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Definitions

G = (V, E) V = set of vertices (vertex / node)
E = set of edges     (v, w) (v, w in V)

(v, w) ordered => directed graph (digraph)
(v, w) non-ordered => undirected graph

digraph: 
w is adjacent to v if there is an edge from v to w

edge may be (v, w, c) where c is a cost component 
(e.g. distance)
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Examples
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Meaning & Use

 A graph is used to represent arbitrary 
relationships among data objects

 e.g. undirected graphs
 communications network
 transport network (road, rail, air, sea) with costs/distances
 (travelling salesman problem)

 e.g. directed graphs (digraph)
 flow of control in computer programs
 University course planning (dependency graph)
 state transition diagrams
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Other ADTs

linked list

directed acyclic graph (dag) tree 
(dag)



05/12/2016 DFR - DSA - Graphs 1 5

Terminology

PATH: a sequence of vertices v1, v2, …vn such that
v1 -> v2, v2 -> v3, … vn-1 -> vn are edges

LENGTH: number of edges in a path
(v denotes a path length 0 from v to v)

SIMPLE PATH: all vertices are distinct
(except possibly the first and the last)

SIMPLE CYCLE: simple path of length >= 1 that 
begins (directed graph) and ends at 
the same vertex
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Graphs & Cycles

 A cycle is a path which begins and ends at the 
same vertex

 A graph with no cycles is acyclic
 A directed graph with no cycles is a directed acyclic

graph (DAG) 
DAG directed graphs undirected graphs

a b

c d

a b

c d

a b

c d

a



05/12/2016 DFR - DSA - Graphs 1 7

Undirected Graphs

For cycles in undirected graphs, the edges must be 
distinct since (u,v) and (v, u) are the same edge

connected: if there exists a path from every vertex to 
every other vertex

non-connected: connected:a b

c d

a b

c d
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Directed Graphs
 A connected directed graph is called strongly 

connected i.e. there is a path from every vertex to 
every other vertex

 if the digraph is not strongly connected BUT the 
underlying graph, without distinction to the direction, 
is connected, then the graph is said to be weakly 
connected

strong: weak: not:a b

c d
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c d

a b

c d
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Complete Graph

A graph is complete if there is an edge between every 
pair of vertices

12 edges 6 edges
n * (n - 1) n * (n - 1) / 2
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c d

a b

c d
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Adjacency Matrix

For each edge (u, v) set a[u, v] = 1

storage => omega(n2)

read in/
search => O(n2)
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Adjacency List

 Use a list of nodes where each node points to a list 
of adjacent nodes (better for sparse graphs)

space = O(|V| + |E|) (for named vertices - use a hash table)
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Operations

insert
remove

find
vertex
edge

navigate

a

b

c

d

b

d

a d

list
operations

is_path
is_cycle

shortest
path

spanning
forest

topological
sort
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Shortest Path 1 Dijkstra’s algorithm

Single source shortest path (non-negative costs) 
Determines the shortest path from a source to every
other vertex in the graph where the length of the path is the sum 
of the costs of the edges

S - set of vertices; shortest distance from source already known 
each step adds a vertex v whose distance from S is as 
short as possible – the visited vertices (nodes)

special path: shortest path from the source to v passing through u
array D: length of shortest special path to each vertex
C[i,j]: cost of vi to vj  (no edge  cost is infinite §)



Dijkstra’s algorithm principles

Given a start node x, note the edge lengths from x to the 
remaining nodes in the graph.  Choose the shortest edge
from x to a node y. Mark nodes x and y as visited. S = {x,y}
Check to see if there is a shorter path to the remaining 
(unvisited) nodes, {V-S}, in the graph from x via y.
If so, update the path lengths so far calculated. 

Repeat the process until all nodes have been visited.

y

x {V-S}
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unvisited nodes



Dijkstra - Example

(a b 10) (a d 30) (a e 100)  (b c 50) (c e 10) (d c 20) (d e 60)
Start a – visited {a}, unvisited {b, c, d, e}, shortest path (a b 10)
§ = infinity b    c    d     e   
Visited {a, b}, unvisited {c, d, e} D = [10,  §,  30, 100]
(a-b-c 60) (a-b-d §) (a-b-e §) D = [10, 60, 30, 100]
Shortest path (a-d 30) – visited {a, b, d}, unvisited {c, e}
(a-d-c 50) (a-d-e 90) D = [10, 50, 30, 90]
Shortest path (a-c 50) – visited {a, b, c, d}, unvisited {e}
(a-c-e 60) D = [10, 50, 30, 60]
Shortest path (a-e 60) – visited {a, b, c, d, e}, unvisited { }
No nodes left! Final answer:- D = [10, 50, 30, 60]
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Dijkstra - Example

