Digraphs: Depth First Search

Given G = (V, E) and all vin V are marked unvisited, a
depth-first search (dfs) (generalisation of a pre-order traversal of
tree) IS one way of navigating through the graph

m SelectonevinV and mark as visited

m Select each unvisited vertex w adjacent to v - dfs(w)
(recursive!)

= if all vertices marked => search complete
m otherwise select an unmarked node and apply dfs

Implementation: adjacency list
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| DES: Example
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| DES: Example
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(6 —(D}—{C
Start: A
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Start: E
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| Depth First Spanning Forest ]

In a dfs of a directed graph, certain edges, when
visited, lead to unvisited vertices

such edges are called TREE EDGES and form a

DEPTH FIRST SPANNING FOREST for the given
digraph

(A)
= A A
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Depth First Spanning Forest

= Other edges are
= back edge

O vertex to an ancestor

= forward edge

o non-tree edge from a
vertex to a proper
descendant (in the tree)

® Cross edge

o edgefromV, toV, -
neither an ancestor nor
descendant
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Depth First Spanning Forest
E—E—A
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Nota Bene (NB)

o all cross edges go from
right to left assuming that

= children added to tree
in order visited (I to r)

= new trees added to
forest in left to right
order

vertices can be numbered
(dfn) in depth first order

ABCDEFG
1234567
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Depth First Spanning Forest

= All descendants of v = W is adescendant of v
have dfn >= dfn(v) Iff

= forward edges o dfn(v) <= dfn(w) <=
low dfn to high dfn dfn(v) + number of

= back edges descendants of v
high dfn to low dfn @

= cross edges tree )/ \[tree_

high dfn to low dfn

F6 /

Crossh
Cross

= back edge =>cycle
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Digraphs: Breadth First Search

Given G = (V, E) and all v in V are marked unvisited,
a breadth-first search (bfs) is another way of
navigating through the graph
select one vin V and mark as visited; enqueue v in Q
while not is_empty(Q) {
X =front(Q); dequeue(Q);
for each y in adjacent (x) if unvisited (y) {
mark(y); enqueue y in Q; process (X,y)
Il (e.g. add to tree);

}
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| BES: Example
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| BES: Example
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| Breadth First Spanning Forest ]

In a bfs of a directed graph, certain edges, when visited,
lead to unvisited vertices- such edges are called TREE
EDGES

and form a BREADTH FIRST SPANNING @
tree

FOREST for the given digraph

NB only tree & non-tree (cross) edges
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| Directed Acyclic Graphs (DAGS) ]

s DAG - digraph with no cycles
m compare: tree, DAG, digraph with cycle

@eg GQG

o) & o &  ©—E

= Tree in-degree =1 out-degree =2 (binary)
= DAG in-degree >=1 out-degree >=1
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| DAG: use

=  Syntactic structure of arithmetic expressions with
common sub-expressions

e.g. ((atb)*c+ ((a+tb)+e)*(e+)) * ((a+b)*c)
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DAG: use

m Torepresent partial orders
= A partial order R on a set S is a binary relation such that
o forallain$S aR ais false (irreflexive)
o foralla,b,cin$S faRbandbRcthenaRcC
(transitive)
= examples: “less than” (<) and proper containment on sets

= S=(1,23) L.2.3)
= P(S)- power set of S 1.2} 113} 2.3}
(set of all subsets)
{1} {2} {3}
{}
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DAG: use

= To model course prerequisites or dependent tasks

03/12/2016

Year 1 Year 2 Year 3 Year 4
Data & Op Real time
Prog. Systems systems
Discrete Data Data |_Distributed
Math l Comm 1 Comm 2 Systems
PUMA DS&A T —
Languages|  constructior

DFR -

DSA - Graphs 2
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Topological sort

= Given a DAG of prerequisites for courses, a topological sort
can be used to determine an order in which to take the
courses

= (TS: DAG => sequence) (modified dfs)
m prints reverse topological order of a DAG from v

tsort(v) {
mark v visited
for each w adjacent to v if w unvisited tsort(w)
display(v)
}
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|ToQoIogical sort: example

start: A

tsort(A) => GKHDECAB
reverse => BACEDHKG
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| Topological Sort example ]

tsort(v) { C
A=>» mark v visited
for each w adjacent to v if w unvisited tsort(w) B E
display(v)
} C][D][E
D |G| |H
E||H
G
path: A H LK
output: K
reverse.
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| Topological Sort example

tsort(v) {
mark v visited
A=> for each w adjacent to v if w unvisited tsort(w)
display(v)

path: A=C
output:
reverse:
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| Topological Sort example ]

tsort(v) {
B

C =mark v visited

for each w adjacent to v if w unvisited tsort(w) E
display(v)
} D] [E
D |G| |H
E||H
G
path: A=C H LK
output: K
reverse.:
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| Topological Sort example ]

tsort(v) {

mark v visited
C =»for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @ E
G

D

E||H

G
path: A=2C=D H LK
output: K
reverse:

