aphs: Depth First Search

Similar to the algorithm for directed graphs
(v, w) is similar to (v,w) (w,v) in a digraph
for the depth first spanning forest (dfsf), each

connected component in the graph will have a tree
In the dfsf

o (if the graph has one component, the dfsf will consist of one tree)

In the dfsf for digraphs, there were 4 kinds of
edges: ftree, forward, back and cross

for a graph there are 2: tree and back edges
(forward and back edges are not distinguished and there are
No cross edges)

11/12/2016 DFR - DSA - Graphs 4 1

phs: Depth First Search

m Tree edges:

o edges (v,w) such that dfs(v) directly calls dfs(w) (or vice
versa)

m Back edges:

o edges (v,w) such that neither dfs(v) nor dfs(w) call each

other directly (e.g. dfs(w) calls dfs(x) which calls dfs(v) so that w
is an ancestor of v)

= In adfs, the vertices can be given a dfs number
similar to the directed graph case

11/12/2016 DFR - DSA - Graphs 4

| DES: Example

a|| bjlc]||ld

bjla/[d]||e

cl/la|lf]lg

djla||lb]le

ejla||b]|ld

fllcllg
start: a g C f
abdecfg

11/12/2016 DFR - DSA - Graphs 4

| DES: Example

[21[b][c][d
bilaj|d]||e
cl/la|lf]lg
dilaj[b]|e
ellaj|b]||d
fllcllg
gllc|[f

11/12/2016 DFR - DSA - Graphs 4 dfs

| DES: Example

| D &

o | (D

O T T [=h & O

[=]
b
C
d
e
f
g

OO0 @ @ D D

—h

11/12/2016 DFR - DSA - Graphs 4 dfs

| DES: Example

a(1)>b(2)

11/12/2016

[a][B][clld

[blla]ld][e
cl/la|lf]lg
dilaj[b]|e
ellaj|b]||d
fllcllg
gllc||f

DFR - DSA - Graphs 4 dfs

| DES: Example

a(1)>b(2)

11/12/2016

[21[b]c][d
[o] [l [d] [e
cl/la|lf]lg
djla||lb]le
ejla||b]|ld
fllcllg

gllc||f

DFR - DSA - Graphs 4 dfs

| DES: Example

a(1)>b(2)>d(3)

11/12/2016

[a] (o] (c]ld
[o] [l [d] [e
cl/la|lf]lg
[dllallb][e
ejla||b]|ld
fllcllg

gllc || f

DFR - DSA - Graphs 4 dfs

| DES: Example

a(1)>b(2)>d(3)

Q| (D] |

d

DSA - Graphs 4 dfs

| DES: Example

a(1)>b(2)>d(3)de(4)

D_Ecn D | O

5 FEEFBE

SEREEEE
- o UE*EO

DSA - Graphs 4 dfs

| DES: Example

1111111111

5 FEEF

SB[z 8l
SB=[EEE

SZEEE

| DES: Example

1111111111

SB[z 8l
SB[EE

5 FEEF

HE &

DES: Example

DES: Example

a(1)>c(5)

DES: Example

a(1)>c(5)

| DES: Example

1111111111

(2]][]
[o] (=] [d]
[c]2][E]
[d] [[®]
(e[[®]
c] g
gjlLc|Lf

HE &

| DES: Example

1111111111

| bl bl b1 B1 B E

- ElEl EIEH EIE

=] HEIEIEIE B

HE &

| DES: Example

1111111111

ElHEIEIEIE B

| bl bl b1 B1 B E

- ElEl EIEH EIE

HE &

| DES: Example

1111111111

ElHEI BBl E B

Ll bl Bl Bl B B E

HEIEEIEEIEL

HE &

| DES: Example

1111111111

HElEEEEE]
Bl ElElE] =

ElHEIE E]E B
bl Bl B] B B E

| DES: Example

1111111111

ElHEI BBl E B

Ll bl Bl Bl B B E

HEIEEIEEIEL

Bl Bl Bl I E

]

| D FSF Exam ple (Depth-First Spanning Forest)]

back

11/12/2016 DFR - DSA - Graphs 4

tree

|| @ =

tree tree
ed @

22

raphs: Breadth First Search

= for each vertex v, visit all the adjacent vertices first

= a breadth-first spanning forest can be constructed
o consists of

m tree edges: edges (v,w) such that v is an ancestor of w (or
vice versa)

m Cross edges: edges which connect two vertices such that
neither is an ancestor of the other

= NB the search only works on one connected
component

o If the graph has several connected components then apply
bfs to each component

11/12/2016 DFR - DSA - Graphs 4 23

BESF: Example

Note that this represents the MST for an unweighted undirected graph

11/12/2016

tree

tree

oSS

ros

DFR - DSA - Graphs 4

24

B FS F a.I O rlth m (Breadth-First Spanning Forest)

bfs ()
{ mark v visited; enqueue (v);
while (not is_empty (Q)) {
x = front (Q); dequeue (Q);
for each y adjacent to x if y unvisited {
mark y visited; enqueue (y);
insert ((x,y)inT);

