
11/12/2016 DFR - DSA - Graphs 4 1

Undirected Graphs: Depth First Search

 Similar to the algorithm for directed graphs
 (v, w) is similar to (v,w) (w,v) in a digraph
 for the depth first spanning forest (dfsf), each

connected component in the graph will have a tree
in the dfsf
 (if the graph has one component, the dfsf will consist of one tree)

 in the dfsf for digraphs, there were 4 kinds of
edges: tree, forward, back and cross

 for a graph there are 2: tree and back edges
(forward and back edges are not distinguished and there are
no cross edges)

11/12/2016 DFR - DSA - Graphs 4 2

Undirected Graphs: Depth First Search

 Tree edges:
 edges (v,w) such that dfs(v) directly calls dfs(w) (or vice

versa)

 Back edges:
 edges (v,w) such that neither dfs(v) nor dfs(w) call each

other directly (e.g. dfs(w) calls dfs(x) which calls dfs(v) so that w
is an ancestor of v)

 in a dfs, the vertices can be given a dfs number
similar to the directed graph case

11/12/2016 DFR - DSA - Graphs 4 3

DFS: Example

start: a
a b d e c f g

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 4

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 5

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 6

DFS: Example

a(1)b(2)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 7

DFS: Example

a(1)b(2)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 8

DFS: Example

a(1)b(2)d(3)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 9

DFS: Example

a(1)b(2)d(3)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 10

DFS: Example

a(1)b(2)d(3)e(4)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 11

DFS: Example

a(1)b(2)d(3)e(4)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 12

DFS: Example

a(1)b(2)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 13

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 14

DFS: Example

a(1)c(5)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 15

DFS: Example

a(1)c(5)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 16

DFS: Example

a(1)c(5)f(6)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 17

DFS: Example

a(1)c(5)f(6)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 18

DFS: Example

a(1)c(5)f(6)g(7)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 19

DFS: Example

a(1)c(5)f(6)g(7)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 20

DFS: Example

a(1)c(5)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 21

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 22

DFSF: Example (Depth-First Spanning Forest)

b

d e

c

f g

a
a1

b2 c5

d3

e4

f6

g7

tree tree

tree tree

treetree

back

back

back

back

11/12/2016 DFR - DSA - Graphs 4 23

Undirected Graphs: Breadth First Search

 for each vertex v, visit all the adjacent vertices first
 a breadth-first spanning forest can be constructed

 consists of
 tree edges: edges (v,w) such that v is an ancestor of w (or

vice versa)
 cross edges: edges which connect two vertices such that

neither is an ancestor of the other

 NB the search only works on one connected
component
 if the graph has several connected components then apply

bfs to each component

11/12/2016 DFR - DSA - Graphs 4 24

BFSF: Example

b

d e

c

f g

a a

b d e c

f g

tree
treetree

tree tree

tree

crosscross

cross

cross

Note that this represents the MST for an unweighted undirected graph

11/12/2016 DFR - DSA - Graphs 4 25

BFSF: algorithm (Breadth-First Spanning Forest)

bfs ()
{ mark v visited; enqueue (v);

while (not is_empty (Q)) {
x = front (Q); dequeue (Q);
for each y adjacent to x if y unvisited {

mark y visited; enqueue (y);
insert ((x, y) in T);
}

}
}

11/12/2016 DFR - DSA - Graphs 4 26

Articulation Point

 An articulation point of a graph is a vertex v such
that if v and its incident edges are removed, a
connected component of the graph is broken into
two or more pieces

 a connected component with no articulation points
is said to be biconnected

 the dfs can be used to help find the biconnected
components of a graph

 finding articulation points is one problem concerning
the connectivity of graphs

11/12/2016 DFR - DSA - Graphs 4 27

Connectivity

 finding articulation points is one problem concerning
the connectivity of graphs

 a graph has connectivity k if the deletion of any (k-
1) vertices fails to disconnect the graph (what does this mean?)

 e.g. a graph has connectivity 2 or more iff it has no
articulation points i.e. iff it is biconnected

 the higher the connectivity of a graph, the more
likely the graph is to survive failure of some of its
vertices
 e.g. a graph representing sites which must be kept in

communication (computers / military / other)

11/12/2016 DFR - DSA - Graphs 4 28

Articulation Points / Connectivity: Example

 articulation points
are a and c

 removing a gives
{b,d,e} and {c,f,g}

 removing c gives
{a,b,d,e} and {f,g}

 removing any other
vertex does not
split the graph

b

d e

c

f g

a

11/12/2016 DFR - DSA - Graphs 4 29

Articulation Points: Algorithm

 Perform a dfs of the graph, computing the df-
number for each vertex v
(df-numbers order the vertices as in a pre-order traversal of a tree)

 for each vertex v, compute low(v) - the smallest df-
number of v or any vertex w reachable from v by
following down 0 or more tree edges to a
descendant x of v (x may be v) and then following a
back edge (x, w)

 compute low(v) for each vertex v by visiting the
vertices in post-order traversal