03/12/2016 DFR - DSA - Graphs 2 39



| Topological Sort example

tsort(v) {
D =*mark v visited
for each w adjacent to v if w unvisited tsort(w)
display(v)

path: A=2C=D
output:
reverse:
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| Topological Sort example ]

tsort(v) {

mark v visited
D =»for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @ E
[DI[G][H
E||H

K

AL @

path: A2C=2D=2GCG

output:
reverse:
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| Topological Sort example ]

tsort(v) {

G =2 mark v visited
for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @ E
[DI[G][H

H

H| K

path: A2C=2D=2GCG
output: K

reverse.
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| Topological Sort example ]

tsort(v) {

mark v visited
G =»for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @ E
[DI[G][H

H

H| K

path: A2C=2D=2GCG
output: K

reverse.
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| Topological Sort example ]

tsort(v) {

mark v visited
for each w adjacent to v if w unvisited tsort(w)

B||E
G-);|i8p|ay(V) @ E
mali

H

H| K

path: A2C=2D=2GCG
output: G K

reverse.
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| Topological Sort example ]

tsort(v) {

mark v visited
D = for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @ E
[DI[G][H

H

H| K

path: A=2C=D
output: G K

reverse.
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| Topological Sort example ]

tsort(v) {

mark v visited

D = for each w adjacent to v if w unvisited tsort(w) B E

display(v) @ E

path: A=2C=>D=29H
output: G K
reverse:
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| Topological Sort example ]

tsort(v) {

H =» mark v visited

for each w adjacent to v if w unvisited tsort(w) B E

display(v) @ E

oath: A=3C3DH K
output: G K
reverse:
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| Topological Sort example ]

tsort(v) {

mark v visited

H =» for each w adjacent to v if w unvisited tsort(w) B E

display(v) @ E

path: A2C=>2*D=D2$QH=D>K
output: G K

reverse.
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| Topological Sort example ]

tsort(v) {
B||E

K =» mark v visited
for each w adjacent to v if w unvisited tsort(w)

display(v) @ E

path: A=2C=2D2H=2>K
output: G

reverse.
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| Topological Sort example ]

tsort(v) {
B||E

mark v visited
K =» for each w adjacent to v if w unvisited tsort(w)

display(v) @ E

path: A=2C=2D2H=2>K
output: G

reverse.
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| Topological Sort example ]

tsort(v) {
B||E

mark v visited
for each w adjacent to v if w unvisited tsort(w)

K > display(v) [DI[E

path: A2C=>2*D=D2$QH=D>K
output: GK

reverse.
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| Topological Sort example ]

tsort(v) {
B||E

mark v visited
H =» for each w adjacent to v if w unvisited tsort(w)

display(v) @ E

path: A=2C=>D=29H
output: GK
reverse:
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| Topological Sort example ]

tsort(v) {
B||E

mark v visited
for each w adjacent to v if w unvisited tsort(w)

H Sdisplay(v) [D][E

path: A=2C=>D=29H
output: GKH
reverse:

03/12/2016 DFR - DSA - Graphs 2 53



| Topological Sort example ]

tsort(v) {
B||E

mark v visited
D = for each w adjacent to v if w unvisited tsort(w)

display(v) @ E

path: A=2C=D
output: GKH
reverse:
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| Topological Sort example ]

tsort(v) {
B||E

mark v visited
for each w adjacent to v if w unvisited tsort(w)

D 3 display(v) [DI[E

path: A=2C=D
output: GKHD
reverse:
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| Topological Sort example ]

tsort(v) {
B||E

mark v visited
C=>» for each w adjacent to v if w unvisited tsort(w)

display(v) @ E

path: A=C
output: GKHD
reverse:
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| Topological Sort example ]

tsort(v) {

mark v visited
C=>» for each w adjacent to v if w unvisited tsort(w)

Bl E
;:Iisplay(V) @
(0] [E] [H]
E||H

path: A=2>C=E
output: GKHD
reverse:
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| Topological Sort example

tsort(v) {

E =» mark v visited
for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @
[D]

H

path: A=2>C=E
output: GKHD
reverse:
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| Topological Sort example

tsort(v) {

mark v visited
E =» for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @
[D]

H

path: A=2>C=E
output: GKHD
reverse:
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| Topological Sort example

tsort(v) {

mark v visited
for each w adjacent to v if w unvisited tsort(w)

B||E
E -);:Iisplay(V) @
[0 [S] [

H

path: A=2>C=E
outputt GKHDE
reverse:
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| Topological Sort example

tsort(v) {

mark v visited
C =» for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @
[D]

H

path: A=C
outputt GKHDE
reverse:
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| Topological Sort example

tsort(v) {

mark v visited
for each w adjacent to v if w unvisited tsort(w)

Bl E
C -):Iisplay(V) @
[D]

