Undirected Graphs: Depth First Search

- Similar to the algorithm for directed graphs
- \((v, w)\) is similar to \((v, w), (w, v)\) in a digraph
- For the depth first spanning forest (DFSF), each connected component in the graph will have a tree in the DFSF
 - (if the graph has one component, the DFSF will consist of one tree)
- In the DFSF for digraphs, there were 4 kinds of edges: **tree, forward, back** and **cross**
- For a graph there are 2: **tree** and **back** edges
 (forward and back edges are not distinguished and there are no cross edges)
Undirected Graphs: Depth First Search

- **Tree edges:**
 - edges \((v,w)\) such that \(\text{dfs}(v)\) directly calls \(\text{dfs}(w)\) (or vice versa)

- **Back edges:**
 - edges \((v,w)\) such that neither \(\text{dfs}(v)\) nor \(\text{dfs}(w)\) call each other directly (e.g. \(\text{dfs}(w)\) calls \(\text{dfs}(x)\) which calls \(\text{dfs}(v)\) so that \(w\) is an ancestor of \(v\))

- in a dfs, the vertices can be given a dfs number similar to the directed graph case
DFS: Example

start: a

a b d e c f g
DFSF: Example (Depth-First Spanning Forest)
Undirected Graphs: Breadth First Search

- for each vertex v, visit all the adjacent vertices first
- a breadth-first spanning forest can be constructed
 - consists of
 - tree edges: edges (v,w) such that v is an ancestor of w (or vice versa)
 - cross edges: edges which connect two vertices such that neither is an ancestor of the other

- NB the search only works on one connected component
 - if the graph has several connected components then apply bfs to each component
BFSF: Example

Note that this represents the MST for an unweighted undirected graph
BFSF: algorithm (Breadth-First Spanning Forest)

```plaintext
bfs ( )
{
    mark v visited; enqueue (v);
    while ( not is_empty (Q) ) {
        x = front (Q); dequeue (Q);
        for each y adjacent to x if y unvisited {
            mark y visited; enqueue (y);
            insert ( (x, y) in T );
        }
    }
}
```
Articulation Point

- An articulation point of a graph is a vertex v such that if v and its incident edges are removed, a connected component of the graph is broken into two or more pieces.
- A connected component with no articulation points is said to be biconnected.
- The DFS can be used to help find the biconnected components of a graph.
- Finding articulation points is one problem concerning the connectivity of graphs.
Connectivity

- finding articulation points is one problem concerning the connectivity of graphs
- a graph has **connectivity k** if the deletion of any \((k-1) \) vertices fails to disconnect the graph (what does this mean?)
 - e.g. a graph has connectivity 2 or more iff it has no articulation points i.e. iff it is biconnected
- the higher the connectivity of a graph, the more likely the graph is to survive failure of some of its vertices
 - e.g. a graph representing sites which must be kept in communication (computers / military / other)
Articulation Points / Connectivity: Example

- Articulation points are \(a \) and \(c \)
- Removing \(a \) gives \{b, d, e\} and \{c, f, g\}
- Removing \(c \) gives \{a, b, d, e\} and \{f, g\}
- Removing any other vertex does not split the graph
Articulation Points: Algorithm

- Perform a **dfs of the graph**, computing the df-number for each vertex v
 (df-numbers order the vertices as in a pre-order traversal of a tree)
- for each vertex v, compute low(v) - the smallest df-number of v or any vertex w reachable from v by following down 0 or more tree edges to a descendant x of v (x may be v) and then following a back edge (x, w)
- compute **low(v)** for each vertex v by visiting the vertices in post-order traversal
- when v is processed, **low(y)** has already been computed for all children y of v
Articulation Points: Algorithm

- low(v) is taken to be the **minimum** of
 - df-number(v)
 - df-number(z) for any vertex z where (v,z) is a back edge
 - low(y) for any child y of v

- example
 - e = min(4, (1,2), -)
 - d = min(3, 1, 1) b = min(2, -, 1)
 - g = min(7, 5, -) f = min(6, -, 5)
 - c = min(5, -, 5)
 - a = min(1, -, (1,5))
Articulation Points: Algorithm

- the root is an AP iff it has 2 or more children
 - since it has no cross edges, removal of the root must disconnect the sub-trees rooted at its children
 - removing a => {b, d, e} and {c, f, g}
- a vertex v (other than the root) is an AP iff there is some child w of v such that low(w) >= df-number(v)
 - v disconnects w and its descendants from the rest of the graph
 - if low(w) < df-number(v) there must be a way to get from w down the tree and back to a proper ancestor of v (the vertex whose df-number is low(w)) and therefore deletion of v does not disconnect w or its descendants from the rest of the graph
Articulation Points: Example 1

- root - 2 or more children
- other vertices
 - some child w of v such that low(w) >= df-number(v)
- example
 - a root >= 2 children
 - b low(e) = 1 dfn = 2
 - c low(g) = 5 dfn = 5
 - d low(e) = 1 dfn = 3
 - e N/A
 - f low(g) = 5 dfn = 6
 - g N/A
Articulation Points: Example 2

- root - 2 or more children
- other vertices
 - some child w of v such that low(w) >= df-number(v)
- example
 - a root >= 2 children
 - b low(e) = 1 dfn = 2
 - c low(g) = 7 dfn = 5
 - d low(e) = 1 dfn = 3
 - e N/A
 - f low(g) = 7 dfn = 6
 - g N/A
A graph G is **bipartite** if V is the disjoint union of V_1 and V_2 such that no x_i and x_j in V_1 are adjacent (similarly y_i and y_j in V_2).

