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Undirected Graphs

 An undirected graph G = (V, E) 
 V a set of vertices
 E a set of unordered edges (v,w) where v, w in V

 USE: to model symmetric relationships between entities
 vertices v and w are adjacent if there is an edge (v,w)        

[or (w,v)]
 the edge (v,w) is incident upon vertices v and w
 an edge may be (v,w,c) where c is a cost component

(e.g. distance)
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Examples
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Terminology

PATH: a sequence of vertices v1, v2, …vn such that
(v1 ,v2), (v2 ,v3), … (vn-1 ,vn) are edges

LENGTH: number of edges in a path
(v denotes a path length 0 from v to v)

SIMPLE PATH: all vertices are distinct
(except possibly the first and the last)

SIMPLE CYCLE: a simple path of length 3 or more that 
(undirected graph) connects a vertex to itself
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Sub-graph

 G = (V, E)
 a sub-graph of G is a graph G’ = (V’, E’) where

 V’ is a subset of V
 E’ consists of edges (v,w) such that both v and w are in V’

 if E’ consists of all edges (v,w) in E such that both v, 
w in V’ then G’ is an INDUCED SUB-GRAPH of G

 a connected component of a graph G is a 
maximal connected induced sub-graph that is not 
itself a proper sub-graph of any other connected 
sub-graph of G
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Sub-graph: example
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An Unconnected Graph

 two connected components (each a free tree)
 connected acyclic graph is a FREE TREE

 every free tree with n >=1 vertices contains exactly (n-1) edges
 any edge added to a free tree gives a cycle
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Graph Representation

 Adjacency Matrix  Adjacency List
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Operations

insert
remove

find
vertex
edge

navigate

list
operations

is_path
is_cycle

shortest
path

spanning
forest
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Minimum-cost Spanning Trees

 G = (V,E) where each edge (v,w) has an associated cost
 a SPANNING TREE for G is a free tree that connects all the 

vertices in G (n nodes and (n-1) edges; no cycles)
 the cost of the spanning tree is the sum of the costs of the 

edges in the tree

 application areas: communication networks 
(transport/computer)
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MST Property

 G = (V,E) 
 a connected graph with a cost function on the edges
 let U be a proper subset of V
 if (u,v) is an edge of lowest cost such that

 u in U and v in V-U then there is a MST that includes 
(u,v) as an edge
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Building an MST: creative guess §1
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Kruskal’s principles

 Build a priority queue (PQ) with the edges, 
shortest edges first

 Each node in the graph becomes a component

 Choose an edge from the PQ such that the edge 
connects 2 distinct components until there is 
only one component – this is the MST
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Kruskal’s principles - example

PQ: (a c 1), (d f 2), (b e 3), (c f 4), (a d 5), 
(b c 5), (c d 5), (a b 6), (c e 6), (e f 6)

Components: [a], [b], [c], [d], [e], [f] - 6 components
 (a c 1)  [a-c], [b], [d], [e], [f] - 5 components
 (d f 2)  [a-c], [b], [d-f], [e] - 4 components
 (b e 3)  [a-c], [b-e], [d, f] - 3 components
 (c f 4)  [a-c, c-f, f-d], [b-e] - 2 components
 (a d 5)  not chosen - a & d in same component

 (b c 5)  [a-c, c-b, b-e, c-f,  f-d] - 1 component (MST)
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MST – explanation (Kruskal)

priority queue
a c 1
d f  2
b e 3
c f  4
a d 5
b c 5
c d 5
a b 6
c e 6
e f 6

Comments
 The edges are stored in a PQ (lowest values first)

 Each node becomes a component
 Each edge should connect 2 components
 NB: a d 5 does not connect 2 components

 a and d are in the same component (step 5 above)
 adding a d 5 would also create a cycle
 An MST is a free tree and therefore has no cycles

 b c 5 completes the MST
 An MST with n nodes has (n-1) edges
 An MST is a Free Tree (no cycles)
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Kruskal’s Algorithm (creative guess §1)

 One method of constructing an MST is Kruskal’s

 start with a graph T = (V, ¤) i.e. only the vertices of G = (V, E)

 each vertex is a connected component (in the graph T)

 to construct the MST, T examine the edges in E in order of 
increasing cost (implementation - priority queue)

 if the edge connects two vertices in two connected 
components then add the edge to T (otherwise discard the edge)

 when all the edges are in one component, T is a MST for G
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Kruskal’s Algorithm