Iteration   S                w  D[b]  D[c]   D[d]   D[e]

initial      {a}              - 10     § 30    100
1         {a,b}           b 10 60 30    100
2         {a,b,d}        d 10 50 30 90
3         {a,b,d,c}     c 10 50 30 60
4         {a,b,d,c,e}  e 10 50 30 60

a

b e

c d

10

30

10 100

60
50

20
See separate notes on a worked example:-
(i) Revision notes (ii) study plan



Dijkstra – Example - pictures
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b   c    d     e b c    d     e b c    d     e

D [ 10,  §, 30, 100 ] D [ 10, §, 30, 100 ] D [ 10,  60, 30, 100 ]
E [   a,  a,   a,   a ] E [  a,  a,  a,    a ] E [  a,   b,    a,    a ]
L  [ 10,  §, 30, 100 ] L  [10,  §, 30, 100 ] L  [ 10,  50, 30, 100 ]



Dijkstra – Example - pictures
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b c    d e b c    d e b c d e

D [ 10, 60, 30, 100 ] D [ 10, 50, 30, 90 ] D [ 10, 50, 30, 60 ]
E [  a,   b,  a,    a ] E [  a,  d,    a,   d ] E [  a,   d,    a,   c ]
L  [ 10, 50, 30, 100 ] L  [10,  20, 30, 60 ] L  [ 10, 20, 30, 10 ]



Dijkstra’s Algorithm

 Graph (G) + Cost Matrix (C)

 NB count the number of edges in the graph and the cost matrix
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Dijkstra’s Algorithm
Dijkstra (a)
{ S = {a} // G = (V, E)

for ( i in V-S) D[i] = C[a, i] // initialisation

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum

S = S + {w} 
foreach ( v in V-S) D[v] = min(D[v], D[w]+C[w,v])

} // process
} // D[i] = distance; C[i,j] = cost matrix; S = {visited nodes}
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Dijkstra’s Algorithm
Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for ( i in V-S) D[i] = C[a, i] -- initialise D (path lengths)
-- from the start node a

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum
-- unvisited node with shortest path from start_node
S = S + {w}  -- add this node to visited nodes
foreach ( v in V-S) D[v] = min(D[v], D[w]+C[w,v])
-- recalculate paths via w to unvisited nodes
}

}
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Dijkstra - Comment

 “greedy” algorithm - local best solution is best overall

 choose w in V-S such that D[w] is a minimum (meaning?)

 recall that D[i] means the length of the shortest path to each vertex

 note that the algorithm partitions the nodes into two spaces S (initially 
with the start node) and V-S (the remaining nodes) visited / unvisited

 foreach ( v in V-S) D[v] = min(D[v], D[w]+C[w,v]) (meaning?)

 w is the node with the minimum distance from the source (not in S)

 D[v] means the shortest (special) path length so far calculated
 D[w] is the cost (so far) to w (again a shortest (special) path length)

 C[w,v] is the cost from node w to node v (edge cost)



Dijkstra – principles revisited

 Choose the start node – a S = {a} G = (V, E)
 S represents visited nodes; V-S represents unvisited nodes
 D represents the path lengths from a to the remaining nodes (V-a)
 C[x,y] represents the cost matrix – the cost of the edge xy
 Algorithm
 Choose the shortest path to an unvisited node (may be an edge)
 Add this node (w) to the set of visited nodes S
 Calculate an alternative path via w to all nodes v in {V-S}
 choose if distance D[w]+C[w,v] is shorter than D[v]
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a
D[v] – previous path length for each v in {V-S}

path length - D[w] C[w,v] - edge weightw
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Dijkstra’s Algorithm + Shortest Path Tree
Dijkstra (a)
{ S = {a}

for ( i in V-S) { D[i] = C[a, i];  E[i] = a; L[i] = C[a,i]; }

while (!is_empty(V-S)) {
choose w in V-S such that D[w] is a minimum

S = S + {w} 
foreach ( v in V-S) if (D[w]+C[w,v])< D[v] )

{ D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
}

}
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Dijkstra’s Algorithm + Shortest Path Tree
Dijkstra (a) -- a is the start node
{ S = {a} -- S represents the nodes visited

for ( i in V-S) { D[i] = C[a, i];  E[i] = a; L[i] = C[a,i]; }
-- initialise D + SPT (E + L)
while (!is_empty(V-S)) {

choose w in V-S such that D[w] is a minimum
-- unvisited node with shortest path from start_node
S = S + {w} 
foreach ( v in V-S) if (D[w]+C[w,v])< D[v] )

{ D[v] = D[w]+C[w,v]; E[v] = w; L[v] = C[w,v]; }
-- recalculate paths and SPT (E + L)
}

