
05/12/2016 DFR - DSA - Graphs 1 1

Definitions

G = (V, E) V = set of vertices (vertex / node)
E = set of edges (v, w) (v, w in V)

(v, w) ordered => directed graph (digraph)
(v, w) non-ordered => undirected graph

digraph:
w is adjacent to v if there is an edge from v to w

edge may be (v, w, c) where c is a cost component
(e.g. distance)

05/12/2016 DFR - DSA - Graphs 1 2

Examples

05/12/2016 DFR - DSA - Graphs 1 3

Meaning & Use

 A graph is used to represent arbitrary
relationships among data objects

 e.g. undirected graphs
 communications network
 transport network (road, rail, air, sea) with costs/distances
 (travelling salesman problem)

 e.g. directed graphs (digraph)
 flow of control in computer programs
 University course planning (dependency graph)
 state transition diagrams

05/12/2016 DFR - DSA - Graphs 1 4

Other ADTs

linked list

directed acyclic graph (dag) tree
(dag)

05/12/2016 DFR - DSA - Graphs 1 5

Terminology

PATH: a sequence of vertices v1, v2, …vn such that
v1 -> v2, v2 -> v3, … vn-1 -> vn are edges

LENGTH: number of edges in a path
(v denotes a path length 0 from v to v)

SIMPLE PATH: all vertices are distinct
(except possibly the first and the last)

SIMPLE CYCLE: simple path of length >= 1 that
begins (directed graph) and ends at
the same vertex

05/12/2016 DFR - DSA - Graphs 1 6

Graphs & Cycles

 A cycle is a path which begins and ends at the
same vertex

 A graph with no cycles is acyclic
 A directed graph with no cycles is a directed acyclic

graph (DAG)
DAG directed graphs undirected graphs

a b

c d

a b

c d

a b

c d

a

05/12/2016 DFR - DSA - Graphs 1 7

Undirected Graphs

For cycles in undirected graphs, the edges must be
distinct since (u,v) and (v, u) are the same edge

connected: if there exists a path from every vertex to
every other vertex

non-connected: connected:a b

c d

a b

c d

05/12/2016 DFR - DSA - Graphs 1 8

Directed Graphs
 A connected directed graph is called strongly

connected i.e. there is a path from every vertex to
every other vertex

 if the digraph is not strongly connected BUT the
underlying graph, without distinction to the direction,
is connected, then the graph is said to be weakly
connected

strong: weak: not:a b

c d

a b

c d

a b

c d

05/12/2016 DFR - DSA - Graphs 1 9

Complete Graph

A graph is complete if there is an edge between every
pair of vertices

12 edges 6 edges
n * (n - 1) n * (n - 1) / 2

a b

c d

a b

c d

05/12/2016 DFR - DSA - Graphs 1 10

Adjacency Matrix

For each edge (u, v) set a[u, v] = 1

storage => omega(n2)

read in/
search => O(n2)

a b

c d

a b
a
b
c

dc

d
1

0
0

000
000

1
1

1

00 0
0

a b
a
b
c

dc

d
1

1
0

001
100

0
1

1

11 0
0

a b

c d

05/12/2016 DFR - DSA - Graphs 1 11

Adjacency List

 Use a list of nodes where each node points to a list
of adjacent nodes (better for sparse graphs)

space = O(|V| + |E|) (for named vertices - use a hash table)

a b

c d

a b

c d

a

b

c

d

b

d

a d

a

b

c

d

b d

a d

d

a b c

05/12/2016 DFR - DSA - Graphs 1 12

Operations

insert
remove

find
vertex
edge

navigate

a

b

c

d

b

d

a d

list
operations

is_path
is_cycle

shortest
path

spanning
forest

topological
sort

05/12/2016 DFR - DSA - Graphs 1 13

Shortest Path 1 Dijkstra’s algorithm

Single source shortest path (non-negative costs)
Determines the shortest path from a source to every
other vertex in the graph where the length of the path is the sum
of the costs of the edges

S - set of vertices; shortest distance from source already known
each step adds a vertex v whose distance from S is as
short as possible – the visited vertices (nodes)

special path: shortest path from the source to v passing through u
array D: length of shortest special path to each vertex
C[i,j]: cost of vi to vj (no edge cost is infinite §)

Dijkstra’s algorithm principles

Given a start node x, note the edge lengths from x to the
remaining nodes in the graph. Choose the shortest edge
from x to a node y. Mark nodes x and y as visited. S = {x,y}
Check to see if there is a shorter path to the remaining
(unvisited) nodes, {V-S}, in the graph from x via y.
If so, update the path lengths so far calculated.