 S = set of connected components (V from G=(V,E))

 merge(A, B, S) -- merge components A & B in S - rename A

 find(v, S) -- return name of component X in S : v in X

 initial(‘A’, v, S) -- make A the name of component in S  
containing only vertex v initially

 insert(e, S) -- add a given edge to S

 remove_pq() -- remove an edge from the PQ

 (x, y, c) -- edge (x, y) in PQ with cost c
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Kruskal’s Algorithm

for each v in S initial ( next(name), v, S) -- initiliase

while (size(S) > 1 { -- size = number of components

get_PQ ( ); -- get (x, y, c) from PQ

if ( find(x, S) != find(y, S) ) { -- x, y in different components

merge ( find (x, S), find (y, S), S );
insert (get_PQ ( ), S);
}

remove_pq( );
}
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Kruskal: example
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Kruskal: example
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Kruskal: example
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Kruskal: example

a c 1
d f 2
b e 3
c f 4
a d 5
b c 5
c d 5
a b 6
c e 6
e f 6

PQ

a

c

e

b
d

f

A

D
CB

E
F

S

a

c

e

b
d

f

A

D

B

S



25/02/2016 DFR - DSA - Graphs 3 22

Kruskal: example
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Kruskal: example
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Kruskal: example

a c 1
d f 2
b e 3
c f 4
a d 5
b c 5
c d 5
a b 6
c e 6
e f 6

PQ

a

c

e

b
d

f

A

D
CB

E
F

S

a

c

e

b
d

f

A

S



25/02/2016 DFR - DSA - Graphs 3 25

Kruskal: Comment

 Using the PQ, the algorithm is reasonably easy to 
understand in principle (the pictorial representation is easy to follow)

 In general it is worth looking at the problem and its 
solution before going through any algorithm in detail

 look at each line of the pseudo code and be sure 
that you can relate the code to the action required 
i.e. that you can interpret the code
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Building an MST: creative guess §2
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Prim’s principles

 given start node x mark as visited; 
 note the edge values from x to the remaining nodes;  this uses 2 

arrays L for the edge lengths and C for the node name; 
 find the shortest edge from x to y; mark y as visited; 
 build a COMPONENT (x y) i.e. y is then added to the component 

(i.e. the visited nodes); 
 now examine the edge costs from y to the remaining nodes; if 

this edge is cheaper, replace the current edge with this edge. 
The new node is added to the component.

 Repeat for the unvisited nodes. The component grows node by 
node and cheaper edges replace those edges previously found 
as cheaper.
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Prim’s principles example

 (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), 
(e f 6)

 Start node a – visited {a} – unvisited {b, c, d, e, f} 
 L = [6, 1, 5, §, §] C = [a, a, a, a, a]
 Shortest edge (a c 1) – visited {a, c} – unvisited {b, d, e, f}
 (c b 5) is cheaper  L = [5, 1, 5, §, §] C = [c, a, a, a, a]
 (c d 5) not cheaper  no change
 (c e 6) is cheaper L = [5, 1, 5, 6, §] C = [c, a, a, c, a]
 (c f 4) is cheaper L = [5, 1, 5, 6, 4] C = [c, a, a, c, c]
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Prim’s principles example

 (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), 
(e f 6)

 L = [5, 1, 5, 6, 4] C = [c, a, a, c, c]
 Shortest edge (c f 4) – visited {a, c, f} – unvisited {b, d, e}
 (f b §) not cheaper  no change
 (f d 2) is cheaper L = [5, 1, 2, 6, 4] C = [c, a, f, c, c]
 (f e 6) not cheaper  no change
 Shortest edge (f d 2) – visited {a, c, d, f} – unvisited {b, e}
 (d b §) not cheaper  no change
 (d e §) not cheaper  no change
 L = [5, 1, 2, 6, 4] C = [c, a, f, c, c]
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Prim’s principles example

 (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), 
(e f 6)

 L = [5, 1, 2, 6, 4] C = [c, a, f, c, c]

 Shortest edge (c b 5) – visited {a, b, c, d, f} – unvisited {e}
 (b e 3) is cheaper  L = [5, 1, 2, 3, 4] C = [c, a, f, b, c]

