
05/12/2016 DFR - DSA - Graphs 1 1

Definitions

G = (V, E) V = set of vertices (vertex / node)
E = set of edges (v, w) (v, w in V)

(v, w) ordered => directed graph (digraph)
(v, w) non-ordered => undirected graph

digraph:
w is adjacent to v if there is an edge from v to w

edge may be (v, w, c) where c is a cost component
(e.g. distance)

05/12/2016 DFR - DSA - Graphs 1 2

Examples

05/12/2016 DFR - DSA - Graphs 1 3

Meaning & Use

 A graph is used to represent arbitrary
relationships among data objects

 e.g. undirected graphs
 communications network
 transport network (road, rail, air, sea) with costs/distances
 (travelling salesman problem)

 e.g. directed graphs (digraph)
 flow of control in computer programs
 University course planning (dependency graph)
 state transition diagrams

05/12/2016 DFR - DSA - Graphs 1 4

Other ADTs

linked list

directed acyclic graph (dag) tree
(dag)

05/12/2016 DFR - DSA - Graphs 1 5

Terminology

PATH: a sequence of vertices v1, v2, …vn such that
v1 -> v2, v2 -> v3, … vn-1 -> vn are edges

LENGTH: number of edges in a path
(v denotes a path length 0 from v to v)

SIMPLE PATH: all vertices are distinct
(except possibly the first and the last)

SIMPLE CYCLE: simple path of length >= 1 that
begins (directed graph) and ends at
the same vertex

05/12/2016 DFR - DSA - Graphs 1 6

Graphs & Cycles

 A cycle is a path which begins and ends at the
same vertex

 A graph with no cycles is acyclic
 A directed graph with no cycles is a directed acyclic

graph (DAG)
DAG directed graphs undirected graphs

a b

c d

a b

c d

a b

c d

a

05/12/2016 DFR - DSA - Graphs 1 7

Undirected Graphs

For cycles in undirected graphs, the edges must be
distinct since (u,v) and (v, u) are the same edge

connected: if there exists a path from every vertex to
every other vertex

non-connected: connected:a b

c d

a b

c d

05/12/2016 DFR - DSA - Graphs 1 8

Directed Graphs
 A connected directed graph is called strongly

connected i.e. there is a path from every vertex to
every other vertex

 if the digraph is not strongly connected BUT the
underlying graph, without distinction to the direction,
is connected, then the graph is said to be weakly
connected

strong: weak: not:a b

c d

a b

c d

a b

c d

05/12/2016 DFR - DSA - Graphs 1 9

Complete Graph

A graph is complete if there is an edge between every
pair of vertices

12 edges 6 edges
n * (n - 1) n * (n - 1) / 2

a b

c d

a b

c d

05/12/2016 DFR - DSA - Graphs 1 10

Adjacency Matrix

For each edge (u, v) set a[u, v] = 1

storage => omega(n2)

read in/
search => O(n2)

a b

c d

a b
a
b
c

dc

d
1

0
0

000
000

1
1

1

00 0
0

a b
a
b
c

dc

d
1

1
0

001
100

0
1

1

11 0
0

a b

c d

05/12/2016 DFR - DSA - Graphs 1 11

Adjacency List

 Use a list of nodes where each node points to a list
of adjacent nodes (better for sparse graphs)

space = O(|V| + |E|) (for named vertices - use a hash table)

a b

c d

a b

c d

a

b

c

d

b

d

a d

a

b

c

d

b d

a d

d

a b c

05/12/2016 DFR - DSA - Graphs 1 12

Operations

insert
remove

find
vertex
edge

navigate

a

b

c

d

b

d

a d

list
operations

is_path
is_cycle

shortest
path

spanning
forest

topological
sort

05/12/2016 DFR - DSA - Graphs 1 13

Shortest Path 1 Dijkstra’s algorithm

Single source shortest path (non-negative costs)
Determines the shortest path from a source to every
other vertex in the graph where the length of the path is the sum
of the costs of the edges

S - set of vertices; shortest distance from source already known
each step adds a vertex v whose distance from S is as
short as possible – the visited vertices (nodes)

special path: shortest path from the source to v passing through u
array D: length of shortest special path to each vertex
C[i,j]: cost of vi to vj (no edge  cost is infinite §)

Dijkstra’s algorithm principles

Given a start node x, note the edge lengths from x to the
remaining nodes in the graph. Choose the shortest edge
from x to a node y. Mark nodes x and y as visited. S = {x,y}
Check to see if there is a shorter path to the remaining
(unvisited) nodes, {V-S}, in the graph from x via y.
If so, update the path lengths so far calculated.