}



Dijkstra – Example - pictures
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D [ 10,  §, 30, 100 ] D [ 10, §, 30, 100 ] D [ 10,  60, 30, 100 ]
E [   a,  a,   a,   a ] E [  a,  a,  a,    a ] E [  a,   b,    a,    a ]
L  [ 10,  §, 30, 100 ] L  [10,  §, 30, 100 ] L  [ 10,  50, 30, 100 ]



Dijkstra – Example - pictures
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D [ 10, 60, 30, 100 ] D [ 10, 50, 30, 90 ] D [ 10, 50, 30, 60 ]
E [  a,   b,  a,    a ] E [  a,  d,    a,   d ] E [  a,   d,    a,   c ]
L  [ 10, 50, 30, 100 ] L  [10,  20, 30, 60 ] L  [ 10, 20, 30, 10 ]
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Shortest Path 2

 All pairs shortest path problem (i.e. Shortest path between any two vertices)

 apply Dijkstra’s algorithm to each node in turn

 apply Floyd’s algorithm

 Floyd
 given G = (V,E), non-negative costs C[v,w], for each ordered pair (v,w) 

find the shortest path

 note the initial conditions
 use an array A[i,j] which is initialised to C[i,j], i.e. the initial edge costs

 if no edge exists C[i,j]=§ (infinite cost)

 for n vertices there are n iterations over the array A

 Floyd is thus O(n3)
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Floyd’s Algorithm
Floyd ( )
{

for (i in 1..n) for (j in 1..n) if (i <> j) A[i, j] = C[i, j]
for (i in 1..n) A[i, i] = 0 -- initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n) 
if ( A[i, k] + A[k, j] < A[i, j])  A[i, j] = A[i, k] + A[k, j]

}

A[i,j]

A[i,k] A[k,j]
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Floyd - Example

A0[i,j] =    0  8   5 A1[i,j] =    0   8    5
3  0   § 3   0   8
§ 2   0 § 2   0

A2[i,j] =    0  8   5 A3[i,j] =    0   7 5
3  0   8 3  0   8
5 2   0 5  2   0

§ = infinity

1

2

3

5

2

3
8

2
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Floyd - Comment

 Initialisation is the costs in C (i.e. Initial edge costs) with 
the diagonal (i.e. v => v) set to 0

 for each node (k = 1..n) go through the array (i, j = 
1..n) and compute costs - i.e. check if there is a 
cheaper path from node i to node j via node k - if 
so change A[i, j]

 if ( A[i, k] + A[k, j] < A[i, j])      A[i, j] = A[i, k] + A[k, j]
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Transitive Closure & Warshall’s Algorithm

 Determine if a path exists from vertex i to vertex j
 C[i, j] = 1 if an edge exists (i <> j), otherwise = 0
 compute A[i, j], such that A[i, j] = 1 if there exists a 

path of length 1 or more from vertex i to vertex j
 A is called the transitive closure of the adjacency 

matrix
 Note that this is a special case of Floyd’s where we 

are not directly interested in the costs
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Warshall’s Algorithm

Warshall ( )
{

for (i in 1..n) for (j in 1..n) A[i, j] = C[i, j]
for (i in 1..n) A[i, i] = 0 -- initialisation

for (k in 1..n) for (i in 1..n) for (j in 1..n) 
if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j] 

}

A[i,j]

A[i,k] A[k,j]
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Warshall - Example

A0[i,j] =     0  1   1 A1[i,j] =    0   1    1
1  0   0 1   1 1
0  1   0 0   1   0

A2[i,j] =     1  1  1 A3[i,j] =     1 1   1
1  1  1 1  1 1
1 1  1 1  1   1

1
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5

2

3
8

2
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Warshall - Comment

 if (A[i, j] = 0) A[i, j] = A[i, k] and A[k, j] - (meaning ?)

 i.e. there is a path from node i to node j IF there is 
a path from node i to node k AND a path from 
node k to node j

 at various stages in the calculation for k, i, j, the 
different paths are discovered
 (1, 2, 2) - A[2,2] =A[2,1] and A[1,2]  - i.e. 2 to 1 to 2 => 2 to 2
 (1, 2, 3) - A[2,3] =A[2,1] and A[1,3]  - i.e. 2 to 1 to 3 => 2 to 3
 (2, 3, 1) - A[3,1] =A[3,2] and A[2,1]  - i.e. 3 to 2 to 1 => 3 to 1
 (2, 3, 3) - A[3,3] =A[3,2] and A[2,3]  - i.e. 3 to 2 to 3 => 3 to 3



Summary – directed graphs

 Definitions & implementations
 Algorithms

 Dijkstra single node shortest path
 Dijkstra-SPT + shortest path tree
 Floyd all pairs shortest path
 Warshall transitive closure

is there a path from a to b ?
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