Definitions

G=(V,E) V =setofvertices (vertex / node)
E=setofedges (v,w) (v,winYV)

(v, w) ordered => directed graph (digraph)
(v, w) non-ordered => undirected graph

digraph:
w IS adjacent to v if there Is an edge from v to w

edge may be (v, w, ¢) where c Is a cost component
(e.g. distance)

05/12/2016 DFR - DSA - Graphs 1

Examples

O
.—»‘.—"
-0

s

05/12/2016 DFR - DSA - Graphs 1

Meaning & Use

= A graph is used to represent arbitrary
relationships among data objects

= e.g. undirected graphs
o communications network

o transport network (road, rail, air, sea) with costs/distances
o (travelling salesman problem)

= e.g. directed graphs (digraph)
o flow of control in computer programs
o University course planning (dependency graph)

o state transition diagrams

05/12/2016 DFR - DSA - Graphs 1

| Other ADTs

linked list
—0—0—0—0

directed acyclic graph (dag) tree
(dag)
O o,

S SN

Terminology

PATH: a sequence of vertices vy, v,, ...V, such that
Vi ->V,, V, -> Vg, ...V, ->V, are edges

LENGTH: number of edges in a path

(v denotes a path length O from v to v)
SIMPLE PATH: all vertices are distinct

(except possibly the first and the last)

SIMPLE CYCLE: simple path of length >= 1 that
begins (directed graph) and ends at
the same vertex

05/12/2016 DFR - DSA - Graphs 1

| Graphs & Cycles]

= A cycle is a path which begins and ends at the
same vertex

= A graph with no cycles is acyclic

= A directed graph with no cycles is a directed acyclic
graph (DAG)

DAG directed graphs undirected graphs
a.@ O a’@ O
(O—(d) (D) (O—d)

05/12/2016 DFR - DSA - Graphs 1

Undirected Graphs

For cycles in undirected graphs, the edges must be
distinct since (u,v) and (v, u) are the same edge

connected: if there exists a path from every vertex to
every other vertex

non-connected: @“D connected: @“D
© (O—{d)

05/12/2016 DFR - DSA - Graphs 1 7

Directed Graphs

= A connected directed graph is called stronqgly

connected I.e. there is a path from every vertex to
every other vertex

= If the digraph is not strongly connected BUT the
underlying graph, without distinction to the direction,

IS connected, then the graph is said to be weakly
connected

strong: (a—({) weak:(@—(b) not:
G‘@ G'@ © @

05/12/2016 DFR - DSA - Graphs 1 8

| Complete Graph]

A graph is complete if there is an edge between every
pair of vertices

@ (@b

1! D

e Ay
12 edges 6 edges

n*(n-1) n*(n-1)/2

05/12/2016 DFR - DSA - Graphs 1 9

Adjacency Matrix

For each edge (u, v) setaju, v]=1

storage => omega(n?) G

=

()
@‘6

Ll [®)

oo 0

alblc|d

read in/ 38888
search => O(n?) cl1Tolol1
d/0|0]|0|0

oo ||
=l
(=

H

Sl =~

05/12/2016 DFR - DSA - Graphs 1

10

Adjacency List

= Use a list of nodes where each node points to a list
of adjacent nodes (better for sparse graphs)

on X
G @ b d brard

1 ©—9]

crard crd

' '

d driaribrc
space = O(|V| + |E]) (for named vertices - use a hash table)

05/12/2016 DFR - DSA - Graphs 1 11

Operations

insert d
remove | | vertex y list
b = —) .
find edge | operations
crard
'
navigate d
IS_path shortest | |spanning | | topological
IS_cycle path forest sort

05/12/2016

DFR - DSA - Graphs 1

12

Shortest Path 1 pijkstra’s algorithm

Single source shortest path (non-negative costs)

Determines the shortest path from a source to every

other vertex in the graph where the length of the path is the sum
of the costs of the edges

S - set of vertices; shortest distance from source already known
each step adds a vertex v whose distance from S is as
short as possible — the visited vertices (nodes)

special path: shortest path from the source to v passing through u
array D: length of shortest special path to each vertex
Cli] cost of v; to v; (no edge =» cost is infinite §)

05/12/2016 DFR - DSA - Graphs 1 13

Dijkstra’s algorithm principles

Given a start node x, note the edge lengths from x to the
remaining nodes in the graph. Choose the shortest edge

from x to a node y. Mark nodes x and y as visited. S = {x,y}

Check to see if there is a shorter path to the remaining
(unvisited) nodes, {V-S}, in the graph from x via y.

If so, update the path lengths so far calculated.

