Undirected Graphs: Depth First Search

- Similar to the algorithm for directed graphs
- (v, w) is similar to $(v, w)(w, v)$ in a digraph
- for the depth first spanning forest (dfsf), each connected component in the graph will have a tree in the dfsf
- (if the graph has one component, the dfsf will consist of one tree)
- in the dfsf for digraphs, there were 4 kinds of edges: tree, forward, back and cross
- for a graph there are 2: tree and back edges (forward and back edges are not distinguished and there are no cross edges)

Undirected Graphs: Depth First Search

- Tree edges:
- edges (v, w) such that dfs(v) directly calls $\mathrm{dfs}(\mathrm{w})$ (or vice versa)
- Back edges:
- edges (v, w) such that neither dfs(v) nor dfs(w) call each other directly (e.g. dfs(w) calls dfs(x) which calls dfs(v) so that w is an ancestor of v)
- in a dfs, the vertices can be given a dfs number similar to the directed graph case

DFS: Example

DFS: Example

a b c d e

 bla d e$$
\begin{array}{l|l|l|l}
\hline c & a & f \\
\hline
\end{array}
$$

$$
\mathrm{d} \boldsymbol{a}
$$

$$
\mathrm{e} \quad \mathrm{a} \quad \mathrm{~b} \square
$$

DFS: Example

abla e blable

 calfg （d⿴囗口阝 － 回 flcg g c f
DFS: Example

DFS: Example

DFSF: Example (ooent-Firstspanming Fooss)

Undirected Graphs: Breadth First Search

- for each vertex v, visit all the adjacent vertices first
- a breadth-first spanning forest can be constructed
- consists of
- tree edges: edges (v, w) such that v is an ancestor of w (or vice versa)
- cross edges: edges which connect two vertices such that neither is an ancestor of the other
- NB the search only works on one connected component
- if the graph has several connected components then apply bfs to each component

Note that this represents the MST for an unweighted undirected graph

BFE E: a OORIthn (Breadth-First Spanning Forest)

```
bfs ()
{ mark v visited; enqueue (v);
while ( not is_empty (Q) ) {
    x = front (Q); dequeue (Q);
    for each y adjacent to x if y unvisited {
                mark y visited; enqueue (y);
                insert ( (x, y) in T );
        }
    }
    }
```


Articulation Point

- An articulation point of a graph is a vertex v such that if v and its incident edges are removed, a connected component of the graph is broken into two or more pieces
- a connected component with no articulation points is said to be biconnected
- the dfs can be used to help find the biconnected components of a graph
- finding articulation points is one problem concerning the connectivity of graphs
- finding articulation points is one problem concerning the connectivity of graphs
- a graph has connectivity k if the deletion of any (k 1) vertices fails to disconnect the graph (what does this mean?)
- e.g. a graph has connectivity 2 or more iff it has no articulation points i.e. iff it is biconnected
- the higher the connectivity of a graph, the more likely the graph is to survive failure of some of its vertices
- e.g. a graph representing sites which must be kept in communication (computers / military / other)

Articulation Points / Connectivity: Example

- articulation points are \mathbf{a} and \mathbf{c}
- removing a gives \{b,d,e\} and $\{\mathrm{c}, \mathrm{f}, \mathrm{g}\}$
- removing c gives $\{\mathrm{a}, \mathrm{b}, \mathrm{d}, \mathrm{e}\}$ and $\{\mathrm{f}, \mathrm{g}\}$
- removing any other vertex does not split the graph

Articulation Points: Algorithm

- Perform a dfs of the graph, computing the dfnumber for each vertex v
(df-numbers order the vertices as in a pre-order traversal of a tree)
- for each vertex v, compute low(v) - the smallest dfnumber of v or any vertex w reachable from v by following down 0 or more tree edges to a descendant x of $v(x$ may be v) and then following a back edge (x, w)
- compute low(v) for each vertex v by visiting the vertices in post-order traversal
- when v is processed, low(y) has already been computed for all children y of v

Articulation Points: Algorithm

- $\operatorname{low}(\mathrm{v})$ is taken to be the minimum of
- df-number(v)
- df-number(z) for any vertex z where (v, z) is a back edge
- low(y) for any child y of v
- example

```
- e=min(4, (1,2), -)
\circ d= min(3, 1, 1) b= min(2,-, 1)
\circ g=min(7,5,-) f= min(6,-,5)
- c=min(5, -, 5)
\circ a = min(1,-, (1,5))
```

- example

Articulation Points: Algorithm

- the root is an AP iff it has 2 or more children
- since it has no cross edges, removal of the root must disconnect the sub-trees rooted at its children
- removing a $=>\{b, d, e\}$ and $\{c, f, g\}$
- a vertex v (other than the root) is an AP iff there is some child w of v such that low $(w)>=$ df-number(v)
- v disconnects w and its descendants from the rest of the graph
- if low(w) < df-number(v) there must be a way to get from w down the tree and back to a proper ancestor of v (the vertex whose df-number is low(w)) and therefore deletion of v does not disconnect w or its descendants from the rest of the graph

Articulation Points: Example 1

- root - 2 or more children
- other vertices
- some child w of v such that low(w) >= df-number(v)
- example

\bigcirc	(a)	root $>=2$ children
\bigcirc	b	$\operatorname{low}(\mathrm{e})=1 \mathrm{dfn}=2$
\bigcirc	(C)	$\operatorname{low}(\mathrm{g})=5 \mathrm{dfn}=5$
-	d	$\operatorname{low}(\mathrm{e})=1 \mathrm{dfn}=3$
\bigcirc	e	N/A
\bigcirc	f	$\operatorname{low}(\mathrm{g})=5 \mathrm{dfn}=6$
\bigcirc	g	N/A

Articulation Points: Example 2

- root - 2 or more children
- other vertices
- some child w of v such that low(w) >= dfnumber(v)
- example

Bipartite Graph

- A graph G is bipartite if V is the disjoint union of V_{1} and V_{2} such that no x_{i} and x_{i} in V_{1} are adjacent (similarly y_{i} and y_{j} in V_{2})
- example
- set of courses
- set of teachers
- edge => can teach course

- (marriage problem!)

