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Undirected Graphs

 An undirected graph G = (V, E) 
 V a set of vertices
 E a set of unordered edges (v,w) where v, w in V

 USE: to model symmetric relationships between entities
 vertices v and w are adjacent if there is an edge (v,w)        

[or (w,v)]
 the edge (v,w) is incident upon vertices v and w
 an edge may be (v,w,c) where c is a cost component

(e.g. distance)
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Examples
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Terminology

PATH: a sequence of vertices v1, v2, …vn such that
(v1 ,v2), (v2 ,v3), … (vn-1 ,vn) are edges

LENGTH: number of edges in a path
(v denotes a path length 0 from v to v)

SIMPLE PATH: all vertices are distinct
(except possibly the first and the last)

SIMPLE CYCLE: a simple path of length 3 or more that 
(undirected graph) connects a vertex to itself
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Sub-graph

 G = (V, E)
 a sub-graph of G is a graph G’ = (V’, E’) where

 V’ is a subset of V
 E’ consists of edges (v,w) such that both v and w are in V’

 if E’ consists of all edges (v,w) in E such that both v, 
w in V’ then G’ is an INDUCED SUB-GRAPH of G

 a connected component of a graph G is a 
maximal connected induced sub-graph that is not 
itself a proper sub-graph of any other connected 
sub-graph of G
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Sub-graph: example
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An Unconnected Graph

 two connected components (each a free tree)
 connected acyclic graph is a FREE TREE

 every free tree with n >=1 vertices contains exactly (n-1) edges
 any edge added to a free tree gives a cycle
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Graph Representation

 Adjacency Matrix  Adjacency List
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Operations

insert
remove

find
vertex
edge

navigate

list
operations

is_path
is_cycle

shortest
path

spanning
forest
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Minimum-cost Spanning Trees

 G = (V,E) where each edge (v,w) has an associated cost
 a SPANNING TREE for G is a free tree that connects all the 

vertices in G (n nodes and (n-1) edges; no cycles)
 the cost of the spanning tree is the sum of the costs of the 

edges in the tree

 application areas: communication networks 
(transport/computer)
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MST Property

 G = (V,E) 
 a connected graph with a cost function on the edges
 let U be a proper subset of V
 if (u,v) is an edge of lowest cost such that

 u in U and v in V-U then there is a MST that includes 
(u,v) as an edge
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Building an MST: creative guess §1
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Kruskal’s principles

 Build a priority queue (PQ) with the edges, 
shortest edges first

 Each node in the graph becomes a component

 Choose an edge from the PQ such that the edge 
connects 2 distinct components until there is 
only one component – this is the MST
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Kruskal’s principles - example

PQ: (a c 1), (d f 2), (b e 3), (c f 4), (a d 5), 
(b c 5), (c d 5), (a b 6), (c e 6), (e f 6)

Components: [a], [b], [c], [d], [e], [f] - 6 components
 (a c 1)  [a-c], [b], [d], [e], [f] - 5 components
 (d f 2)  [a-c], [b], [d-f], [e] - 4 components
 (b e 3)  [a-c], [b-e], [d, f] - 3 components
 (c f 4)  [a-c, c-f, f-d], [b-e] - 2 components
 (a d 5)  not chosen - a & d in same component

 (b c 5)  [a-c, c-b, b-e, c-f,  f-d] - 1 component (MST)
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MST – explanation (Kruskal)

priority queue
a c 1
d f  2
b e 3
c f  4
a d 5
b c 5
c d 5
a b 6
c e 6
e f 6

Comments
 The edges are stored in a PQ (lowest values first)

 Each node becomes a component
 Each edge should connect 2 components
 NB: a d 5 does not connect 2 components

 a and d are in the same component (step 5 above)
 adding a d 5 would also create a cycle
 An MST is a free tree and therefore has no cycles

 b c 5 completes the MST
 An MST with n nodes has (n-1) edges
 An MST is a Free Tree (no cycles)

25/02/2016 DFR - DSA - Graphs 3 14



25/02/2016 DFR - DSA - Graphs 3 15

Kruskal’s Algorithm (creative guess §1)