H

path: A=C
output: GKHDEC
reverse:
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| Topological Sort example

tsort(v) {

mark v visited
A = for each w adjacent to v if w unvisited tsort(w)

B||E
;Jlisplay(v) @
[D]

H

path: A
outputt GKHDEC
reverse:
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| Topological Sort example

tsort(v) {

mark v visited
for each w adjacent to v if w unvisited tsort(w)

B||E
A -):Iisplay(V) @
[D]

H

path: A
output: GKHDECA
reverse:
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| Topological Sort example

tsort(v) {

mark v visited
for each w adjacent to v if w unvisited tsort(w)

B||E
;:Jisplay(v) @
[D]

H
path:

outputt GKHDECA

reverse.
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| Topological Sort example

tsort(v) { - -
B =*mark v visited
for each w adjacent to v if w unvisited tsort(w) -
display(v)
} [<] IEI -
H

path: B
output: GKHDECA

reverse.
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| Topological Sort example

tsort(v) { N --

mark v visited
B =»for each w adjacent to v if w unvisited tsort(w) -

o [C1[D][E]
(D11 [H]
H

path: B
output: GKHDECA

reverse.
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| Topological Sort example

tsort(v) { N --

mark v visited
for each w adjacent to v if w unvisited tsort(w) -

B -);Iisplay(v) - @ -
[D] (] [H]
H

path: B

output GKHDECAB
reverse:
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Topological Sort example

tsort(v) {
mark v visited
fgr each w adjacent to v if w unvisited tsort(w) E
[C1 B [E]
[D]
H
path:

output GKHDECAB
reverse: BACEDHKG
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| Detecting Cycles

m Use Warshall

m  Use depth first search

ﬂﬂ
=) (=D

01|11 111111
0[0/0]1 111/1/1
0[0/0]1 111/1/1
0/0/010 111/1]1

D

0000000000

: @

back

Cross

@
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connectivity -
nected Components (SCCs)

m Strongly connected component of a digraph - set
of vertices in which there is a path from any one
vertex in the set to any other vertex in the set

= partition V into equivalence classes V,, 1 <=i<=r
such that v and w are equivalent iff there is a path
from v to w and from w to v

= let E, be the set of edges with head and tail in V,

= the graphs G, = (V,, E;) are called STRONGLY
CONNECTED COMPONENTS (SCCs) of G

m aSTRONGLY CONNECTED GRAPH has only one
SCC
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| SCC: example

= adigraph and its strongly connected components

&-® @@
_'@

= every vertex of G is in some SCC

= NOT every edge of G is in some SCC
m SCC =Strongly Connected Component

03/12/2016 DFR - DSA - Graphs 2

72



Reduced Graph

= Inareduced graph (RG), the vertices are the strongly
connected components of G

- -

= edge from vertex C to C’ in RG if there is an edge from some
vertex in C to some vertex in C’

s RG is always a DAG since if there were a cycle, all
components in the cycle would be one strong component
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SCCs: algorithm

1. Perform a dfs and assign a number to each vertex
dfs(v) { mark v visited
for each w adjacent to v if w unvisited dfs(w)
number v
}
2. construct digraph G, by reversing every edge in G

3. perform a dfs on G, starting at highest numbered vertex
(repeat on next highest if all vertices not reached)

4. each tree in resulting spanning forest is an SCC of G
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| SCCs: example
dfs(v) { mark v visited

for each w adjacent to v if w unvisited dfs(w)

Graph SCCs number v
}

K- XU | =
Q G after step 1

=)
(=

Graph G, @ df spanning forest for G,
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Graphs: terminology

= G=(V,E) V =setofvertices, E = set of edges (v,w)

= (v,w) ordered = digraph (directed graph)

= (v,w) non-ordered = undirected graph

= digraph: wis adjacent to v if there is an edge from v to w
=  DAG: directed acyclic graph

= path: sequence of vertices v,..v, where (v,,V,)...(V,_1,v,) are
edges

= path length: number of edges in a path

= simple path: all vertices are distinct (except possibly the first
and last)

m simple cycle: simple path, length >=1, begin/end on same
vertex
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Graphs: terminology

s Strongly Connected Component: set of vertices in
which there is a path from any vertex in the set to any other
vertex in the set

= Reduced Graph: vertices are strongly connect
components of G

m  Strongly Connected Digraph: a path from every vertex
to every other vertex

s Complete graph: if there is an edge between every pair of
vertices

= Implementation: adjacency matrix or adjacency list

03/12/2016 DFR - DSA - Graphs 2 77



Graphs: algorithms

= Dijkstra: single source shortest path
= Floyd: all pairs shortest path
= Warshall: transitive closure (determines if a path exists from v to w)

m  Depth First Search:

o used to derive the depth first spanning forest for the graph

o used in cycle detection

o used to derive the strong components
m Breadth First Search:

o used to derive the breadth first spanning forest for the graph
m Topological Sort: DAG => sequence
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