Repeat the process until all nodes have been visited.

y
X / \ {V-S}

unvisited nodes

05/12/2016 DFR - DSA - Graphs 1

14

Dijkstra - Example

(ab 10) (ad 30) (ae 100) (b c50)(ce10)(dc 20)(d e 60)

Start a — visited {a}, unvisited {b, c, d, e}, shortest path (a b 10)

§ = infinity b c d e
Visited {a, b}, unvisited {c, d, e} D =[10, §, 30, 100]
(a-b-c 60) (a-b-d 8) (a-b-e 8§) D =[10, 60, 30, 100]
Shortest path (a-d 30) — visited {a, b, d}, unvisited {c, e}
(a-d-c 50) (a-d-e 90) D =[10, 50, 30, 90]
Shortest path (a-c 50) — visited {a, b, c, d}, unvisited {e}
(a-c-e 60) D =[10, 50, 30, 60]

Shortest path (a-e 60) — visited {a, b, c, d, e}, unvisited { }
No nodes left! Final answer:- D =[10, 50, 30, 60]

05/12/2016 DFR - DSA - Graphs 1

15

Dijkstra - Example

Iteration S w D[b] D[c] D[d] Dle]
initial {a} - 10 8§ 30 100
1 {a,b} 10 |60 | 30 100

b
2 {a,b,d} d |10 |50 || 30 || 90
3 {a,o,d,c} ¢ |10 |50 ||30 || 60
4 e

{a,b,d,c,e} 10 |50 |30 || 60

See separate notes on a worked example:-
(i) Revision notes (ii) study plan

05/12/2016 DFR - DSA - Graphs 1 16

| Dijkstra — Example - pictures]

b c d e b c d e
D[10, §, 30, 100] D[10, 60,30,100] |
E[] a, a a, a] E[a b, a a]

L [10, 50, 30, 100]

L [10, §, 30, 100]

05/12/2016

DFR - DSA - Graphs 1

17

Dijkstra — Example - pictures]

b ¢c d e

b c¢c d e

D[10, 60, 30, 100 |

18

DFR - DSA - Graphs 1

05/12/2016

| Dijkstra’s Algorithm]

s Graph (G) + Cost Matrix (C)
-ﬂﬂ-ﬂ_

30 100
b 50
C 10
d 20 60
e

= NB count the number of edges in the graph and the cost matrix

05/12/2016 DFR - DSA - Graphs 1 19

| Dijkstra’s Algorithm]

Dijkstra (a)

{ (S={a} I1G=(V,E)
{for (1inV-S) D[i] = C[a,] // initialisation }

Mhile (lis_empty(V-9)) { \

choose w in V-S such that D[w] is a minimum

S=S5S+{w}
foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,V])

K } /I process /

} /I D[i] = distance; CJ[i,j] = cost matrix; S = {visited nodes}

05/12/2016 DFR - DSA - Graphs 1 20

Dijkstra’s Algorithm

Dijkstra (a) -- ais the start node
{ S={a} -- S represents the nodes visited

for (1inV-S) D[i] = C[a, 1] --Iinitialise D (path lengths)

-- from the start node a

while (lis_empty(V-9)) {

}

05/12/2016

choose w in V-S such that D[w] is a minimum
-- unvisited node with shortest path from start_node

S =S +{w} --add this node to visited nodes
foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,V])
-- recalculate paths via w to unvisited nodes

}

DFR - DSA - Graphs 1

21

Dijkstra - Comment

“greedy” algorithm - local best solution is best overall

choose w in V-S such that D[w] is a minimum (meaning?)

recall that D[i] means the length of the shortest path to each vertex

note that the algorithm partitions the nodes into two spaces S (initially
with the start node) and V-S (the remaining nodes) visited / unvisited

foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,Vv]) (meaning?)

o w is the node with the minimum distance from the source (not in S)

o DJv] means the shortest (special) path length so far calculated

o DJ[w] is the cost (so far) to w (again a shortest (special) path length)

o CJw,v] is the cost from node w to node v (edge cost)

05/12/2016 DFR - DSA - Graphs 1 22

Dijkstra — principles revisited

= Choose the start node — a S={a} G=(V,E)
m Srepresents visited nodes; V-S represents unvisited nodes

= D represents the path lengths from a to the remaining nodes (V-a)

= C[x,y] represents the cost matrix — the cost of the edge x>y

= Algorithm

= Choose the shortest path to an unvisited node (may be an edge)

= Add this node (w) to the set of visited nodes S

= Calculate an alternative path via w to all nodes v in {V-S}

= choose if distance D[w]+C[w,V] is shorter than D[v]

path length - D[w] W Cl[w,v] - edge weight

a o
D[v] — previous path length for each v in {V-S}

05/12/2016 DFR - DSA - Graphs 1 23

_mewwm + Shortest Path Tree]

Dijkstra (a)
{ S={a

for (iin V-S) { D[i] = C[a, i]; E[i] = a; L[i] = C[a,i]; }

while (lis_empty(V-9)) {
choose w in V-S such that D[w] is a minimum

S=S5S+{w}
foreach (v in V-S) if (D[w]+C[w,v])< D[Vv])
{ D[v] = D[w]+C[w,V]; E[V] =w; L[v] = C[w,V]; }

