Undirected Graphs

= Anundirected graph G =(V, E)
o V aset of vertices
o Easetofunordered edges (v,w) where v, winV

= USE: to model symmetric relationships between entities

m Vvertices vand w are adjacent if there is an edge (v,w)
[or (w,V)]

= the edge (v,w) is incident upon vertices v and w

= an edge may be (v,w,c) where cis a cost component
(e.g. distance)

25/02/2016 DFR - DSA - Graphs 3

Examples

25/02/2016 DFR - DSA - Graphs 3

Terminology

PATH: a sequence of vertices v,, V,, ...V, such that
(V1 ,Vs), (V, ,V3), ... (V1 ,V,) are edges

LENGTH:

SIMPLE PATH:

SIMPLE CYCLE:
(undirected graph)

25/02/2016

number of edges in a path
(v denotes a path length O from v to v)
all vertices are distinct

(except possibly the first and the last)
a simple path of length 3 or more that
connects a vertex to itself

DFR - DSA - Graphs 3

Sub-graph

s G=(V,E)
m asub-graph of Gisagraph G' = (V’, E’) where
o V'is asubset of V
o E’ consists of edges (v,w) such that both vand w are in V’

= If E’ consists of all edges (v,w) in E such that both v,
w in V' then G’ is an INDUCED SUB-GRAPH of G

m aconnected component ofagraph Gis a
maximal connected induced sub-graph that is not
itself a proper sub-graph of any other connected
sub-graph of G

25/02/2016 DFR - DSA - Graphs 3 4

| Sub-graph: example

9,@ :
@~ @ ©
graph G ||sub-graph G’| | (an) induced sub-graph

25/02/2016

One connected component - namely G itself

DFR - DSA - Graphs 3

An Unconnected Graph

= two connected components (each a free tree)
= connected acyclic graph is a FREE TREE

o every free tree with n >=1 vertices contains exactly (n-1) edges
o any edge added to a free tree gives a cycle

X

25/02/2016 DFR - DSA - Graphs 3

| Graph Representation

= Adjacency Matrix = Adjacency List

al8/1/0(1
b[1%/0][1 b~ard
cl0j0/el1 (o—d) '
d1]1]1 f*d
dP a P b P

25/02/2016 DFR - DSA - Graphs 3

Operations

Insert
remove vertex
find edge
navigate
IS_path shortest
IS_cycle path

25/02/2016

list
operations

O 0 T ™o

forest

spanning

DFR - DSA - Graphs 3

Minimum-cost Spanning Trees

= G =(V,E) where each edge (v,w) has an associated cost

= aSPANNING TREE for G is a free tree that connects all the
vertices in G (n nodes and (n-1) edges; no cycles)

m the cost of the spanning tree is the sum of the costs of the
edges in the tree

6 LA AANI5 a
~
b 5] 1L d bJ5| 11 d
C C
3\ L6 y 21/ 5 3 y 2
e - f f

= application areas: communication networks
(transport/computer)

25/02/2016 DFR - DSA - Graphs 3

MST Property

= G=(V,B)
o aconnected graph with a cost function on the edges
o let U be a proper subset of V

o If (u,v) is an edge of lowest cost such that

= uinUandvinV-Uthen thereis a MST that includes
(u,v) as an edge

S
~

C
364523 N /2
e f f
6

25/02/2016 DFR - DSA - Graphs 3 10

Building an MST: creative guess 81

- 3 - 3 step 1 - step 2
1| (d 1
2 2 2 ey ® : ¢ © Cl ?
2
e 64 f @ @ ﬂ

2 3

25/02/2016

DFR - DSA - Graphs 3 11

Kruskal’s principles

= Build apriority gueue (PQ) with the edges,
shortest edges first

= Each node in the graph becomes a component

m | Choose an edge from the PQ such that the edge
connects 2 distinct components until there is
only one component — this is the MST

25/02/2016 DFR - DSA - Graphs 3 12

| Kruskal's principles - example]

PQ: (acl),(df2),(be3),(cfd),(adb),
(bc5),(cdb5),(ab6),(ceb)(efb)

Components: [a], [b], [c], [d], [e], [f]

(ad 5) = not chosen

25/02/2016

(ac 1) =>[a-c], [b], [d], [e], []
(d f2) = [ac], [b], [d-T], [e]
(b e 3) = [a-c], [b-€], [d, f]
(cf4)=>» [a-c, c-f, f-d], [b-€]

(b c 5) = [a-c, c-b, b-e, c-f, f-d]

DFR - DSA - Graphs 3

- 6 components
- 5 components
-4 components
- 3 components
- 2 components

-a & din same component

-1 component (MST)

13

MST — explanation (Kruskal)

priority queue
acl
df 2
be3
cf 4
ad5b
bcb5
ed5
abb
ceb
ef6

25/02/2016

Comments

The edges are stored in a PQ (lowest values first)
Each node becomes a component
Each edge should connect 2 components

NB: a d 5 does not connect 2 components

o aandd are in the same component (step 5 above)
o adding a d 5 would also create a cycle

o An MST is a free tree and therefore has no cycles

b c 5 completes the MST
An MST with n nodes has (n-1) edges
An MST is a Free Tree (no cycles)

