Undirected Graphs

- An undirected graph G = (V, E)
 - V a set of vertices
 - E a set of **unordered edges** (v,w) where v, w in V
- USE: to model <u>symmetric</u> relationships between entities
- vertices v and w are <u>adjacent</u> if there is an edge (v,w)
 [or (w,v)]
- the edge (v,w) is <u>incident</u> upon vertices v and w
- an edge may be (v,w,c) where c is a <u>cost component</u>
 (e.g. distance)

Terminology

- **PATH**: a sequence of vertices $v_1, v_2, \dots v_n$ such that $(v_1, v_2), (v_2, v_3), \dots (v_{n-1}, v_n)$ are edges
- LENGTH:number of edges in a path
(v denotes a path length 0 from v to v)SIMPLE PATH:all vertices are distinct
(except possibly the first and the last)SIMPLE CYCLE:a simple path of length 3 or more that
connects a vertex to itself

-Sub-graph

• G = (V, E)

- a sub-graph of G is a graph G' = (V', E') where
 - V' is a subset of V
 - E' consists of edges (v,w) such that both v and w are in V'
- if E' consists of all edges (v,w) in E such that both v, w in V' then G' is an INDUCED SUB-GRAPH of G
- a connected component of a graph G is a maximal connected induced sub-graph that is not itself a proper sub-graph of any other connected sub-graph of G

One connected component - namely G itself

- two connected components (each a free tree)
- connected acyclic graph is a FREE TREE
 - every free tree with $n \ge 1$ vertices contains exactly (n-1) edges
 - o any edge added to a free tree gives a cycle

Graph Representation

Adjacency Matrix
 Adjacency List

Operations

Minimum-cost Spanning Trees

- G = (V,E) where each edge (v,w) has an associated cost
- a SPANNING TREE for G is a free tree that connects all the vertices in G (n nodes and (n-1) edges; no cycles)
- the cost of the spanning tree is the sum of the costs of the

edges in the tree

 application areas: communication networks (transport/computer)

- G = (V,E)
 - a **connected graph** with a cost function on the edges
 - o let U be a proper subset of V
 - o if (u,v) is an edge of lowest cost such that
 - u in U and v in V-U then there is a MST that includes (u,v) as an edge

Building an MST: creative guess §1

- Build a priority queue (PQ) with the edges, shortest edges first
- Each node in the graph becomes a <u>component</u>
- Choose an edge from the PQ such that the edge <u>connects 2 distinct components</u> until there is only one component – this is the MST

Kruskal's principles - example

PQ: (a c 1), (d f 2), (b e 3), (c f 4), (a d 5), (b c 5), (c d 5), (a b 6), (c e 6), (e f 6)

Components: [a], [b], [c], [d], [e], [f] - 6 components

- $(a c 1) \rightarrow [a-c], [b], [d], [e], [f]$
- (d f 2) → [a-c], [b], [d-f], [e]
- (b e 3) → [a-c], [b-e], [d, f]
- (c f 4) → [a-c, c-f, f-d], [b-e]
- (a d 5) → not chosen
- $(b c 5) \rightarrow [a-c, c-b, b-e, c-f, f-d] 1$ component (MST)

- 5 components
- 4 components
- 3 components
 - 2 components
 - a & d in same component

MST – explanation (Kruskal)

priority que
a c 1
d f 2
b e 3
cf4
ad5
b c 5
c d 5
ab6
c e 6
ef6

eue Comments

- The edges are stored in a PQ (lowest values first)
- Each node becomes a component
- Each edge should connect 2 components
- NB: a d 5 does not connect 2 components
 - o a and d are in the same component (step 5 above)
 - adding a d 5 would also create a cycle
 - An MST is a free tree and therefore has no cycles
- b c 5 completes the MST
- An MST with n nodes has (n-1) edges
- An MST is a **Free Tree** (no cycles)

Kruskal's Algorithm (creative guess §1)