Repeat the process until all nodes have been visited.

y

x {V-S}

05/12/2016 DFR - DSA - Graphs 1 14

unvisited nodes

Dijkstra - Example

(a b 10) (a d 30) (a e 100) (b c 50) (c e 10) (d c 20) (d e 60)
Start a – visited {a}, unvisited {b, c, d, e}, shortest path (a b 10)
§ = infinity b c d e
Visited {a, b}, unvisited {c, d, e} D = [10, §, 30, 100]
(a-b-c 60) (a-b-d §) (a-b-e §) D = [10, 60, 30, 100]
Shortest path (a-d 30) – visited {a, b, d}, unvisited {c, e}
(a-d-c 50) (a-d-e 90) D = [10, 50, 30, 90]
Shortest path (a-c 50) – visited {a, b, c, d}, unvisited {e}
(a-c-e 60) D = [10, 50, 30, 60]
Shortest path (a-e 60) – visited {a, b, c, d, e}, unvisited { }
No nodes left! Final answer:- D = [10, 50, 30, 60]

05/12/2016 DFR - DSA - Graphs 1 15

05/12/2016 DFR - DSA - Graphs 1 16

Dijkstra - Example

Iteration S w D[b] D[c] D[d] D[e]

initial {a} - 10 § 30 100
1 {a,b} b 10 60 30 100
2 {a,b,d} d 10 50 30 90
3 {a,b,d,c} c 10 50 30 60
4 {a,b,d,c,e} e 10 50 30 60

a

b e

c d

10

30

10 100

60
50

20
See separate notes on a worked example:-
(i) Revision notes (ii) study plan

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 17

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, §, 30, 100] D [10, §, 30, 100] D [10, 60, 30, 100]
E [a, a, a, a] E [a, a, a, a] E [a, b, a, a]
L [10, §, 30, 100] L [10, §, 30, 100] L [10, 50, 30, 100]

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 18

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, 60, 30, 100] D [10, 50, 30, 90] D [10, 50, 30, 60]
E [a, b, a, a] E [a, d, a, d] E [a, d, a, c]
L [10, 50, 30, 100] L [10, 20, 30, 60] L [10, 20, 30, 10]

Dijkstra’s Algorithm

 Graph (G) + Cost Matrix (C)

 NB count the number of edges in the graph and the cost matrix
05/12/2016 DFR - DSA - Graphs 1 19

a

b e

c d

10

30

10 100

60
50

20

a b c d e
a 10 30 100

b 50

c 10

d 20 60

e

05/12/2016 DFR - DSA - Graphs 1 20

Dijkstra’s Algorithm
Dijkstra (a)
{ S = {a} // G = (V, E)

for (i in V-S) D[i] = C[a, i] // initialisation

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum

S = S + {w}
foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])

} // process
} // D[i] = distance; C[i,j] = cost matrix; S = {visited nodes}

05/12/2016 DFR - DSA - Graphs 1 21

Dijkstra’s Algorithm
Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for (i in V-S) D[i] = C[a, i] -- initialise D (path lengths)
-- from the start node a

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum
-- unvisited node with shortest path from start_node
S = S + {w} -- add this node to visited nodes
foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v])
-- recalculate paths via w to unvisited nodes
}

}

05/12/2016 DFR - DSA - Graphs 1 22

Dijkstra - Comment

 “greedy” algorithm - local best solution is best overall

 choose w in V-S such that D[w] is a minimum (meaning?)

 recall that D[i] means the length of the shortest path to each vertex

 note that the algorithm partitions the nodes into two spaces S (initially
with the start node) and V-S (the remaining nodes) visited / unvisited

 foreach (v in V-S) D[v] = min(D[v], D[w]+C[w,v]) (meaning?)

 w is the node with the minimum distance from the source (not in S)

 D[v] means the shortest (special) path length so far calculated
 D[w] is the cost (so far) to w (again a shortest (special) path length)

 C[w,v] is the cost from node w to node v (edge cost)

Dijkstra – principles revisited

 Choose the start node – a S = {a} G = (V, E)
 S represents visited nodes; V-S represents unvisited nodes
 D represents the path lengths from a to the remaining nodes (V-a)
 C[x,y] represents the cost matrix – the cost of the edge xy
 Algorithm
 Choose the shortest path to an unvisited node (may be an edge)
 Add this node (w) to the set of visited nodes S
 Calculate an alternative path via w to all nodes v in {V-S}
 choose if distance D[w]+C[w,v] is shorter than D[v]

05/12/2016 DFR - DSA - Graphs 1 23

a
D[v] – previous path length for each v in {V-S}

path length - D[w] C[w,v] - edge weightw

05/12/2016 DFR - DSA - Graphs 1 24

Dijkstra’s Algorithm + Shortest Path Tree
Dijkstra (a)
{ S = {a}

for (i in V-S) { D[i] = C[a, i]; E[i] = a; L[i] = C[a,i]; }

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum

S = S + {w}
foreach (v in V-S) if (D[w]+C[w,v])< D[v])

{ D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
}

}

05/12/2016 DFR - DSA - Graphs 1 25

Dijkstra’s Algorithm + Shortest Path Tree
Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for (i in V-S) { D[i] = C[a, i]; E[i] = a; L[i] = C[a,i]; }
-- initialise D + SPT (E + L)
while (!is_empty(V-S)) {

choose w in V-S such that D[w] is a minimum
-- unvisited node with shortest path from start_node
S = S + {w}
foreach (v in V-S) if (D[w]+C[w,v])< D[v])