DFR - DSA - Graphs 3 14

KI’USka|’S A|gOrIthm (creative guess 81)

= One method of constructing an MST is Kruskal’s
= startwith agraph T = (V, o) i.e. only the vertices of G = (V, E)
m each vertex is a connected component (in the graph T)

m to construct the MST, T examine the edges in E in order of
Increasing cost (implementation - priority queue)

m If the edge connects two vertices in two connected
components then add the edge to T (otherwise discard the edge)

= when all the edges are in one component, T is a MST for G

25/02/2016 DFR - DSA - Graphs 3 15

Kruskal’s Algorithm

m S =set of connected components (V from G=(V,E))

= merge(A, B, S)
s find(v, S)
= Initial(‘'A’, v, S)

= Insert(e, S)
= remove pq()

= (X,Y,¢C)

25/02/2016

-- merge components A& B in S - rename A
-- return name of component Xin S:vin X

-- make A the name of componentin S
containing only vertex v initially

--add a given edge to S
-- remove an edge from the PQ

-- edge (X, y) in PQ with cost c

DFR - DSA - Graphs 3 16

Kruskal’'s Algorithm

for each v in Sinitial (next(name), v, S) --initiliase
while (size(S) >1 { -- Size = number of components
get PQ (); --get (x, y, c) from PQ
If (find(x, S) = flnd(y, S)) { -- X, y in different components
merge (find (x, S), find (y, S), S);
Insert (get_ PQ (), S);
}

remove_pdq();

}

25/02/2016 DFR - DSA - Graphs 3 17

Kruskal: example

f

d

PQ

18

DFR - DSA - Graphs 3

25/02/2016

Kruskal: example

SA - Graphs 3

Kruskal: example

20

DFR - DSA - Graphs 3

25/02/2016

Kruskal: example

21

DFR - DSA - Graphs 3

25/02/2016

Kruskal: example

22

DFR - DSA - Graphs 3

25/02/2016

Kruskal: example

23

DFR - DSA - Graphs 3

25/02/2016

Kruskal: example

24

DFR - DSA - Graphs 3

25/02/2016

Kruskal: Comment

= Using the PQ, the algorithm is reasonably easy to
understand in prinCipIe (the pictorial representation is easy to follow)

= In general it is worth looking at the problem and its
solution before going through any algorithm in detalil

= look at each line of the pseudo code and be sure
that you can relate the code to the action required
l.e. that you can interpret the code

25/02/2016 DFR - DSA - Graphs 3 25

Building an MST: creative guess 82

step 1 step 2
6 Ad i d a
=1 11] ~(d @ 1 @ @ 1 @
\ 5 C/ |5 > C C
4
2anp NN ONNG © O
A step 3 3 step 4 q) Stepd
(b) 1] (d o5 1l (d b5 ML (d
¢ ; ¢ ; 3 C4 2

25/02/2016 DFR - DSA - Graphs 3

26

Prim’s principles

m given start node x mark as visited;

= notethe edge values from x to the remaining nodes; this uses 2
arrays L for the edge lengths and C for the node name;

= find the shortest edge from x to y; mark y as visited,;

= build a COMPONENT (x y) i.e.y is then added to the component
(i.e. the visited nodes);

= | now examine the edge costs from y to the remaining nodes; if
this edge is cheaper, replace the current edge with this edge.
The new node is added to the component.

= Repeat for the unvisited nodes. The component grows node by
node and cheaper edges replace those edges previously found
as cheaper.

25/02/2016 DFR - DSA - Graphs 3 27

Prim’s principles example

(e f 6)

m Start node a — visited {a} — unvisited {b, c, d, e, f}

L=[6,1

,5,8,8 C=]a,a, a,

= Shortest edge (a c 1) — visited {a, c} — unvisited {b, d, e, f}

= (cbb)ischeaper =

L=[51

= (cdb)not cheaper = no change

= (ce6)ischeaper =
m (cfd)ischeaper =

25/02/2016

L=[51
L=[51

DFR - DSA - Graphs 3

,5,8,8 C=]c,a, a,

,5,6,8C=]g, a, a,
,95,6,4] C=]c, a, a,

a,

1o

(ab6),(acl),(ads), (bcs),(be3d),(cd5)(ceb)(cfd), df2),

28

Prim’s principles example

= (ab6),(acl),(ad5s),(bcs), (be3d)(cdb),(ceb),(cfa), (df2),
(e f 6)

R L=[5156,4C=[c,aac,c]
= Shortest edge (c f 4) — visited {a, c, f} — unvisited {b, d, e}

= (fb 8) not cheaper = no change

m (fd2)ischeaper = L=[51,2,6,4C=][c,a,f,c,c]
= (fe 6) not cheaper = no change

= Shortest edge (f d 2) — visited {a, c, d, f} — unvisited {b, e}

= (d b 8) not cheaper = no change

= (d e 8) not cheaper = no change

i L=[51,2,6,4C=][c,a,f,c,c]