- One method of constructing an MST is Kruskal's
- start with a graph T = (V, x) i.e. only the vertices of G = (V, E)
- each vertex is a connected component (in the graph T)
- to construct the MST, T examine the edges in E in order of increasing cost (implementation - priority queue)
- if the edge connects two vertices in two connected
 components then add the edge to T (otherwise discard the edge)
- when all the edges are in one component, T is a MST for G

Kruskal's Algorithm

- S = set of connected components (V from G=(V,E))
- merge(A, B, S)
- find(v, S)
- initial('A', v, S)
- insert(e, S)
- remove_pq()
- **(x, y, c)**

- -- merge components A & B in S rename A
- -- return name of component X in S : v in X
- -- make A the name of component in S containing only vertex v initially
- -- add a given edge to S
- -- remove an edge from the PQ
- -- edge (x, y) in PQ with cost c

Kruskal's Algorithm

DFR - DSA - Graphs 3

25/02/2016

25/02/2016

25/02/2016

25/02/2016

Kruskal: Comment

- Using the PQ, the algorithm is reasonably easy to understand in principle (the pictorial representation is easy to follow)
- In general it is worth looking at the problem and its solution before going through any algorithm in detail
- look at each line of the pseudo code and be sure that you can relate the code to the action required i.e. that you can <u>interpret</u> the code

Building an MST: creative guess §2

Prim's principles

- given start node x mark as visited;
- note the <u>edge values</u> from x to the remaining nodes; this uses 2 arrays L for the edge lengths and C for the node name;
- find the <u>shortest edge from x to y</u>; mark y as visited;
- build a COMPONENT (x y) i.e. y is then added to the component (i.e. the visited nodes);
- now examine the edge costs from y to the remaining nodes; if this edge is cheaper, replace the current edge with this edge. The new node is added to the component.
- Repeat for the unvisited nodes. The component grows node by node and cheaper edges replace those edges previously found as cheaper.

Prim's principles example

- (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), (e f 6)
- Start node a visited {a} unvisited {b, c, d, e, f}
 - L = [6, 1, 5, §, §] C = [a, a, a, a, a]
- Shortest edge (a c 1) visited {a, c} unvisited {b, d, e, f}
- (c b 5) is cheaper → L = [5, <u>1</u>, 5, §, §] C = [<u>c</u>, a, a, a, a]
- (c d 5) not cheaper \rightarrow no change
- (c e 6) is cheaper →
 L = [5, <u>1</u>, 5, <u>6</u>, §] C = [c, a, a, c, a]
- (c f 4) is cheaper →
 L = [5, <u>1</u>, 5, 6, <u>4</u>] C = [c, a, a, c, c]

Prim's principles example

- (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), (e f 6)
 - L = [5, <u>1</u>, 5, 6, <u>4</u>] C = [<u>c</u>, a, a, <u>c</u>, <u>c</u>]
- Shortest edge (c f 4) visited {a, c, f} unvisited {b, d, e}
- (f b §) not cheaper → no change
- If d 2) is cheaper →
 L = [5, <u>1</u>, <u>2</u>, 6, <u>4</u>] C = [c, a, <u>f</u>, c, c]
- (f e 6) not cheaper → no change
- Shortest edge (f d 2) visited {a, c, d, f} unvisited {b, e}
- (d b §) not cheaper → no change
- (d e §) not cheaper → no change

Prim's principles example

- (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), (e f 6)
- L = [<u>5</u>, <u>1</u>, <u>2</u>, 6, <u>4</u>] C = [c, a, f, c, c]
- Shortest edge (c b 5) visited {a, b, c, d, f} unvisited {e}
- (b e 3) is cheaper → L = [5, 1, 2, 3, 4] C = [c, a, f, b, c]
- Shortest edge (b e 3) visited {a, b, c, d, e, f} unvisited {} empty STOP
- Result
 L = [5, 1, 2, 3, 4] C = [c, a, f, b, c]

L = [6, <u>1</u>, 5, §, §] C = [a, <u>a</u>, a, a, a]

L = [5, 1, 5, §, §]C = [c, a, a, a, a]

