Undirected Graphs: Depth First Search

- Similar to the algorithm for directed graphs
- (v, w) is similar to (v,w) (w,v) in a digraph
- for the depth first spanning forest (dfsf), each connected component in the graph will have a tree in the dfsf
 - (if the graph has one component, the dfsf will consist of one tree)
- in the dfsf for digraphs, there were 4 kinds of edges: tree, forward, back and cross
- for a <u>graph</u> there are 2: tree and back edges (forward and back edges are not distinguished and there are no cross edges)

Undirected Graphs: Depth First Search

Tree edges:

- edges (v,w) such that dfs(v) directly calls dfs(w) (or vice versa)
- Back edges:
 - edges (v,w) such that neither dfs(v) nor dfs(w) call each other directly (e.g. dfs(w) calls dfs(x) which calls dfs(v) so that w is an ancestor of v)
- in a dfs, the vertices can be given a dfs number similar to the directed graph case

DFR - DSA - Graphs 4

Undirected Graphs: Breadth First Search

- for each vertex v, visit all the adjacent vertices first
- a breadth-first spanning forest can be constructed
 - o consists of
 - tree edges: edges (v,w) such that v is an ancestor of w (or vice versa)
 - cross edges: edges which connect two vertices such that neither is an ancestor of the other
- NB the search only works on one connected component
 - if the graph has several connected components then apply bfs to each component

Note that this represents the MST for an unweighted undirected graph

DFR - DSA - Graphs 4


```
bfs()
{
    mark v visited; enqueue (v);
    while ( not is_empty (Q) ) {
        x = front (Q); dequeue (Q);
        for each y adjacent to x if y unvisited {
            mark y visited; enqueue (y);
            insert ( (x, y) in T );
            }
        }
    }
}
```

Articulation Point

- An articulation point of a graph is a vertex v such that if v and its incident edges are removed, a connected component of the graph is broken into two or more pieces
- a connected component with no articulation points is said to be biconnected
- the dfs can be used to help find the biconnected components of a graph
- finding articulation points is one problem concerning the connectivity of graphs

Connectivity

- finding articulation points is one problem concerning the connectivity of graphs
- a graph has connectivity k if the deletion of any (k-1) vertices fails to disconnect the graph (what does this mean?)
 - e.g. a graph has connectivity 2 or more iff it has no articulation points i.e. iff it is biconnected
- the higher the connectivity of a graph, the more likely the graph is to survive failure of some of its vertices
 - e.g. a graph representing sites which must be kept in communication (computers / military / other)

Articulation Points / Connectivity: Example

- articulation points are **a** and **c**
- removing a gives
 {b,d,e} and {c,f,g}
- removing c gives {a,b,d,e} and {f,g}
- removing any other vertex does not split the graph

Articulation Points: Algorithm

Perform a dfs of the graph, computing the dfnumber for each vertex v

(df-numbers order the vertices as in a pre-order traversal of a tree)

- for each vertex v, compute low(v) the smallest dfnumber of v or any vertex w reachable from v by following down 0 or more tree edges to a descendant x of v (x may be v) and then following a back edge (x, w)
- compute low(v) for each vertex v by visiting the vertices in post-order traversal
- when v is processed, low(y) has already been computed for all children y of v

Articulation Points: Algorithm

- low(v) is taken to be the minimum of
 - o df-number(v)
 - df-number(z) for any vertex z where (v,z) is a back edge
 - low(y) for any child y of v
- example
 - e = min(4, (1,2), -)
 - d = min(3, 1, 1) b = min(2, -, 1)
 - g = min(7, 5, -) f = min(6, -, 5)
 - c = min(5, -, 5)
 - a = min(1, -, (1,5))

Articulation Points: Algorithm

- the root is an AP iff it has 2 or more children
 - since it has no cross edges, removal of the root must disconnect the sub-trees rooted at its children

• removing $a \Rightarrow \{b, d, e\}$ and $\{c, f, g\}$

- a vertex v (other than the root) is an AP iff there is some child w of v such that low(w) >= df-number(v)
 - v disconnects w and its descendants from the rest of the graph
 - if low(w) < df-number(v) there must be a way to get from w down the tree and back to a proper ancestor of v (the vertex whose df-number is low(w)) and therefore deletion of v does not disconnect w or its descendants from the rest of the graph

Articulation Points: Example 1

- root 2 or more children
- other vertices
 - some child w of v such that low(w) >= df-number(v)
- example

0	a	root >= 2 children
0	b	low(e) = 1 dfn = 2
0	©	low(g) = 5 dfn = 5
0	d	low(e) = 1 dfn = 3
0	е	N/A
0	f	low(g) = 5 dfn = 6
0	g	N/A

Articulation Points: Example 2

- root 2 or more children
- other vertices

a

b

 \bigcirc

d

- some child w of v such that low(w) >= dfnumber(v)
- example

0

0

0

0

0

- root >= 2 children
 - low(e) = 1 dfn = 2
 - low(g) = 7 dfn = 5
- low (e) = 1 dfn = 3
- e N
- (f) • g
- N/A low(g) = 7 dfn = 6
- N/A

Bipartite Graph

- A graph G is bipartite if V is the disjoint union of V₁ and V₂ such that no x_i and x_j in V₁ are adjacent (similarly y_i and y_i in V₂)
- example
 - o set of courses
 - o set of teachers
 - edge => can teach course
 - (marriage problem!)