 One method of constructing an MST is Kruskal’s

 start with a graph T = (V, ¤) i.e. only the vertices of G = (V, E)

 each vertex is a connected component (in the graph T)

 to construct the MST, T examine the edges in E in order of 
increasing cost (implementation - priority queue)

 if the edge connects two vertices in two connected 
components then add the edge to T (otherwise discard the edge)

 when all the edges are in one component, T is a MST for G
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Kruskal’s Algorithm

 S = set of connected components (V from G=(V,E))

 merge(A, B, S) -- merge components A & B in S - rename A

 find(v, S) -- return name of component X in S : v in X

 initial(‘A’, v, S) -- make A the name of component in S  
containing only vertex v initially

 insert(e, S) -- add a given edge to S

 remove_pq() -- remove an edge from the PQ

 (x, y, c) -- edge (x, y) in PQ with cost c
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Kruskal’s Algorithm

for each v in S initial ( next(name), v, S) -- initiliase

while (size(S) > 1 { -- size = number of components

get_PQ ( ); -- get (x, y, c) from PQ

if ( find(x, S) != find(y, S) ) { -- x, y in different components

merge ( find (x, S), find (y, S), S );
insert (get_PQ ( ), S);
}

remove_pq( );
}
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Kruskal: example
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Kruskal: example
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Kruskal: example
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Kruskal: example
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Kruskal: example
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Kruskal: example
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Kruskal: example
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Kruskal: Comment

 Using the PQ, the algorithm is reasonably easy to 
understand in principle (the pictorial representation is easy to follow)

 In general it is worth looking at the problem and its 
solution before going through any algorithm in detail

 look at each line of the pseudo code and be sure 
that you can relate the code to the action required 
i.e. that you can interpret the code
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Building an MST: creative guess §2
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Prim’s principles

 given start node x mark as visited; 
 note the edge values from x to the remaining nodes;  this uses 2 

arrays L for the edge lengths and C for the node name; 
 find the shortest edge from x to y; mark y as visited; 
 build a COMPONENT (x y) i.e. y is then added to the component 

(i.e. the visited nodes); 
 now examine the edge costs from y to the remaining nodes; if 

this edge is cheaper, replace the current edge with this edge. 
The new node is added to the component.

 Repeat for the unvisited nodes. The component grows node by 
node and cheaper edges replace those edges previously found 
as cheaper.
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Prim’s principles example

 (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), 
(e f 6)

 Start node a – visited {a} – unvisited {b, c, d, e, f} 
 L = [6, 1, 5, §, §] C = [a, a, a, a, a]
 Shortest edge (a c 1) – visited {a, c} – unvisited {b, d, e, f}
 (c b 5) is cheaper  L = [5, 1, 5, §, §] C = [c, a, a, a, a]
 (c d 5) not cheaper  no change
 (c e 6) is cheaper L = [5, 1, 5, 6, §] C = [c, a, a, c, a]
 (c f 4) is cheaper L = [5, 1, 5, 6, 4] C = [c, a, a, c, c]
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Prim’s principles example

 (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), 
(e f 6)

 L = [5, 1, 5, 6, 4] C = [c, a, a, c, c]
 Shortest edge (c f 4) – visited {a, c, f} – unvisited {b, d, e}
 (f b §) not cheaper  no change
 (f d 2) is cheaper L = [5, 1, 2, 6, 4] C = [c, a, f, c, c]
 (f e 6) not cheaper  no change
 Shortest edge (f d 2) – visited {a, c, d, f} – unvisited {b, e}
 (d b §) not cheaper  no change
 (d e §) not cheaper  no change
 L = [5, 1, 2, 6, 4] C = [c, a, f, c, c]
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Prim’s principles example

 (a b 6), (a c 1), (a d 5), (b c 5), (b e 3), (c d 5), (c e 6), (c f 4), (d f 2), 
(e f 6)

 L = [5, 1, 2, 6, 4] C = [c, a, f, c, c]

 Shortest edge (c b 5) – visited {a, b, c, d, f} – unvisited {e}
 (b e 3) is cheaper  L = [5, 1, 2, 3, 4] C = [c, a, f, b, c]

 Shortest edge (b e 3) – visited {a, b, c, d, e, f} – unvisited {} empty –
STOP

 Result L = [5, 1, 2, 3, 4] C = [c, a, f, b, c]