L =	<u>[5</u> ,	<u>1</u> ,	5,	<u>6</u> ,	§]
C =	[<u>C</u> ,	<u>a</u> ,	а,	<u>C</u> ,	a]

L	=	<u>5</u> ,	<u>1</u> ,	5,	<u>6</u> ,	<u>4</u>]
С	=	<u>[C</u> ,	<u>a</u> ,	a,	<u>C</u> ,	<u>C</u>

25/02/2016

L = [5, 1, 2, 6, 4]C = [c, a, f, c, c]

L = [5, 1, 2, 6, 4]C = [c, a, f, c, c]

L = [5, 1, 2, 3, 4]C = [c, a, f, b, c]

L = [5, 1, 2, 3, 4]C = [c, a, f, b, c]

MST – explanation (Prim)

- Prim's algorithm is a greedy algorithm
 - greedy = takes the locally best solution
 - The MST "grows" the MST as one component (similar to Dijkstra)
- Process
 - Choose the <u>cheapest edge</u> from the component to an <u>unvisited</u> node, add edge to the MST and <u>mark the node as visited</u> (U)
 - Start at node a choose the cheapest edge a c 1 mark c
 - Now choose the cheapest edge $U = \{a,c\}$ **c f 4** mark f
 - Now choose the cheapest edge $U = \{a,c,f\}$ f d 2 mark d
 - Now choose the cheapest edge U = {a,c,f,d} c b 5 mark b
 - Now choose the cheapest edge U = {a,c,f,d,b} **b e 5** mark e
 - All nodes have now been visited $U = \{a,c,f,d,b,e\}$ stop.

Prim's Algorithm (creative guess §2)

V = {a,b,c,d,...}

- initialise U to {a}
- the spanning tree grows one edge at a time
- each step:
 - o find the shortest edge (u,v) that connects U and V-U
 - o add v to U
 - until U = V i.e. V-U = m
- cost matrix C gives the costs of each edge

Prim's Algorithm

See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1

	a	b	c	d	e	f
a	ŝ	6	1	5	Ş	§
b	6	\$	5	§	3	§
C	1	5	ŝ	5	6	4
d	5	Ş	5	§	Ş	2
e	Ş.	3	6	§	Ş	6
f	Ş	Ş	4	2	6	§

§ infinity

Prim: example

Init: U V-U	low-cost	closest	k / min			
{a} {b,c,d,e,f}	(-,6, <u>1</u> , 5, §, §)	(-,a, <u>a</u> ,a,a,a)	c / 1			
display ((a,c))						
{a,c} {b,d,e,f}	(-,5, <mark>1</mark> , 5, 6, <u>4</u>)	(-,c, <mark>a</mark> ,a,c, <u>c</u>)	f / 4			
display ((c,f))						
{a,c,f} {b,d,e}	(-,5, 1, <u>2</u> , 6, 4)	(-,c, <mark>a,<u>f</u>,c,c</mark>)	d / 2			
display ((f,d))						
{a,c,f,d} {b,e}	(-, <u>5</u> , 1, 2, 6, 4)	(-, <u>c</u> ,a,f,c,c)	b/5			
display ((c,b))			_			
{a,c,f,d,b} {e}	(-, 5, 1, 2, <u>3</u> , 4)	(-,c,a,f, <u>b</u> ,c)	e/3			
display ((b,e))						
{a,c,f,d,b,e} { }	(-, 5, 1, 2, 3, 4)	(-, <mark>c,a,f,b,c)</mark>				
See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1						

Prim: Comment

- Since the MST is a free tree, there are n-1 edges, hence n-1 iterations
- the following code finds the least cost edge between U and V-U (min, k) min = low-cost[i]; k = i;

for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; }

- the following code may be replaced by for e.g. Add_MST(u,v)
 display(k, closest[k]); -- display edge
- the re-adjustment of the costs is perhaps the trickiest to understand but is in effect similar to Dijkstra - finding the cheapest (i,j) or (i,k) (k,j)

```
for j in (V-U) if ( C[k,j] < low-cost[j] ) )
        {low-cost[j] = C[k,j]; closest[j] = k; }</pre>
```