Bipartite Graph: Matching Problem

- A matching in a bipartite graph (BG) is a set of edges whose end points are distinct
- a matching is <u>complete</u> if every member of V₁ is the end point of one of the edges in the matching
- a matching is <u>perfect</u> if every member of V is the end point of one of the edges in the matching
- in a BG where $V = V_1$ disjoint union V_2 , there is a <u>complete</u> <u>matching</u> iff for every subset C of V_1 there are at least |C|vertices in V_2 adjacent to members of C
- in a BG where $V = V_1$ disjoint union V_2 , there is a <u>perfect</u> <u>matching</u> iff for every subset C of V_1 there are at least |C|vertices in V_2 adjacent to members of C and $|V_1| = |V_2|$

DFR - DSA - Graphs 4

Königsberg Bridge Problem (Euler)

 Find a cycle in the graph G that includes all the vertices and all the edges in G –

Euler Cycle

- if G has an Euler cycle, then G is connected and every vertex has an even degree
- degree(v) = number of edges incident on v

Hamiltonian Cycle

Hamiltonian cycle: cycle in a graph G = (V,E) which contains each vertex in V exactly once, except for the starting and ending vertex that appears twice

degree(v) = 2 for all v in V

c (1,7

DFR - DSA - Graphs 4

(15,7)

e (15,4)

TSP Problem

- What may we assume?
- Graph is fully connected
- a-b,5 = 5
- a-c,sqrt(50) = 7+
- a-d,sqrt(274) = 16+
- a-e,sqrt(241) = 15+
- a-f,18 = 18
- b-c,5 = 5
- b-d,sqrt(137) = 11+
- b-e,sqrt(122) = 11+

Start estimating!

	а	b	С	d	е	f	c (1,7)	d(157)
а		5	7+	16+	15+	18		
b	5		5	11+	11+	15+	h(13)	• <u>e (15,4)</u>
С	7+	5		14	14+	18+		
d	16+	11+	14		3	7+	a (0,0)	f (18,0)
е	15+	11+	14+	3		5		
f	18	15+	18+	7+	5			

Start estimating!

	а	b	С	d	е	f	c (1,7)	d(157)
а		5	7+	16+	15+	18		$- \left[\frac{(15,7)}{(15,4)} \right]$
b	5		5	11+	11+	15+	1(13)	<u>e (15,4)</u>
С	7+	5		14	14+	18+		
d	16+	11+	14		3	7+	a (0,0)	f (18,0)
е	15+	11+	14+	3		5		
f	18	15+	18+	7+	5			

Adapt Kruskal PQ plus degree max 2 (see below)

TSP Problem

- 1. d-3-e
- 2. a-5-b, b-5-c, e-5-f
- 3. c-14-d
- 4. a-18-f
- $(0,0,0,1,1,0) \rightarrow (1,1,0,1,1,0) \rightarrow$ $(1,2,1,1,1,0) \rightarrow (1,2,1,1,2,1) \rightarrow$ $(1,2,2,2,2,1) \rightarrow (2,2,2,2,2,2)$

Travelling Salesman Problem (TSP)

- Euler / Hamilton
 - E visits each edge once
 - H visits each vertex once
- to find an Euler cycle O(n)
- Hamilton
 - o factorial or exponential
- Hamilton applications
 - o TSP
 - knight's tour of n * n board

TSP

- Find the minimum-length Hamiltonian cycle for G
- salesman starts and ends at x

TSP Algorithm

- variant of Kruskal's
- edge acceptance conditions
 - degree(v) should not >= 3
 - no cycles unless # selected edges = |V|
 - greedy / nearoptimal

Graphs: Summary 1

- Directed Graphs
 - G = (V, E)
 - o create / destroy G
 - add / remove V (=>remove E)
 - o add / remove E
 - o is_path(v, w)
 - o path_length(v, w)
 - o is_cycle(v)
 - o is_connected(G)
 - o is_complete(G)

- Undirected Graphs
 - $\circ \quad G = (V, E)$
 - o create / destroy G
 - add / remove V (=>remove E)
 - o add / remove E
 - o is_path(v, w)
 - o path_length(v, w)
 - o is_cycle(v)
 - o is_connected(G)
 - o is_complete(G)

Graphs: Summary 2

- Directed Graphs
 - o navigation
 - depth-first search (dfs)
 - breadth-first search (bfs)
 - Warshall
 - o spanning forests
 - df spanning forest (dfsf)
 - bf spanning forest (bfsf)
 - o minimum cost algorithms
 - Dijkstra (single path)
 - **Floyd** (all paths)

- Undirected Graphs
 - o navigation
 - depth-first search (dfs)
 - breadth-first search (bfs)
 - Warshall
 - o spanning forests
 - df spanning forest (dfsf)
 - bf spanning forest (bfsf)
 - minimum cost algorithms
 - Prim (spanning tree)
 - Kruskal (spanning tree)

Graphs: Summary 3

Directed Graphs

- topological sort (DAG)
- strong components
- o reduced graph

Undirected Graphs

- o sub-graph
- o induced sub-graph
- unconnected graphfree tree
- o articulation points
- o connectivity
- bipartite graph & matching
- Königsberg Bridge Problem
- Hamiltonian cycles
- Travelling Salesman