Repeat the process until all nodes have been visited.

y

x {V-S}

05/12/2016 DFR - DSA - Graphs 1 14

unvisited nodes

Dijkstra - Example

(a b 10) (a d 30) (a e 100) (b c 50) (c e 10) (d c 20) (d e 60)
Start a – visited {a}, unvisited {b, c, d, e}, shortest path (a b 10)
§ = infinity b c d e
Visited {a, b}, unvisited {c, d, e} D = [10, §, 30, 100]
(a-b-c 60) (a-b-d §) (a-b-e §) D = [10, 60, 30, 100]
Shortest path (a-d 30) – visited {a, b, d}, unvisited {c, e}
(a-d-c 50) (a-d-e 90) D = [10, 50, 30, 90]
Shortest path (a-c 50) – visited {a, b, c, d}, unvisited {e}
(a-c-e 60) D = [10, 50, 30, 60]
Shortest path (a-e 60) – visited {a, b, c, d, e}, unvisited { }
No nodes left! Final answer:- D = [10, 50, 30, 60]

05/12/2016 DFR - DSA - Graphs 1 15

05/12/2016 DFR - DSA - Graphs 1 16

Dijkstra - Example

Iteration S w D[b] D[c] D[d] D[e]

initial {a} - 10 § 30 100
1 {a,b} b 10 60 30 100
2 {a,b,d} d 10 50 30 90
3 {a,b,d,c} c 10 50 30 60
4 {a,b,d,c,e} e 10 50 30 60

a

b e

c d

10

30

10 100

60
50

20
See separate notes on a worked example:-
(i) Revision notes (ii) study plan

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 17

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, §, 30, 100] D [10, §, 30, 100] D [10, 60, 30, 100]
E [a, a, a, a] E [a, a, a, a] E [a, b, a, a]
L [10, §, 30, 100] L [10, §, 30, 100] L [10, 50, 30, 100]

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 18

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, 60, 30, 100] D [10, 50, 30, 90] D [10, 50, 30, 60]
E [a, b, a, a] E [a, d, a, d] E [a, d, a, c]
L [10, 50, 30, 100] L [10, 20, 30, 60] L [10, 20, 30, 10]

Dijkstra’s Algorithm

 Graph (G) + Cost Matrix (C)

 NB count the number of edges in the graph and the cost matrix
05/12/2016 DFR - DSA - Graphs 1 19

a

b e

c d

10

30

10 100

60
50

20

a b c d e
a 10 30 100

b 50

c 10

d 20 60

e

05/12/2016 DFR - DSA - Graphs 1 20

Dijkstra’s Algorithm
Dijkstra (a)
{ S = {a} // G = (V, E)

for (i in V-S) D[i] = C[a, i] // initialisation

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum

S = S + {w}
foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])

} // process
} // D[i] = distance; C[i,j] = cost matrix; S = {visited nodes}

05/12/2016 DFR - DSA - Graphs 1 21

Dijkstra’s Algorithm
Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for (i in V-S) D[i] = C[a, i] -- initialise D (path lengths)
-- from the start node a

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum
-- unvisited node with shortest path from start_node
S = S + {w} -- add this node to visited nodes
foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])
-- recalculate paths via w to unvisited nodes
}

}

05/12/2016 DFR - DSA - Graphs 1 22

Dijkstra - Comment

 “greedy” algorithm - local best solution is best overall

 choose w in V-S such that D[w] is a minimum (meaning?)

 recall that D[i] means the length of the shortest path to each vertex

 note that the algorithm partitions the nodes into two spaces S (initially
with the start node) and V-S (the remaining nodes) visited / unvisited

 foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v]) (meaning?)

 w is the node with the minimum distance from the source (not in S)

 D[v] means the shortest (special) path length so far calculated
 D[w] is the cost (so far) to w (again a shortest (special) path length)

 C[w,v] is the cost from node w to node v (edge cost)

Dijkstra – principles revisited

 Choose the start node – a S = {a} G = (V, E)
 S represents visited nodes; V-S represents unvisited nodes
 D represents the path lengths from a to the remaining nodes (V-a)
 C[x,y] represents the cost matrix – the cost of the edge xy
 Algorithm
 Choose the shortest path to an unvisited node (may be an edge)
 Add this node (w) to the set of visited nodes S
 Calculate an alternative path via w to all nodes v in {V-S}
 choose if distance D[w]+C[w,v] is shorter than D[v]

05/12/2016 DFR - DSA - Graphs 1 23

a
D[v] – previous path length for each v in {V-S}

path length - D[w] C[w,v] - edge weightw

05/12/2016 DFR - DSA - Graphs 1 24

Dijkstra’s Algorithm + Shortest Path Tree
Dijkstra (a)
{ S = {a}

for (i in V-S) { D[i] = C[a, i]; E[i] = a; L[i] = C[a,i]; }

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum

S = S + {w}
foreach (v in V-S) if (D[w]+C[w,v])< D[v])

{ D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
}

}

05/12/2016 DFR - DSA - Graphs 1 25

Dijkstra’s Algorithm + Shortest Path Tree
Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for (i in V-S) { D[i] = C[a, i]; E[i] = a; L[i] = C[a,i]; }
-- initialise D + SPT (E + L)
while (!is_empty(V-S)) {

choose w in V-S such that D[w] is a minimum
-- unvisited node with shortest path from start_node
S = S + {w}
foreach (v in V-S) if (D[w]+C[w,v])< D[v])

