex

Graphs \& Cycles

- A cycle is a path which begins and ends at the same vertex
- A graph with no cycles is acyclic
- A directed graph with no cycles is a directed acyclic graph (DAG)
DAG
directed graphs
undirected graphs

Undirected Graphs

For cycles in undirected graphs, the edges must be distinct since (u, v) and (v, u) are the same edge
connected: if there exists a path from every vertex to every other vertex

Directed Graphs

- A connected directed graph is called strongly connected i.e. there is a path from every vertex to every other vertex
- if the digraph is not strongly connected BUT the underlying graph, without distinction to the direction, is connected, then the graph is said to be weakly connected
strong:

Complete Graph

A graph is complete if there is an edge between every pair of vertices

12 edges
n * $(\mathrm{n}-1)$

6 edges
n * $(\mathrm{n}-1) / 2$

Adjacency Matrix

For each edge (u, v) set $a[u, v]=1$
storage $=>$ omega $\left(\mathrm{n}^{2}\right)$

read in/
search $=>O\left(n^{2}\right)$

	a	b	c
d			
a	0	1	0
b	0	0	0
	1		
c	1	0	0
d	1		
d	0	0	0

	a	b	c	d
a	a	1	0	1
b	1	a	0	1
c	0	0		1
d	1	1	1	\mathbf{Q}

Adjacency List

- Use a list of nodes where each node points to a list of adjacent nodes (better for sparse graphs)

Operations

Shortest Path 1 Diikstra's algorithm

Single source shortest path (non-negative costs) Determines the shortest path from a source to every other vertex in the graph where the length of the path is the sum of the costs of the edges

S - set of vertices; shortest distance from source already known each step adds a vertex v whose distance from S is as short as possible - the visited vertices (nodes)
special path: shortest path from the source to v passing through u array D: length of shortest special path to each vertex $C[i, j]: \quad$ cost of v_{i} to $v_{j} \quad$ (no edge \rightarrow cost is infinite §)

Dijkstra's algorithm principles

Given a start node x, note the edge lengths from x to the remaining nodes in the graph. Choose the shortest edge from x to a node y. Mark nodes x and y as visited. $S=\{x, y\}$
Check to see if there is a shorter path to the remaining (unvisited) nodes, $\{V-S\}$, in the graph from x via y. If so, update the path lengths so far calculated.

Repeat the process until all nodes have been visited.

Dijkstra - Example

(a b 10) (a d 30) (a e 100) (b c 50) (c e 10) (d c 20) (d e 60)
Start $\underline{a}-$ visited $\{a\}$, unvisited $\{b, c, d, e\}$, shortest path (a $\underline{b} 10$)
$\S=$ infinity
b c d e
Visited $\{\mathrm{a}, \underline{\mathrm{b}}\}$, unvisited $\{\mathbf{c}, \mathrm{d}, \mathrm{e}\}$
$\mathrm{D}=[10, \mathrm{~S}, 30,100]$
(a-b-c 60) (a-b-d §) (a-b-e §)
$D=[10,60,30,100]$
Shortest path (a-d 30) - visited $\{a, b, \underline{d}\}$, unvisited $\{c, e\}$ (a-d-c 50) (a-d-e 90) D = [10, 50, 30, 90]
Shortest path (a-c 50) - visited $\{a, b, \underline{c}, d\}$, unvisited $\{\mathrm{e}\}$ (a-c-e 60) $\quad \mathrm{D}=[10, \underline{50}, \underline{30}, 60]$
Shortest path (a-e 60) - visited \{a, b, c, d, e\}, unvisited \{ \} No nodes left! Final answer:- $\quad D=[10, \underline{50}, \underline{30}, \underline{60}$

Dijkstra - Example

See separate notes on a worked example:-
(i) Revision notes (ii) study plan

Dijkstra - Example - pictures

Dijkstra - Example - pictures

Dijkstra's Algorithm

- Graph (G) + Cost Matrix (C)

	a	b	c	d	e
a		10		30	100
b			50		
c					10
d			20		60
e					

- NB count the number of edges in the graph and the cost matrix

Dijkstra's Algorithm

Dijkstra's Algorithm

```
Dijkstra (a) -- a is the start node
{ S={a} -- S represents the nodes visited
    for (i in V-S) D[i] = C[a, i] -- initialise D (path lengths)
        -- from the start node a
    while (!is_empty(V-S)) {
        choose w in V-S such that D[w] is a minimum
        -- unvisited node with shortest path from start_node
        S = S + {W} -- add this node to visited nodes
        foreach ( v in v-S) D[v] = min(D[v], D[w]+C[w,v])
        -= recalculate paths via w to unvisited nodes
        }
    }
```


