Digraphs: Depth First Search

Given G = (V, E) and all v in V are marked unvisited, a depth-first search (dfs) (generalisation of a pre-order traversal of tree) is one way of navigating through the graph

- select one v in V and mark as visited
- select each unvisited vertex w adjacent to v dfs(w) (recursive!)
- if all vertices marked => search complete
- otherwise select an unmarked node and apply dfs

implementation: adjacency list

Start: A A, B, C, D, E, F, G

Start: A

 $A \rightarrow B$

Start: A

 $A \rightarrow B \rightarrow C$

Start: A

 $A \rightarrow B \rightarrow C$

Start: A

 $A \rightarrow B \rightarrow C, B \rightarrow D$

Start: A

 $A \rightarrow B \rightarrow C, B \rightarrow D$

Start: A $A \rightarrow B \rightarrow C, B \rightarrow D$ Start E

Start: A

 $A \rightarrow B \rightarrow C, B \rightarrow D$

Start: E

 $E \rightarrow F$

Start: A

 $A \rightarrow B \rightarrow C, B \rightarrow D$

Start: E

 $E \rightarrow F$

Start: A

 $A \rightarrow B \rightarrow C, B \rightarrow D$

Start: E

 $E \rightarrow F, E \rightarrow G$

Start: A

 $A \rightarrow B \rightarrow C, B \rightarrow D$

Start: E

 $E \rightarrow F, E \rightarrow G$

in a dfs of a directed graph, certain edges, when visited, lead to unvisited vertices

such edges are called TREE EDGES and form a DEPTH FIRST SPANNING FOREST for the given digraph

- Other edges are
- back edge
 - vertex to an ancestor
- forward edge
 - non-tree edge from a vertex to a proper descendant (in the tree)
- cross edge
 - edge from V₁ to V₂ neither an ancestor nor descendant

14

- Nota Bene (NB)
 - all cross edges go from right to left assuming that
 - children added to tree in order visited (I to r)
 - new trees added to forest in left to right order
- vertices can be numbered (dfn) in depth first order

ABCDEFG 1 2 3 4 5 6 7

- All descendants of v have dfn >= dfn(v)
- forward edges low dfn to high dfn
- back edgeshigh dfn to low dfn
- cross edgeshigh dfn to low dfn
- back edge => cycle

- w is a descendant of v iff
 - o dfn(v) <= dfn(w) <=
 dfn(v) + number of
 descendants of v</pre>

Digraphs: Breadth First Search

Start: E

Output: E, F, G, B, D, C, A

Start: E

Q: E

Start: E

Q: F, G

Start: E

Q: G

Start: E, F

Q: G, B

Start: E, F, G

Q: B, D

Start: E, F, G, B

Q: D

Start: E, F, G, B

Q: D, C

Start: E, F, G, B, D

Q: C, A

Start: E, F, G, B, D, C

Q: A

Start: E, F, G, B, D, C, A

Q: empty

Breadth First Spanning Forest

in a bfs of a directed graph, certain edges, when visited, lead to unvisited vertices- such edges are called TREE EDGES

and form a BREADTH FIRST SPANNING

FOREST for the given digraph

NB only tree & non-tree (cross) edges

Directed Acyclic Graphs (DAGs)

- DAG digraph with no cycles
- compare: tree, DAG, digraph with cycle

- Tree in-degree = 1 out-degree = 2 (binary)
- DAG in-degree >= 1 out-degree >= 1

DAG: use

 Syntactic structure of arithmetic expressions with common sub-expressions

e.g.
$$((a+b)*c + ((a+b)+e)*(e+f)) * ((a+b)*c)$$

DAG: use

- To represent partial orders
- A partial order R on a set S is a binary relation such that
 - for all a in S
- a R a is false (irreflexive)
- for all a, b, c in S if a R b and b R c then a R c

(transitive)

- examples: "less than" (<) and proper containment on sets
- $S = \{1, 2, 3\}$
- P(S) power set of S (set of all subsets)

DAG: use

To model course prerequisites or dependent tasks

Topological sort

- Given a DAG of prerequisites for courses, a topological sort can be used to determine <u>an order</u> in which to take the courses
- (TS: DAG => sequence) (modified dfs)
- prints <u>reverse</u> topological order of a DAG from v

```
tsort(v) {
  mark v visited
  for each w adjacent to v if w unvisited tsort(w)
  display(v)
  }
```