Example
- set of courses
- set of teachers
- edge \Rightarrow can teach course
- (marriage problem!)
Bipartite Graph: Matching Problem

- A matching in a bipartite graph (BG) is a set of edges whose end points are distinct.
- A matching is **complete** if every member of V_1 is the end point of one of the edges in the matching.
- A matching is **perfect** if every member of V is the end point of one of the edges in the matching.
- In a BG where $V = V_1$ disjoint union V_2, there is a **complete matching** iff for every subset C of V_1 there are at least $|C|$ vertices in V_2 adjacent to members of C.
- In a BG where $V = V_1$ disjoint union V_2, there is a **perfect matching** iff for every subset C of V_1 there are at least $|C|$ vertices in V_2 adjacent to members of C and $|V_1| = |V_2|$.
BG Matching: Example

T1 -- C1
T2 -- C2
T3 -- C3
T4 -- C4
T5 -- C5

T1 -- C1
T2 -- C2
T3 -- C3
T4 -- C4
T5 -- C5
Königsberg Bridge Problem (Euler)

- Find a cycle in the graph G that includes all the vertices and all the edges in G – **Euler Cycle**
- if G has an Euler cycle, then G is connected and every vertex has an **even degree**
- $\text{degree}(v) = \text{number of edges incident on } v$
Hamiltonian Cycle

- **Hamiltonian cycle**: cycle in a graph $G = (V,E)$ which contains each vertex in V exactly once, except for the starting and ending vertex that appears twice.

- $\text{degree}(v) = 2$ for all v in V.
TSP Problem

- **What may we assume?**
- Graph is fully connected
- a-b, 5 = 5
- a-c, sqrt(50) = 7+
- a-d, sqrt(274) = 16+
- a-e, sqrt(241) = 15+
- a-f, 18 = 18
- b-c, 5 = 5
- b-d, sqrt(137) = 11+
- b-e, sqrt(122) = 11+
Start estimating!

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
<td>7+</td>
<td>16+</td>
<td>15+</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>5</td>
<td>11+</td>
<td>11+</td>
<td>15+</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>7+</td>
<td>5</td>
<td>14</td>
<td>14+</td>
<td>18+</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>16+</td>
<td>11+</td>
<td>14</td>
<td>3</td>
<td>7+</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>15+</td>
<td>11+</td>
<td>14+</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>18</td>
<td>15+</td>
<td>18+</td>
<td>7+</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

TSP Problem
TSP Problem

Start estimating!

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>5</td>
<td>7+</td>
<td>16+</td>
<td>15+</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>5</td>
<td>11+</td>
<td>11+</td>
<td>15+</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>7+</td>
<td>5</td>
<td>14</td>
<td>14+</td>
<td>18+</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>16+</td>
<td>11+</td>
<td>14</td>
<td>3</td>
<td>7+</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>15+</td>
<td>11+</td>
<td>14+</td>
<td>3</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>18</td>
<td>15+</td>
<td>18+</td>
<td>7+</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
TSP Problem

Adapt Kruskal PQ plus degree max 2 (see below)

1. d-3-e
2. a-5-b, b-5-c, e-5-f
3. c-14-d
4. a-18-f

(0,0,0,1,1,0) \rightarrow (1,1,0,1,1,0) \rightarrow (1,2,1,1,1,0) \rightarrow (1,2,2,2,2,1) \rightarrow (2,2,2,2,2,2)
Travelling Salesman Problem (TSP)

- **Euler / Hamilton**
 - \(E \) visits each edge once
 - \(H \) visits each vertex once
 - to find an Euler cycle - \(O(n) \)
- **Hamilton**
 - factorial or exponential
- **Hamilton - applications**
 - TSP
 - knight’s tour of \(n \times n \) board
- **TSP**
 - Find the minimum-length Hamiltonian cycle for \(\mathcal{G} \)
 - salesman starts and ends at \(x \)
- **TSP Algorithm**
 - variant of Kruskal’s
 - edge acceptance conditions
 - \(\text{degree}(v) \) should not \(>= 3 \)
 - no cycles unless \# selected edges = \(|V| \)
 - greedy / near-optimal
Graphs: Summary 1

- Directed Graphs
 - \(G = (V, E) \)
 - create / destroy \(G \)
 - add / remove \(V \)
 (=>remove \(E \))
 - add / remove \(E \)
 - is_path\((v, w) \)
 - path_length\((v, w) \)
 - is_cycle\((v) \)
 - is_connected\((G) \)
 - is_complete\((G) \)

- Undirected Graphs
 - \(G = (V, E) \)
 - create / destroy \(G \)
 - add / remove \(V \)
 (=>remove \(E \))
 - add / remove \(E \)
 - is_path\((v, w) \)
 - path_length\((v, w) \)
 - is_cycle\((v) \)
 - is_connected\((G) \)
 - is_complete\((G) \)
Graphs: Summary 2

- Directed Graphs
 - navigation
 - depth-first search (dfs)
 - breadth-first search (bfs)
 - Warshall
 - spanning forests
 - df spanning forest (dfsfc)
 - bf spanning forest (bfsf)
 - minimum cost algorithms
 - Dijkstra (single path)
 - Floyd (all paths)
- Undirected Graphs
 - navigation
 - depth-first search (dfs)
 - breadth-first search (bfs)
 - Warshall
 - spanning forests
 - df spanning forest (dfsfc)
 - bf spanning forest (bfsf)
 - minimum cost algorithms
 - Prim (spanning tree)
 - Kruskal (spanning tree)
Graphs: Summary 3

- **Directed Graphs**
 - topological sort (DAG)
 - strong components
 - reduced graph

- **Undirected Graphs**
 - sub-graph
 - induced sub-graph
 - unconnected graph-free tree
 - articulation points
 - connectivity
 - bipartite graph & matching
 - Königsberg Bridge Problem
 - Hamiltonian cycles
 - Travelling Salesman