Dijkstra - Comment

- "greedy" algorithm - local best solution is best overall
- choose w in V-S such that $\mathrm{D}[\mathrm{w}]$ is a minimum (meaning?)
- recall that $\mathrm{D}[\mathrm{i}]$ means the length of the shortest path to each vertex
- note that the algorithm partitions the nodes into two spaces S (initially with the start node) and V-S (the remaining nodes) visited / unvisited
- foreach (v in V-S) $D[v]=\min (D[v], D[w]+C[w, v])$ (meaning?)
- $\quad w$ is the node with the minimum distance from the source (not in S)
- $\mathrm{D}[\mathrm{v}]$ means the shortest (special) path length so far calculated
- $\mathrm{D}[\mathrm{w}]$ is the cost (so far) to w (again a shortest (special) path length)
- $\quad \mathrm{C}[\mathrm{w}, \mathrm{v}]$ is the cost from node w to node v (edge cost)

Dijkstra - principles revisited

- Choose the start node - $\mathbf{a} \quad \mathbf{S}=\{\mathbf{a}\}$

$$
\mathrm{G}=(\mathrm{V}, \mathrm{E})
$$

- S represents visited nodes; V-S represents unvisited nodes
- D represents the path lengths from a to the remaining nodes (V-a)
- C[x,y] represents the cost matrix - the cost of the edge $x \rightarrow y$
- Algorithm
- Choose the shortest path to an unvisited node (may be an edge)
- Add this node (w) to the set of visited nodes S
- Calculate an alternative path via w to all nodes v in $\{\mathrm{V}-\mathrm{S}\}$
- choose if distance $\mathrm{D}[\mathrm{w}]+\mathrm{C}[\mathrm{w}, \mathrm{v}]$ is shorter than $\mathrm{D}[\mathrm{v}]$

Dijkstra's Algorithm + Shortest Path Tree

Dijkstra (a)
\{ $S=\{a\}$
for (i in V-S) $\{\mathrm{D}[\mathrm{i}]=\mathrm{C}[\mathrm{a}, \mathrm{i}] ; \mathrm{E}[\mathrm{i}]=\mathrm{a} ; \mathrm{L}[\mathrm{i}]=\mathrm{C}[\mathrm{a}, \mathrm{i}] ;\}$
while (!is_empty(V-S)) \{
choose w in $V-S$ such that $D[w]$ is a minimum

```
        S = S + {w}
        foreach (v in V-S) if (D[w]+C[w,v])< D[v] )
    { D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
        }
```

\}

Dijkstra's Algorithm + Shortest Path Tree

```
Dijkstra (a)
-- a is the start node
\{ \(S=\{a\} \quad--S\) represents the nodes visited
```

for (i in V-S) $\{\mathrm{D}[\mathrm{i}]=\mathrm{C}[\mathrm{a}, \mathrm{i}] ; \mathrm{E}[\mathrm{i}]=\mathrm{a} ; \mathrm{L}[\mathrm{i}]=\mathrm{C}[\mathrm{a}, \mathrm{i}] ;\}$
-- initialise D + SPT (E + L)
while (!is_empty(V-S)) \{
choose w in V-S such that $D[w]$ is a minimum
-- unvisited node with shortest path from start_node $S=S+\{w\}$ foreach (v in $\mathrm{V}-\mathrm{S}$) if ($\mathrm{D}[\mathrm{w}]+\mathrm{C}[\mathrm{w}, \mathrm{v}])<\mathrm{D}[\mathrm{v}]$) \{ D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; \}
-- recalculate paths and SPT (E + L)
\}