}

11/12/2016 DFR - DSA - Graphs 4

25

Articulation Point

= An articulation point of a graph is a vertex v such
that if v and its incident edges are removed, a
connected component of the graph is broken into
two or more pieces

m aconnected component with no articulation points
IS said to be biconnected

= the dfs can be used to help find the biconnected
components of a graph

= finding articulation points is one problem concerning
the connectivity of graphs

11/12/2016 DFR - DSA - Graphs 4 26

Connectivity

= finding articulation points is one problem concerning
the connectivity of graphs

= agraph has connectivity k if the deletion of any (k-
1) vertices fails to disconnect the graph what does this mean?)

o e.g.agraph has connectivity 2 or more iff it has no
articulation points i.e. iff it is biconnected

= the higher the connectivity of a graph, the more
likely the graph is to survive failure of some of its
vertices

o e.g. agraph representing sites which must be kept in
communication (computers / military / other)

11/12/2016 DFR - DSA - Graphs 4 27

Ints / Connectivity: Example

= articulation points
are aandc

= removing a gives
{b,d,e} and {c,f,g}
= removing c gives
{a,b,d,e} and {f,g}

= removing any other
vertex does not
split the graph

11/12/2016 DFR - DSA - Graphs 4 28

Articulation Points: Algorithm

Perform a dfs of the graph, computing the df-
number for each vertex v

(df-numbers order the vertices as in a pre-order traversal of a tree)

for each vertex v, compute low(v) - the smallest df-
number of v or any vertex w reachable from v by
following down O or more tree edges to a
descendant x of v (x may be v) and then following a
back edge (X, w)

compute low(v) for each vertex v by visiting the
vertices in post-order traversal

when v is processed, low(y) has already been
computed for all children y of v

11/12/2016 DFR - DSA - Graphs 4 29

11/12/2016

Articulation Points: Algorithm

low(v) is taken to be the
minimum of
o df-number(v)

o df-number(z) for any
vertex z where (v,z) is a
back edge

o low(y) for any child y of v
example

o e =min(4, (1,2), -)
d=min(3,1,1)b=min(2, -, 1)
g =min(7,5,-) f=min(6, -, 5)
c =min(5, -, 5)

a=min(1, -, (1,5))

o O O O

example
al
1/(b2
1/(d3
1|(ed

DFR - DSA - Graphs 4

ch

f6

o1

U1 S

30

Articulation Points: Algorithm

= therootis an AP iff it has 2 or more children

o since it has no cross edges, removal of the root must
disconnect the sub-trees rooted at its children

o removing a=>{b, d, e}and {c, f, g}

m avertex Vv (other than the root) IS an AP Iff there is
some child w of v such that low(w) >= df-number(v)
o Vv disconnects w and its descendants from the rest of the
graph

o Iflow(w) < df-number(v) there must be a way to get from
w down the tree and back to a proper ancestor of v (the
vertex whose df-number is low(w)) and therefore deletion
of v does not disconnect w or its descendants from the
rest of the graph

11/12/2016 DFR - DSA - Graphs 4 31

Articulation Points

m root - 2 or more children
m other vertices

o some child w of v such that
low(w) >= df-number(v)

= example

o @ root >= 2 children
o b low(e) =1 dfn=2
o @ low(g) =5 dfn=5
o d low(e) =1 dfn =3
o e N/A

o f low(g) =5 dfh =6
o g N/A

. Example 1

11/12/2016 DFR - DSA - Graphs 4

al)ll

ch

f6

o1

U1 N

32

Articulation Points: Example 2

root - 2 or more children
= other vertices

o some child w of v such
that low(w) >= df-

number(v)
= example

o @ root >= 2 children
o b low(e) =1 dfn=2
o © low(g) =7 dfin=5
o d low (e) =1 dfn=3
o e N/A

o (©) low(g) =7 dfn=6
o g N/A

11/12/2016 DFR - DSA - Graphs 4

33

Bipartite Graph

s Agraph Gis bipartite
If V Is the disjoint union
of V, and V, such that
no x;and x; in V, are
adjacent (similarly y;
andy;inV,)

m example
o setof courses
o setof teachers

o edge => can teach
course
o (marriage problem?!)

11/12/2016 DFR - DSA - Graphs 4

34

Bipartite Graph: Matching
Problem

= A matching in a bipartite graph (BG) is a set of edges whose
end points are distinct

= amatching is complete if every member of V, is the end point
of one of the edges in the matching

= a matching is perfect if every member of V is the end point of
one of the edges in the matching

= IinaBG where V =V, disjoint union V,, there is a complete
matching iff for every subset C of V, there are at least |C|
vertices in V, adjacent to members of C

= IinaBG where V =V, disjoint union V,, there is a perfect
matching iff for every subset C of V, there are at least |C|
vertices in V, adjacent to members of Cand |V, | =| V, |

11/12/2016 DFR - DSA - Graphs 4 35

| BG Matching: Example

1111111111

|

Konigsberg Bridge Problem (Euler)