25/02/2016 DFR - DSA - Graphs 3 29

= (ab6),(acl),(ad5s),(bcs), (be3d)(cdb),(ceb),(cfa), (df2),
(e f 6)

i L=[51,2,6,4C=][c,a,f,c,c]

= Shortest edge (c b 5) —visited {a, b, c, d, f} — unvisited {e}
m (be3)ischeaper 2> L=1[5,1,2,3,4C=]c,afb,c]

= Shortest edge (b e 3) —visited {a, b, c, d, e, f} —unvisited {} empty —
STOP

= Result L=[51,23,4C=]c,a,f,Db,c]

25/02/2016 DFR - DSA - Graphs 3 30

| Prim’s principles - pictures]

25/02/2016 DFR - DSA - Graphs 3 31

| Prim’s principles - pictures]

25/02/2016 DFR - DSA - Graphs 3 32

| Prim’s principles - pictures

25/02/2016

DFR - DSA - Graphs 3

|

33

| Prim’s principles - pictures]

25/02/2016 DFR - DSA - Graphs 3 34

MST — explanation (Prim)

= Prim’s algorithm is a greedy algorithm

O
O

O

O O O O O O

25/02/2016

N

greedy = takes the locally best solution

The MST “grows” the MST as one component (similar to Dijkstra)

m Process

Choose the cheapest edge from the component to an unvisited
node, add edge to the MST and mark the node as visited (U)

Start at node a — choose the cheapestedge ac1l
Now choose the cheapest edge U = {a,c} cf4
Now choose the cheapest edge U = {a,c,f} fd2
Now choose the cheapestedge U={a,c,fd} cbb5
Now choose the cheapest edge U ={a,c,f,d,b} beb5
All nodes have now been visited U = {a,c,f,d,b,e}

DFR - DSA - Graphs 3

mark c
mark f
mark d
mark b
mark e
stop.

35

PI’Im’S Al Ol’lthm (creative guess 82)

= V={ab,cd,...}
= Initialise U to {a}
= the spanning tree grows one edge at a time

= each step:

o find the shortest edge (u,v) that connects U and V-U
o addvtoU
o untlu=V lL.e.V-U=no

= cost matrix C gives the costs of each edge

25/02/2016 DFR - DSA - Graphs 3 36

Prim’s Algorithm

Prim (node v) -- v is the start node

{U={v}; foriin (V-U) {low-cost[i] = C[v,i]; closest[i] =v; }

while (lis_empty (V-U)) { -- find the closest vertex in V-U
| = first(V-U); min = low-cost[i]; k =i; -- minimum cost edge
for j in (V-U-k) if (low-cost[j] < min) {min = low-cost[j]; k =j; }
display(k, closest[k]); -- display edge
U=U+k; -- k added to U
forjin (V-U)if (C[k,j] <low-cost][j])) -- readjust costs

{low-cost[j] = C[k,j]; closest[j] = k; }

}

See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1

25/02/2016 DFR - DSA - Graphs 3

37

Prim: example

4= o0 Y| N o|wn
O|wnjun|©
Diunm ._W.
LO| | LO| ¢ on| 0| N =
OF = jun c
O || C|<t| &
ool Lo|w|m|wn =
S| won| ©O || LO)LD
O O T VY% wn
g ®) N
Lo Lo Y
—
(qv) ol Yl o
LOf| ©
© @
oY m

38

DFR - DSA - Graphs 3

25/02/2016

Prim: example

Init: U V-U low-cost closest Kk / min

{a} {b,c,d,e,f} (-6,1,5'8,8 (-aaaaa) c/1
display ((a,c))

{a,c} {b,d,e,f} (-,5,1,5,6,4) (-,c,a,a,c,c) fl4
display ((c,f))

{a,c,f} {b,d,e} (-,5,1,2,6,4) (-c,a,,c,c) d/2
display ((f,d))

{a,c,f,d} {b,e} (-,5,1,2,6,4) (-,c,a,f,c,c) b/5
display ((c,b))

{a,c,f,d,b} {e} (-,5,1,2,3,4) (-c,af,b,c) el/3
display ((b,e))

{a,c,f,d,b,e} {} (-,51,2, 3,4 (-c,afb,c)

See http://www.cs.kau.se/cs/education/courses/dvgb03/revision/index.php?PrimEx=1

25/02/2016 DFR - DSA - Graphs 3

Prim: Comment

= Since the MST is a free tree, there are n-1 edges, hence n-1
iterations

= the following code finds the least cost edge between U and V-U min, k)
min = low-cost[i]; k =1i;
for j in (V-U-k) if (low-cost[j] < min) {min =low-cost[j]; k =j; }
= the following code may be replaced by for e.g. Add_MST(u,v)
display(k, closest[k]); -- display edge
= the re-adjustment of the costs is perhaps the trickiest to understand
but is in effect similar to Dijkstra - finding the cheapest (i,j) or (i,k) (k,j)

forjin (V-U) if (C[k,j] <low-cost[j]))
{low-cost[j] = C[k,j]; closest[j] = k; }

25/02/2016 DFR - DSA - Graphs 3 40