Dijkstra - Example - pictures

Dijkstra - Example - pictures

Shortest Path 2

- All pairs shortest path problem (i.e. Shortest path between any two vertices)
- apply Dijkstra's algorithm to each node in turn
- apply Floyd's algorithm
- Floyd
- given $G=(V, E)$, non-negative costs $C[v, w]$, for each ordered pair (v, w) find the shortest path
- note the initial conditions
- use an array $A[i, j]$ which is initialised to C[i,j], i.e. the initial edge costs
- if no edge exists $C[i, j]=\S$ (infinite cost)
- for n vertices there are n iterations over the array A
- Floyd is thus $O\left(n^{3}\right)$

Floyd's Algorithm

Floyd ()
$\{$

for (i in 1..n) for (j in 1..n) if ($\mathrm{i}<>\mathrm{j}$) $A[i, j]=C[i, j]$
for (i in 1..n) $A[i, i]=0 \quad--$ initialisation
for (k in 1..n) for (i in 1..n) for (jin 1..n) if ($A[i, k]+A[k, j]$ < $A[i, j]) A[i, j]=A[i, k]+A[k, j]$
\}

Floyd - Example

Floyd - Comment

- Initialisation is the costs in C (i.e. Initial edge costs) with the diagonal (i.e. v $=>$ v) set to 0
- for each node ($k=1$..n) go through the array ($\mathrm{i}, \mathrm{j}=$ 1..n) and compute costs - i.e. check if there is a cheaper path from node i to node j via node k - if so change $A[i, j]$
- if ($A[i, k]+A[k, j]<A[i, j]) \quad A[i, j]=A[i, k]+A[k, j]$

Transitive Closure \& Warshall's Algorithm

- Determine if a path exists from vertex i to vertex j
- $C[i, j]=1$ if an edge exists ($\mathrm{i}<>\mathrm{j}$), otherwise $=0$
- compute $A[i, j]$, such that $A[i, j]=1$ if there exists a path of length 1 or more from vertex i to vertex j
- A is called the transitive closure of the adjacency matrix
- Note that this is a special case of Floyd's where we are not directly interested in the costs

Warshall's Algorithm

Warshall ()

for (i in 1..n) for $(j$ in $1 . . n) A[i, j]=C[i, j]$
for (i in 1..n) $A[i, i]=0 \quad--$ initialisation
for (k in 1..n) for (i in 1..n) for (jin 1..n) if $(A[i, j]=0) A[i, j]=A[i, k]$ and $A[k, j]$
\}

Warshall - Example

$A_{0}[i, j]=$| | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 0 | 0 |
| 0 | 1 | 0 |

$A_{1}[i, j]=$| 0 | 1 | 1 |
| :--- | :--- | :--- |
| 1 | 1 | 1 |
| 0 | 1 | 0 |

$$
\left.\begin{array}{rl}
A_{2}[i, j]= & A_{3}[i, j]=\begin{array}{lllll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array} \\
\begin{array}{llllll}
\hline 1 & 1 & 1 & 1 & 1 & 1
\end{array} \\
\hline & \\
& 1
\end{array}\right)
$$

Warshall - Comment

- if $(A[i, j]=0) A[i, j]=A[i, k]$ and $A[k, j]$ - (meaning ?)
- i.e. there is a path from node ito node $\mathbf{j} \boldsymbol{I F}$ there is a path from node it to node $k \underline{\text { AND }}$ a path from node k to node j
- at various stages in the calculation for $\mathrm{k}, \mathrm{i}, \mathrm{j}$, the different paths are discovered

```
\circ (1, 2, 2) - A[2,2] =A[2,1] and A[1,2] - i.e. 2 to 1 to 2 => 2 to 2
\circ (1, 2, 3)-A[2,3] =A[2,1] and A[1,3] - i.e. 2 to 1 to 3 => 2 to 3
\circ (2,3,1)-A[3,1] =A[3,2] and A[2,1] - i.e. 3 to 2 to 1 => 3 to 1
\circ (2,3,3)-A[3,3] =A[3,2] and A[2,3] - i.e. }3\mathrm{ to 2 to 3 => 3 to 3
```


Summary - directed graphs

- Definitions \& implementations
- Algorithms
- Dijkstra
- Dijkstra-SPT + shortest path tree
- Floyd
- Warshall
single node shortest path
all pairs shortest path
transitive closure
is there a path from a to b ?