}
}

05/12/2016 DFR - DSA - Graphs 1 24

+ Shortest Path Tree

Dijkstra (a) -- ais the start node
{ S={a} -- S represents the nodes visited

for (1in V-S) { D[i] = Cla, i]; E[i] =a; L[i] = C[a,i]; }
--initialise D + SPT (E + L)
while (lis_empty(V-S)) {

choose w in V-S such that D[w] is a minimum

-- unvisited node with shortest path from start _node

S=S5S+{w}
foreach (v in V-S) if (D[w]+C[w,v])< D[V])
{ D[v] = D[w]+C[w,V]; E[V] =w; L[v] = C[w,V]; }
-- recalculate paths and SPT (E + L)
}
}

05/12/2016 DFR - DSA - Graphs 1

| Dijkstra — Example - pictures]

b c d e b c d e
D[10, §, 30, 100] D[10, 60,30,100] |
E[] a, a a, a] E[a b, a a]

L [10, 50, 30, 100]

L [10, §, 30, 100]

05/12/2016

DFR - DSA - Graphs 1

26

Dijkstra — Example - pictures]

b ¢c d e

b c¢c d e

D[10, 60, 30, 100 |

27

DFR - DSA - Graphs 1

05/12/2016

Shortest Path 2

m All pairs shortest path problem (i.e. Shortest path between any two vertices)

o apply Dijkstra’s algorithm to each node in turn

o apply Floyd’s algorithm
= Floyd

o given G = (V,E), non-negative costs C[v,w], for each ordered pair (v,w)
find the shortest path

o note the initial conditions
m use an array A[i,j] which is initialised to C[i,j], i.e. the initial edge costs
o if no edge exists C[i,j]=8 (infinite cost)
o for n vertices there are n iterations over the array A
o Floyd is thus O(n3)

05/12/2016 DFR - DSA - Graphs 1 28

| Floyd’s Algorithm]

Floyd () Al k]
{

Aliij]
for (Iin 1..n) for (j in 1..n) if (i <>) All, J] = C]i, |]

for(iInl.n)Afli,1]=0 -- Initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n)
if (ALl K]+ ALK, JT<A[IL D) Al J1 = A[lL K] + ALK,]]
}

05/12/2016 DFR - DSA - Graphs 1 29

Floyd - Example

Ailij]= 0 8|5
310 8§
§2 0
Aijl= 0 8|5
30 8
| 51210
§ = infinity

05/12/2016

DFR - DSA - Graphs 1

30

Floyd - Comment

= [nitialisation is the costs in C (i.e. Initial edge costs) with
the diagonal (i.e.v=>v) setto O

m for each node (k = 1..n) go through the array (i, | =
1..n) and compute costs - i.e. check if there is a
cheaper path from node i to node j via node K - if
so change AJl, |]

= AFCALL K]+ ALK T <AL D AL =ALL K] + ALK,]

05/12/2016 DFR - DSA - Graphs 1 31

ure & Warshall's Algorithm

s Determine if a path exists from vertex i to vertex |
= CJi, j]=1ifan edge exists (i <> j), otherwise =0

= compute A[i, j], such that A[i, j] = 1 if there exists a
path of length 1 or more from vertex i to vertex |

= As called the transitive closure of the adjacency
matrix

= Note that this is a special case of Floyd’s where we
are not directly interested in the costs

05/12/2016 DFR - DSA - Graphs 1 32

| Warshall's Algorithm]

Warshall ()
{

Al [K.J]

AlL]]

for (iin 1..n) for (J in 1..n) AJi, j] = C]i, |]
for(iin1..n) A[i,i]=0 -- Initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n)
If (A[l, J]] =0) A[i, j] = All, k] and A[k,]
}

05/12/2016 DFR - DSA - Graphs 1 33

Warshall - Example

AJijl= 0/11 AJfij]= 0 1|1
10 0 1]11]1
010 of[1]0
Afijj= 111 AJijl= [1]1 1
111 1[1] 1
111 111

05/12/2016 DFR - DSA - Graphs 1

Warshall - Comment

m if (A[i, j] =0) Ali, j] = A[l, k] and A[K, |] - (meaning ?)
= l.e. thereis a path from node i to node j IE there is

a path from node i to node k AND a path from
node k to node |

= at various stages in the calculation for k, i, j, the
different paths are discovered

O

O
O
O

05/12/2016

(1,2, 2)-
(1,2, 3)-
(2,3,1)-
(2,3, 3)-

A[2,2] =A[2,1] and A[1,2] -
A[2,3] =A[2,1] and A[1,3] -
A[3,1] =A[3,2] and A[2,1] -
A[3,3] =A[3,2] and A[2,3] -

DFR - DSA - Graphs 1

l.e.2tolto2=>2t02
l.e.2tolto3=>2t0 3
l.e.3to2to1=>3to01
.e.3to2to3=>31t0 3

35

| Summary — directed graphs]

= Definitions & implementations

= Algorithms
o Dijkstra single node shortest path
o Dijkstra-SPT + shortest path tree
o Floyd all pairs shortest path
o Warshall transitive closure

IS there a path fromatob ?

05/12/2016 DFR - DSA - Graphs 1 36