[Bipartite Graph: Matching Problem

- A matching in a bipartite graph (BG) is a set of edges whose end points are distinct
- a matching is complete if every member of V_{1} is the end point of one of the edges in the matching
- a matching is perfect if every member of V is the end point of one of the edges in the matching
- in a BG where $\mathrm{V}=\mathrm{V}_{1}$ disjoint union V_{2}, there is a complete matching iff for every subset C of V_{1} there are at least $|C|$ vertices in V_{2} adjacent to members of C
- in a $B G$ where $V=V_{1}$ disjoint union V_{2}, there is a perfect matching iff for every subset C of V_{1} there are at least $|C|$ vertices in V_{2} adjacent to members of C and $\left|\mathrm{V}_{1}\right|=\left|\mathrm{V}_{2}\right|$

[BG Matching: Example

Königsberg Bridge Problem (Euler)

- Find a cycle in the graph G that includes all the vertices and all the edges in G Euler Cycle
- if G has an Euler cycle, then G is connected and every vertex has an even degree
- degree(v) = number of edges incident on v

Hamiltonian Cycle

- Hamiltonian cycle: cycle in a graph $G=(V, E)$ which contains each vertex in V exactly once, except for the starting and ending vertex that appears twice
- degree(v) = 2 for all v in V

TSP Problem

- What may we assume?
- Graph is fully connected
- a-b,5 = 5
- a-c,sqrt(50) = 7+
- a-d,sqrt(274) = 16+
- a-e,sqrt(241) = 15+
-a-f,18 = 18

- b-c,5 $=5$
- b-d,sqrt(137) = 11+
- b-e,sqrt(122) = 11+

TSP Problem

Start estimating!

	a	b	c	d	e	f	c (1,7)	
a		5	7+	16+	15+	18	\bigcirc	- d (15, ${ }^{\text {d }}$
b	5		5	11+	11+	15+		- e (15,4)
c	7+	5		14	14+	18+		
d	16+	11+	14		3	7+	a (0,0)	f $(18,0)$
e	15+	11+	14+	3		5		
f	18	15+	18+	7+	5			

TSP Problem

Start estimating!

	a	b	c	d	e	f	$\mathrm{c}(1,7) \quad \mathrm{d}(15,7)$	
a		5	7+	$16+$	$15+$	18		
b	5		5	$11+$	11+	15+		e (15,4)
c	7+	5		14	$14+$	18+		
d	16+	11+	14		3	7+	a (0,0)	f(18,0)
e	$15+$	11+	14+	3		5		
f	18	15+	18+	7+	5			

TSP Problem

Adapt Kruskal PQ plus degree max 2 (see below)

1. d-3-e
2. $a-5-b, b-5-c, e-5-f$
3. $c-14-d$
4. a-18-f

$(0,0,0,1,1,0) \rightarrow(1,1,0,1,1,0) \rightarrow$
$(1,2,1,1,1,0) \rightarrow(1,2,1,1,2,1) \rightarrow$
$(1,2,2,2,2,1) \rightarrow(2,2,2,2,2,2)$

Travelling Salesman Problem (TSP)

- Euler / Hamilton
- E visits each edge once
- H visits each vertex once
- to find an Euler cycle - O(n)
- Hamilton
- factorial or exponential
- Hamilton - applications
- TSP
- knight's tour of n * n board
- TSP
- Find the minimum-length Hamiltonian cycle for G
- salesman starts and ends at x
- TSP Algorithm
- variant of Kruskal's
- edge acceptance conditions
- degree(v) should not $>=3$
- no cycles unless \# selected edges $=|\mathrm{V}|$
- greedy / nearoptimal

Graphs: Summary 1

- Directed Graphs
- $G=(V, E)$
- create / destroy G
- add / remove V (=>remove E)
- add / remove E
- is_path (v, w)
- path_length (v, w)
- is_cycle(v)
- is_connected(G)
- is_complete(G)
- Undirected Graphs
- $G=(V, E)$
- create / destroy G
- add / remove V (=>remove E)
- add/remove E
- is_path (v, w)
- path_length (v, w)
- is_cycle(v)
- is_connected(G)
- is_complete(G)

Graphs: Summary 2

- Directed Graphs
- navigation
- depth-first search (dfs)
- breadth-first search (bfs)
- Warshall
- spanning forests
- df spanning forest (dfsf)
- bf spanning forest (bfsf)
- minimum cost algorithms
- Dijkstra (single path)
- Floyd (all paths)
- Undirected Graphs
- navigation
- depth-first search (dfs)
- breadth-first search (bfs)
- Warshall
- spanning forests
- df spanning forest (dfsf)
- bf spanning forest (bfsf)
- minimum cost algorithms
- Prim (spanning tree)
- Kruskal (spanning tree)

Graphs: Summary 3

- Directed Graphs
- topological sort (DAG)
- strong components
- reduced graph
- Undirected Graphs
- sub-graph
- induced sub-graph
- unconnected graphfree tree
- articulation points
- connectivity
- bipartite graph \& matching
- Königsberg Bridge Problem
- Hamiltonian cycles
- Travelling Salesman