{ D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
-- recalculate paths and SPT (E + L)
}

}

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 26

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, §, 30, 100] D [10, §, 30, 100] D [10, 60, 30, 100]
E [a, a, a, a] E [a, a, a, a] E [a, b, a, a]
L [10, §, 30, 100] L [10, §, 30, 100] L [10, 50, 30, 100]

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 27

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, 60, 30, 100] D [10, 50, 30, 90] D [10, 50, 30, 60]
E [a, b, a, a] E [a, d, a, d] E [a, d, a, c]
L [10, 50, 30, 100] L [10, 20, 30, 60] L [10, 20, 30, 10]

05/12/2016 DFR - DSA - Graphs 1 28

Shortest Path 2

 All pairs shortest path problem (i.e. Shortest path between any two vertices)

 apply Dijkstra’s algorithm to each node in turn

 apply Floyd’s algorithm

 Floyd
 given G = (V,E), non-negative costs C[v,w], for each ordered pair (v,w)

find the shortest path

 note the initial conditions
 use an array A[i,j] which is initialised to C[i,j], i.e. the initial edge costs

 if no edge exists C[i,j]=§ (infinite cost)

 for n vertices there are n iterations over the array A

 Floyd is thus O(n3)

05/12/2016 DFR - DSA - Graphs 1 29

Floyd’s Algorithm
Floyd ()
{

for (i in 1..n) for (j in 1..n) if (i <> j) A[i, j] = C[i, j]
for (i in 1..n) A[i, i] = 0 -- initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n)
if (A[i, k] + A[k, j] < A[i, j]) A[i, j] = A[i, k] + A[k, j]

}

A[i,j]

A[i,k] A[k,j]

05/12/2016 DFR - DSA - Graphs 1 30

Floyd - Example

A0[i,j] = 0 8 5 A1[i,j] = 0 8 5
3 0 § 3 0 8
§ 2 0 § 2 0

A2[i,j] = 0 8 5 A3[i,j] = 0 7 5
3 0 8 3 0 8
5 2 0 5 2 0

§ = infinity

1

2

3

5

2

3
8

2

05/12/2016 DFR - DSA - Graphs 1 31

Floyd - Comment

 Initialisation is the costs in C (i.e. Initial edge costs) with
the diagonal (i.e. v => v) set to 0

 for each node (k = 1..n) go through the array (i, j =
1..n) and compute costs - i.e. check if there is a
cheaper path from node i to node j via node k - if
so change A[i, j]

 if (A[i, k] + A[k, j] < A[i, j]) A[i, j] = A[i, k] + A[k, j]

05/12/2016 DFR - DSA - Graphs 1 32

Transitive Closure & Warshall’s Algorithm

 Determine if a path exists from vertex i to vertex j
 C[i, j] = 1 if an edge exists (i <> j), otherwise = 0
 compute A[i, j], such that A[i, j] = 1 if there exists a

path of length 1 or more from vertex i to vertex j
 A is called the transitive closure of the adjacency

matrix
 Note that this is a special case of Floyd’s where we

are not directly interested in the costs

05/12/2016 DFR - DSA - Graphs 1 33

Warshall’s Algorithm

Warshall ()
{

for (i in 1..n) for (j in 1..n) A[i, j] = C[i, j]
for (i in 1..n) A[i, i] = 0 -- initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n)
if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j]

}

A[i,j]

A[i,k] A[k,j]

05/12/2016 DFR - DSA - Graphs 1 34

Warshall - Example

A0[i,j] = 0 1 1 A1[i,j] = 0 1 1
1 0 0 1 1 1
0 1 0 0 1 0

A2[i,j] = 1 1 1 A3[i,j] = 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1

2

3

5

2

3
8

2

05/12/2016 DFR - DSA - Graphs 1 35

Warshall - Comment

 if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j] - (meaning ?)

 i.e. there is a path from node i to node j IF there is
a path from node i to node k AND a path from
node k to node j

 at various stages in the calculation for k, i, j, the
different paths are discovered
 (1, 2, 2) - A[2,2] =A[2,1] and A[1,2] - i.e. 2 to 1 to 2 => 2 to 2
 (1, 2, 3) - A[2,3] =A[2,1] and A[1,3] - i.e. 2 to 1 to 3 => 2 to 3
 (2, 3, 1) - A[3,1] =A[3,2] and A[2,1] - i.e. 3 to 2 to 1 => 3 to 1
 (2, 3, 3) - A[3,3] =A[3,2] and A[2,3] - i.e. 3 to 2 to 3 => 3 to 3

Summary – directed graphs

 Definitions & implementations
 Algorithms

 Dijkstra single node shortest path
 Dijkstra-SPT + shortest path tree
 Floyd all pairs shortest path
 Warshall transitive closure

is there a path from a to b ?

05/12/2016 DFR - DSA - Graphs 1 36