{ D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
-- recalculate paths and SPT (E + L)
}

}

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 26

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, §, 30, 100] D [10, §, 30, 100] D [10, 60, 30, 100]
E [a, a, a, a] E [a, a, a, a] E [a, b, a, a]
L [10, §, 30, 100] L [10, §, 30, 100] L [10, 50, 30, 100]

Dijkstra – Example - pictures

05/12/2016 DFR - DSA - Graphs 1 27

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20

a

b e

c d

10

30

10 100

60
50

20
b c d e b c d e b c d e

D [10, 60, 30, 100] D [10, 50, 30, 90] D [10, 50, 30, 60]
E [a, b, a, a] E [a, d, a, d] E [a, d, a, c]
L [10, 50, 30, 100] L [10, 20, 30, 60] L [10, 20, 30, 10]

05/12/2016 DFR - DSA - Graphs 1 28

Shortest Path 2

 All pairs shortest path problem (i.e. Shortest path between any two vertices)

 apply Dijkstra’s algorithm to each node in turn

 apply Floyd’s algorithm

 Floyd
 given G = (V,E), non-negative costs C[v,w], for each ordered pair (v,w)

find the shortest path

 note the initial conditions
 use an array A[i,j] which is initialised to C[i,j], i.e. the initial edge costs

 if no edge exists C[i,j]=§ (infinite cost)

 for n vertices there are n iterations over the array A

 Floyd is thus O(n3)

05/12/2016 DFR - DSA - Graphs 1 29

Floyd’s Algorithm
Floyd ()
{

for (i in 1..n) for (j in 1..n) if (i <> j) A[i, j] = C[i, j]
for (i in 1..n) A[i, i] = 0 -- initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n)
if (A[i, k] + A[k, j] < A[i, j]) A[i, j] = A[i, k] + A[k, j]

}

A[i,j]

A[i,k] A[k,j]

05/12/2016 DFR - DSA - Graphs 1 30

Floyd - Example

A0[i,j] = 0 8 5 A1[i,j] = 0 8 5
3 0 § 3 0 8
§ 2 0 § 2 0

A2[i,j] = 0 8 5 A3[i,j] = 0 7 5
3 0 8 3 0 8
5 2 0 5 2 0

§ = infinity

1

2

3

5

2

3
8

2

05/12/2016 DFR - DSA - Graphs 1 31

Floyd - Comment

 Initialisation is the costs in C (i.e. Initial edge costs) with
the diagonal (i.e. v => v) set to 0

 for each node (k = 1..n) go through the array (i, j =
1..n) and compute costs - i.e. check if there is a
cheaper path from node i to node j via node k - if
so change A[i, j]

 if (A[i, k] + A[k, j] < A[i, j]) A[i, j] = A[i, k] + A[k, j]

05/12/2016 DFR - DSA - Graphs 1 32

Transitive Closure & Warshall’s Algorithm

 Determine if a path exists from vertex i to vertex j
 C[i, j] = 1 if an edge exists (i <> j), otherwise = 0
 compute A[i, j], such that A[i, j] = 1 if there exists a

path of length 1 or more from vertex i to vertex j
 A is called the transitive closure of the adjacency

matrix
 Note that this is a special case of Floyd’s where we

are not directly interested in the costs

05/12/2016 DFR - DSA - Graphs 1 33

Warshall’s Algorithm

Warshall ()
{

for (i in 1..n) for (j in 1..n) A[i, j] = C[i, j]
for (i in 1..n) A[i, i] = 0 -- initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n)
if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j]

}

A[i,j]

A[i,k] A[k,j]

05/12/2016 DFR - DSA - Graphs 1 34

Warshall - Example

A0[i,j] = 0 1 1 A1[i,j] = 0 1 1
1 0 0 1 1 1
0 1 0 0 1 0

A2[i,j] = 1 1 1 A3[i,j] = 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

1

2

3

5

2

3
8

2

05/12/2016 DFR - DSA - Graphs 1 35

Warshall - Comment

 if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j] - (meaning ?)

 i.e. there is a path from node i to node j IF there is
a path from node i to node k AND a path from
node k to node j

 at various stages in the calculation for k, i, j, the
different paths are discovered
 (1, 2, 2) - A[2,2] =A[2,1] and A[1,2] - i.e. 2 to 1 to 2 => 2 to 2
 (1, 2, 3) - A[2,3] =A[2,1] and A[1,3] - i.e. 2 to 1 to 3 => 2 to 3
 (2, 3, 1) - A[3,1] =A[3,2] and A[2,1] - i.e. 3 to 2 to 1 => 3 to 1
 (2, 3, 3) - A[3,3] =A[3,2] and A[2,3] - i.e. 3 to 2 to 3 => 3 to 3

Summary – directed graphs

 Definitions & implementations
 Algorithms

 Dijkstra single node shortest path
 Dijkstra-SPT + shortest path tree
 Floyd all pairs shortest path
 Warshall transitive closure

is there a path from a to b ?

05/12/2016 DFR - DSA - Graphs 1 36