= Find a cycle in the
graph G that includes
all the vertices and all
the edges in G —

Euler Cycle

= If G has an Euler
cycle, then G is
connected and every
vertex has an even
degree

= degree(v) = number of
edges incident on v

11/12/2016 DFR - DSA - Graphs 4

C3

37

Hamiltonian Cycle

m Hamiltonian cycle: cycle
in a graph G = (V,E) which
contains each vertex in V
exactly once, except for the
starting and ending vertex
that appears twice

m degree(v)=2forallvinV

c(l,7
LA @57
e ® e (15,4)
b (4,3)
O O—>
a (0,0) f (18,0)

EINAG N/

length = 50.0 length = 49,78

11/12/2016 DFR - DSA - Graphs 4

length = 48.39

38

TSP Problem

m What may we assume?

A
= Graph is fully connected
= a-bb =5 C (.1,7) . d (15,7)
= a-c,sqrt(50) = 7+ @ [¢ (15.4)
= a-d,sqgrt(274) =16+ b (z 3) R
= a-e,sgrt(241) =15+ O— o—
. afis _ 18 a (0,0) f (18,0)
= b-cbh = 5
= b-d,sqgrt(137) =11+

= b-e,sqrt(122) =11+

11/12/2016 DFR - DSA - Graphs 4

39

TSP Problem

- ®© o O T 2

5 5
/+ 5

16+ 11+ 14
15+ 11+ 14+
18 15+ 18+

11/12/2016

Start estimating!

16+
11+
14

3
7+

15+
11+
14+
3

c(1,7)
O

d (15,7)

® e (15,4)

()
15+ b (4,3)
18+ | o
7+ \ a (0,0)

5

DFR - DSA - Graphs 4

f (18,0)

40

- ®© o O T 2

TSP Problem

Start estimating!

Iﬂﬂ-ﬁ-ﬂ- c (1.7)

5 5
/+ 5

16+ 11+ 14
15+ 11+ 14+
18 15+ 18+

11/12/2016

16+
11+
14

3
7+

15+
11+
14+
3

15+ , .& e (15,4)
18+

7+ a(0,0)
5

DFR - DSA - Graphs 4

d (15,7)

f (18,0)

41

TSP Problem

Adapt Kruskal PQ plus
degree max 2 (see below)
1. d-3-e

2. a-b-b, b-5-c, e-5-f

3. c¢-14-d

4. a-18-f

(0,0,0,1,1,0) & (1,1,0,1,1,0)

(1,2,1,1,1,0) & (1,2,1,1,2,1)
(1,2,2,2,2,1) D (2,2,2,2,2,2)

11/12/2016

cNl g5

.m e (15,4)

a (0,0) f (18,0)

>
>4

DFR - DSA - Graphs 4

42

Travelling Salesman Problem (TSP)

= Euler / Hamilton = TSP
E visit h ed o Find the minimum-length
© VISILS each edge once Hamiltonian cycle for G
o H visits each vertex o salesman starts and ends
once at x

m TSP Algorithm

to find an Euler cycle - O(n
3 y (n) o Vvariant of Kruskal’s

= Hamilton o edge acceptance
o factorial or exponential conditions
: : : m degree(v) should not
= Hamilton - applications >= 3
m nocycles unless #
© TS_P selected edges = |V|
o knight’s tour of n * n s greedy / near-

board optimal

11/12/2016 DFR - DSA - Graphs 4 43

Graphs: Summary 1

= Directed Graphs

O
O

o O O O O O

11/12/2016

G=(V,E)
create / destroy G

add / remove V
(=>remove E)

add / remove E
IS_path(v, w)
path_length(v, w)
IS_cycle(v)
IS_connected(G)
Is_complete(G)

= Undirected Graphs

O
O

o O O O O O

DFR - DSA - Graphs 4

G=(V,E)
create / destroy G

add / remove V
(=>remove E)

add / remove E
IS_path(v, w)
path_length(v, w)
IS_cycle(v)
IS_connected(G)
Is_complete(G)

44

Graphs: Summary 2

11/12/2016

Directed Graphs

O

navigation

= depth-first search
(dfs)

= breadth-first search
(bfs)

= Warshall
spanning forests

= df spanning forest
(dfsf)

= bf spanning forest
(bfsf)

minimum cost algorithms
m Dijkstra (single path)
m Floyd (all paths)

Undirected Graphs

O

DFR - DSA - Graphs 4

navigation

= depth-first search (dfs)

= Dbreadth-first search (bfs)
= Warshall

spanning forests

= df spanning forest
(dfsf)

= bf spanning forest

(bfsf)
minimum cost algorithms
= Prim (spanning tree)

= Kruskal (spanning tree)

45

Graphs: Summary 3

= Directed Graphs = Undirected Graphs

O

11/12/2016

topological sort
(DAG)

strong components

reduced graph

DFR - DSA - Graphs 4

sub-graph
induced sub-graph

unconnected graph-
free tree

articulation points
connectivity
bipartite graph &
matching
Konigsberg Bridge
Problem
Hamiltonian cycles

Travelling Salesman

46