Topological sort: example

Topological Sort example

```
tsort(v)
 A→ mark v visited
     for each w adjacent to v if w unvisited tsort(w)
     display(v)
path:
output:
reverse:
```

```
tsort(v)
     mark v visited
 A→ for each w adjacent to v if w unvisited tsort(w)
     display(v)
             A \rightarrow C
path:
output:
reverse:
```

```
tsort(v)
 C → mark v visited
     for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                          K
             A \rightarrow C
path:
output:
reverse:
```

```
tsort(v)
     mark v visited
 C → for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                              K
             A \rightarrow C \rightarrow D
path:
output:
reverse:
```

```
tsort(v)
 D → mark v visited
     for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                              K
             A \rightarrow C \rightarrow D
path:
output:
reverse:
```

```
tsort(v)
     mark v visited
 D → for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                                K
              A \rightarrow C \rightarrow D \rightarrow G
path:
                                                                       K
output:
reverse:
```

```
tsort(v)
G → mark v visited
     for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                               K
              A \rightarrow C \rightarrow D \rightarrow G
path:
                                                                       K
output:
reverse:
```

```
tsort(v)
     mark v visited
G → for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                                K
              A \rightarrow C \rightarrow D \rightarrow G
path:
                                                                       K
output:
reverse:
```

```
tsort(v)
     mark v visited
     for each w adjacent to v if w unvisited tsort(w)
G → display(v)
                                                                               K
             A \rightarrow C \rightarrow D \rightarrow G
path:
                                                                       K
output:
              G
reverse:
```

```
tsort(v)
     mark v visited
D → for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                             K
             A \rightarrow C \rightarrow D
path:
output:
             G
reverse:
```

```
tsort(v)
     mark v visited
D → for each w adjacent to v if w unvisited tsort(w)
     display(v)
                                                                               K
              A \rightarrow C \rightarrow D \rightarrow H
path:
                                                                       K
output:
              G
reverse:
```

46

```
tsort(v)
H → mark v visited
     for each w adjacent to v if w unvisited tsort(w)
     display(v)
              A \rightarrow C \rightarrow D \rightarrow H
path:
output:
              G
reverse:
```

```
tsort(v)
      mark v visited
H → for each w adjacent to v if w unvisited tsort(w)
     display(v)
               A \rightarrow C \rightarrow D \rightarrow H \rightarrow K
path:
output:
               G
reverse:
```

```
tsort(v)
K → mark v visited
     for each w adjacent to v if w unvisited tsort(w)
     display(v)
               A \rightarrow C \rightarrow D \rightarrow H \rightarrow K
path:
output:
               G
reverse:
```

```
tsort(v)
      mark v visited
K → for each w adjacent to v if w unvisited tsort(w)
     display(v)
               A \rightarrow C \rightarrow D \rightarrow H \rightarrow K
path:
output:
               G
reverse:
```

```
tsort(v)
     mark v visited
     for each w adjacent to v if w unvisited tsort(w)
K → display(v)
              A \rightarrow C \rightarrow D \rightarrow H \rightarrow K
path:
              GK
output:
reverse:
```

```
tsort(v)
     mark v visited
H → for each w adjacent to v if w unvisited tsort(w)
     display(v)
              A \rightarrow C \rightarrow D \rightarrow H
path:
              GK
output:
reverse:
```

```
tsort(v)
     mark v visited
     for each w adjacent to v if w unvisited tsort(w)
 H → display(v)
              A \rightarrow C \rightarrow D \rightarrow H
path:
              GKH
output:
reverse:
```

```
tsort(v)
     mark v visited
D → for each w adjacent to v if w unvisited tsort(w)
     display(v)
             A \rightarrow C \rightarrow D
path:
             GKH
output:
reverse:
```

```
tsort(v)
     mark v visited
     for each w adjacent to v if w unvisited tsort(w)
D -> display(v)
             A \rightarrow C \rightarrow D
path:
            GKHD
output:
reverse:
```

```
tsort(v)
     mark v visited
C→ for each w adjacent to v if w unvisited tsort(w)
    display(v)
path:
            A \rightarrow C
            GKHD
output:
reverse:
```

```
tsort(v)
     mark v visited
C→ for each w adjacent to v if w unvisited tsort(w)
     display(v)
             A \rightarrow C \rightarrow E
path:
            GKHD
output:
reverse:
```

```
tsort(v)
E → mark v visited
     for each w adjacent to v if w unvisited tsort(w)
     display(v)
             A \rightarrow C \rightarrow E
path:
             GKHD
output:
reverse:
```

```
tsort(v)
     mark v visited
E → for each w adjacent to v if w unvisited tsort(w)
     display(v)
             A \rightarrow C \rightarrow E
path:
            GKHD
output:
reverse:
```

```
tsort(v)
     mark v visited
     for each w adjacent to v if w unvisited tsort(w)
E → display(v)
            A \rightarrow C \rightarrow E
path:
           GKHDE
output:
reverse:
```

```
tsort(v)
    mark v visited
C → for each w adjacent to v if w unvisited tsort(w)
    display(v)
           A \rightarrow C
path:
           GKHDE
output:
reverse:
```

```
tsort(v)
    mark v visited
    for each w adjacent to v if w unvisited tsort(w)
C → display(v)
          A \rightarrow C
path:
          GKHDEC
output:
reverse:
```

```
tsort(v)
    mark v visited
A → for each w adjacent to v if w unvisited tsort(w)
    display(v)
path:
          GKHDEC
output:
reverse:
```

```
tsort(v)
    mark v visited
    for each w adjacent to v if w unvisited tsort(w)
A -> display(v)
path:
          GKHDECA
output:
reverse:
```

```
tsort(v)
    mark v visited
    for each w adjacent to v if w unvisited tsort(w)
    display(v)
path:
           GKHDECA
output:
reverse:
```

```
tsort(v)
 B → mark v visited
    for each w adjacent to v if w unvisited tsort(w)
    display(v)
           B
path:
          GKHDECA
output:
reverse:
```