25/02/2016 DFR - DSA - Graphs 3 30



Prim’s principles - pictures

L = [6, 1, 5, §, §] 
C = [a, a, a, a, a]

L = [5, 1, 5, §, §] 
C = [c, a, a, a, a]

25/02/2016 DFR - DSA - Graphs 3 31

a
b

c
d

fe
6

4
5

15

2

6

3

56

a
b

c
d

fe
6

4
5

15

2

6

3

56



Prim’s principles - pictures

L = [5, 1, 5, 6, §] 
C = [c, a, a, c, a]

L = [5, 1, 5, 6, 4] 
C = [c, a, a, c, c]
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Prim’s principles - pictures

L = [5, 1, 2, 6, 4] 
C = [c, a, f, c, c]

L = [5, 1, 2, 6, 4] 
C = [c, a, f, c, c]
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Prim’s principles - pictures

L = [5, 1, 2, 3, 4] 
C = [c, a, f, b, c]

L = [5, 1, 2, 3, 4] 
C = [c, a, f, b, c]
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MST – explanation (Prim)

 Prim’s algorithm is a greedy algorithm
 greedy = takes the locally best solution
 The MST “grows” the MST as one component (similar to Dijkstra)

 Process
 Choose the cheapest edge from the component to an unvisited 

node, add edge to the MST and mark the node as visited (U)
 Start at node a – choose the cheapest edge     a c 1 mark c
 Now choose the cheapest edge U = {a,c}           c f 4 mark f
 Now choose the cheapest edge U = {a,c,f}         f d 2 mark d
 Now choose the cheapest edge U = {a,c,f,d}      c b 5 mark b
 Now choose the cheapest edge U = {a,c,f,d,b}   b e 5 mark e
 All nodes have now been visited U = {a,c,f,d,b,e}              stop.


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Prim’s Algorithm (creative guess §2)

 V = {a,b,c,d,…}
 initialise U to {a}
 the spanning tree grows one edge at a time
 each step:

 find the shortest edge (u,v) that connects U and V-U
 add v to U
 until U = V i.e. V-U = ¤

 cost matrix C gives the costs of each edge
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Prim’s Algorithm

Prim ( node v) -- v is the start node
{ U = {v};  for i in (V-U) { low-cost[i] = C[v,i]; closest[i] = v; }
while (!is_empty (V-U) ) { -- find the closest vertex in V-U

i = first(V-U); min = low-cost[i]; k = i; -- minimum cost edge
for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; }
display(k, closest[k]); -- display edge
U = U + k; -- k added to U
for j in (V-U) if ( C[k,j] < low-cost[j] ) ) -- readjust costs

{low-cost[j] = C[k,j]; closest[j] = k; }
}

}
See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1
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Prim: example
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Prim: example

Init: U V-U low-cost closest k / min
{a} {b,c,d,e,f} (-,6, 1, 5, §, §) (-,a,a,a,a,a) c / 1

display ((a,c))
{a,c}   {b,d,e,f} (-,5, 1, 5, 6, 4) (-,c,a,a,c,c) f / 4

display ((c,f))
{a,c,f}   {b,d,e} (-,5, 1, 2, 6, 4) (-,c,a,f,c,c) d / 2

display ((f,d))
{a,c,f,d}   {b,e} (-,5, 1, 2, 6, 4) (-,c,a,f,c,c) b / 5

display ((c,b))
{a,c,f,d,b}   {e} (-, 5, 1, 2, 3, 4) (-,c,a,f,b,c) e / 3

display ((b,e))
{a,c,f,d,b,e}   { } (-, 5, 1, 2,  3, 4) (-,c,a,f,b,c)

See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1



25/02/2016 DFR - DSA - Graphs 3 40

Prim: Comment

 Since the MST is a free tree, there are n-1 edges, hence n-1 
iterations

 the following code finds the least cost edge between U and V-U (min, k)

min = low-cost[i]; k = i; 
for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k = j; }

 the following code may be replaced by for e.g. Add_MST(u,v)
display(k, closest[k]); -- display edge

 the re-adjustment of the costs is perhaps the trickiest to understand 
but is in effect similar to Dijkstra - finding the cheapest (i,j) or (i,k) (k,j)

for j in (V-U) if ( C[k,j] < low-cost[j] ) )
{low-cost[j] = C[k,j]; closest[j] = k; }