 Shortest edge (b e 3) – visited {a, b, c, d, e, f} – unvisited {} empty –
STOP

 Result L = [5, 1, 2, 3, 4] C = [c, a, f, b, c]
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Prim’s principles - pictures

L = [6, 1, 5, §, §] 
C = [a, a, a, a, a]

L = [5, 1, 5, §, §] 
C = [c, a, a, a, a]
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Prim’s principles - pictures

L = [5, 1, 5, 6, §] 
C = [c, a, a, c, a]

L = [5, 1, 5, 6, 4] 
C = [c, a, a, c, c]
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Prim’s principles - pictures

L = [5, 1, 2, 6, 4] 
C = [c, a, f, c, c]

L = [5, 1, 2, 6, 4] 
C = [c, a, f, c, c]
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Prim’s principles - pictures

L = [5, 1, 2, 3, 4] 
C = [c, a, f, b, c]

L = [5, 1, 2, 3, 4] 
C = [c, a, f, b, c]
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MST – explanation (Prim)

 Prim’s algorithm is a greedy algorithm
 greedy = takes the locally best solution
 The MST “grows” the MST as one component (similar to Dijkstra)

 Process
 Choose the cheapest edge from the component to an unvisited 

node, add edge to the MST and mark the node as visited (U)
 Start at node a – choose the cheapest edge     a c 1 mark c
 Now choose the cheapest edge U = {a,c}           c f 4 mark f
 Now choose the cheapest edge U = {a,c,f}         f d 2 mark d
 Now choose the cheapest edge U = {a,c,f,d}      c b 5 mark b
 Now choose the cheapest edge U = {a,c,f,d,b}   b e 5 mark e
 All nodes have now been visited U = {a,c,f,d,b,e}              stop.
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Prim’s Algorithm (creative guess §2)

 V = {a,b,c,d,…}
 initialise U to {a}
 the spanning tree grows one edge at a time
 each step:

 find the shortest edge (u,v) that connects U and V-U
 add v to U
 until U = V i.e. V-U = ¤

 cost matrix C gives the costs of each edge
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Prim’s Algorithm

Prim ( node v) -- v is the start node
{ U = {v};  for i in (V-U) { low-cost[i] = C[v,i]; closest[i] = v; }
while (!is_empty (V-U) ) { -- find the closest vertex in V-U

i = first(V-U); min = low-cost[i]; k = i; -- minimum cost edge
for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; }
display(k, closest[k]); -- display edge
U = U + k; -- k added to U
for j in (V-U) if ( C[k,j] < low-cost[j] ) ) -- readjust costs

{low-cost[j] = C[k,j]; closest[j] = k; }
}

}
See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1
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Prim: example
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Prim: example

Init: U V-U low-cost closest k / min
{a} {b,c,d,e,f} (-,6, 1, 5, §, §) (-,a,a,a,a,a) c / 1

display ((a,c))
{a,c}   {b,d,e,f} (-,5, 1, 5, 6, 4) (-,c,a,a,c,c) f / 4

display ((c,f))
{a,c,f}   {b,d,e} (-,5, 1, 2, 6, 4) (-,c,a,f,c,c) d / 2

display ((f,d))
{a,c,f,d}   {b,e} (-,5, 1, 2, 6, 4) (-,c,a,f,c,c) b / 5

display ((c,b))
{a,c,f,d,b}   {e} (-, 5, 1, 2, 3, 4) (-,c,a,f,b,c) e / 3

display ((b,e))
{a,c,f,d,b,e}   { } (-, 5, 1, 2,  3, 4) (-,c,a,f,b,c)

See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1
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Prim: Comment

 Since the MST is a free tree, there are n-1 edges, hence n-1 
iterations

 the following code finds the least cost edge between U and V-U (min, k)

min = low-cost[i]; k = i; 
for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; }

 the following code may be replaced by for e.g. Add_MST(u,v)
display(k, closest[k]); -- display edge

 the re-adjustment of the costs is perhaps the trickiest to understand 
but is in effect similar to Dijkstra - finding the cheapest (i,j) or (i,k) (k,j)

for j in (V-U) if ( C[k,j] < low-cost[j] ) )
{low-cost[j] = C[k,j]; closest[j] = k; }