reverse:

```
tsort(v) {
    mark v visited
    B → for each w adjacent to v if w unvisited tsort(w)
    display(v)
    }

A C
B E
C D E
D G H
B E
H

B E
H

B H

K

G

path: B

output: G K H D E C A
```

```
tsort(v)
    mark v visited
    for each w adjacent to v if w unvisited tsort(w)
B -> display(v)
           B
path:
          GKHDECAB
output:
reverse:
```

```
tsort(v)
    mark v visited
    for each w adjacent to v if w unvisited tsort(w)
    display(v)
path:
         GKHDECAB
output:
reverse: BACEDHKG
```

Detecting Cycles

Use Warshall

Use depth first search

Connectivity - & Reachability (Warshall) Strongly Connected Components (SCCs)

- Strongly connected component of a digraph set of vertices in which there is a <u>path</u> from any one vertex in the set to any other vertex in the set
- partition V into equivalence classes V_i, 1 <= i <= r such that v and w are equivalent iff there is a path from v to w and from w to v
- let E_i be the set of edges with head and tail in V_i
- the graphs G_i = (V_i, E_i) are called **STRONGLY** CONNECTED COMPONENTS (SCCs) of G
- a STRONGLY CONNECTED GRAPH has only one SCC

71

SCC: example

a digraph and its strongly connected components

- every vertex of G is in some SCC
- NOT every edge of G is in some SCC
- SCC = Strongly Connected Component

Reduced Graph

In a reduced graph (RG), the vertices are the strongly connected components of G

- edge from vertex C to C' in RG if there is an edge from some vertex in C to some vertex in C'
- RG is always a DAG since if there were a cycle, all components in the cycle would be one strong component

SCCs: algorithm

Perform a dfs and assign a number to each vertex

```
dfs(v) { mark v visited
    for each w adjacent to v if w unvisited dfs(w)
    number v
}
```

- 2. construct digraph G_r by reversing every edge in G
- perform a dfs on G_r starting at highest numbered vertex (repeat on next highest if all vertices not reached)
- 4. each tree in resulting spanning forest is an SCC of G

SCCs: example

Graphs: terminology

- G = (V,E) V = set of vertices, E = set of edges (v,w)
- (v,w) ordered = digraph (directed graph)
- (v,w) non-ordered = undirected graph
- digraph: w is adjacent to v if there is an edge from v to w
- DAG: directed acyclic graph
- path: sequence of vertices v₁...v_n where (v₁,v₂)...(v_{n-1},v_n) are edges
- path length: number of edges in a path
- simple path: all vertices are distinct (except possibly the first and last)
- simple cycle: simple path, length >=1, begin/end on same vertex

Graphs: terminology

- Strongly Connected Component: set of vertices in which there is a path from any vertex in the set to any other vertex in the set
- Reduced Graph: vertices are strongly connect components of G
- Strongly Connected Digraph: a path from every vertex to every other vertex
- Complete graph: if there is an edge between every pair of vertices
- Implementation: adjacency matrix or adjacency list

Graphs: algorithms

Dijkstra: single source shortest path

Floyd: all pairs shortest path

Warshall: transitive closure (determines if a path exists from v to w)

- Depth First Search:
 - used to derive the depth first spanning forest for the graph
 - used in cycle detection
 - used to derive the strong components
- Breadth First Search:
 - used to derive the breadth first spanning forest for the graph
- Topological Sort: DAG => sequence