 when v is processed, low(y) has already been
computed for all children y of v

11/12/2016 DFR - DSA - Graphs 4 30

Articulation Points: Algorithm

 low(v) is taken to be the
minimum of
 df-number(v)
 df-number(z) for any

vertex z where (v,z) is a
back edge

 low(y) for any child y of v
 example

 e = min(4, (1,2), -)
 d = min(3, 1, 1) b = min(2, -, 1)
 g = min(7, 5, -) f = min(6, -, 5)
 c = min(5, -, 5)
 a = min(1, -, (1,5))

 example
a1

b2 c5

d3

e4

f6

g7

1

1

1

1 5

5

5

11/12/2016 DFR - DSA - Graphs 4 31

Articulation Points: Algorithm

 the root is an AP iff it has 2 or more children
 since it has no cross edges, removal of the root must

disconnect the sub-trees rooted at its children
 removing a => {b, d, e} and {c, f, g}

 a vertex v (other than the root) is an AP iff there is
some child w of v such that low(w) >= df-number(v)
 v disconnects w and its descendants from the rest of the

graph
 if low(w) < df-number(v) there must be a way to get from

w down the tree and back to a proper ancestor of v (the
vertex whose df-number is low(w)) and therefore deletion
of v does not disconnect w or its descendants from the
rest of the graph

11/12/2016 DFR - DSA - Graphs 4 32

Articulation Points: Example 1

 root - 2 or more children

 other vertices

 some child w of v such that
low(w) >= df-number(v)

 example

 a root >= 2 children

 b low(e) = 1 dfn = 2

 c low(g) = 5 dfn = 5

 d low(e) = 1 dfn = 3

 e N/A

 f low(g) = 5 dfn = 6

 g N/A

a1

b2 c5

d3

e4

f6

g7

1

1

1

1 5

5

5

11/12/2016 DFR - DSA - Graphs 4 33

Articulation Points: Example 2
 root - 2 or more children
 other vertices

 some child w of v such
that low(w) >= df-
number(v)

 example
 a root >= 2 children
 b low(e) = 1 dfn = 2
 c low(g) = 7 dfn = 5
 d low (e) = 1 dfn = 3
 e N/A
 f low(g) = 7 dfn = 6
 g N/A

a1

b2 c5

d3

e4

f6

g7

1

1

1

1 7

6

5

11/12/2016 DFR - DSA - Graphs 4 34

Bipartite Graph

 A graph G is bipartite
if V is the disjoint union
of V1 and V2 such that
no xi and xj in V1 are
adjacent (similarly yi
and yj in V2)

 example
 set of courses
 set of teachers
 edge => can teach

course
 (marriage problem!)

T1

T2

T3

T4

T5

C1

C2

C3

C4

C5

11/12/2016 DFR - DSA - Graphs 4 35

Bipartite Graph: Matching
Problem

 A matching in a bipartite graph (BG) is a set of edges whose
end points are distinct

 a matching is complete if every member of V1 is the end point
of one of the edges in the matching

 a matching is perfect if every member of V is the end point of
one of the edges in the matching

 in a BG where V = V1 disjoint union V2, there is a complete
matching iff for every subset C of V1 there are at least |C|
vertices in V2 adjacent to members of C

 in a BG where V = V1 disjoint union V2, there is a perfect
matching iff for every subset C of V1 there are at least |C|
vertices in V2 adjacent to members of C and | V1 | = | V2 |

11/12/2016 DFR - DSA - Graphs 4 36

BG Matching: Example

T1

T2

T3

T4

T5

C1

C2

C3

C4

C5

T1

T2

T3

T4

T5

C1

C2

C3

C4

C5

11/12/2016 DFR - DSA - Graphs 4 37

Königsberg Bridge Problem (Euler)

 Find a cycle in the
graph G that includes
all the vertices and all
the edges in G –
Euler Cycle

 if G has an Euler
cycle, then G is
connected and every
vertex has an even
degree

 degree(v) = number of
edges incident on v

A

D

B C

A3

B5 C3

D3

11/12/2016 DFR - DSA - Graphs 4 38

Hamiltonian Cycle

 Hamiltonian cycle: cycle
in a graph G = (V,E) which
contains each vertex in V
exactly once, except for the
starting and ending vertex
that appears twice

 degree(v) = 2 for all v in V
b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

length = 50.0 length = 48.39length = 49.78

11/12/2016 DFR - DSA - Graphs 4 39

TSP Problem

 What may we assume?
 Graph is fully connected
 a-b,5 = 5
 a-c,sqrt(50) = 7+
 a-d,sqrt(274) = 16+
 a-e,sqrt(241) = 15+
 a-f,18 = 18
 b-c,5 = 5
 b-d,sqrt(137) = 11+
 b-e,sqrt(122) = 11+

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

11/12/2016 DFR - DSA - Graphs 4 40

TSP Problem

Start estimating!

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

a b c d e f
a 5 7+ 16+ 15+ 18
b 5 5 11+ 11+ 15+
c 7+ 5 14 14+ 18+
d 16+ 11+ 14 3 7+
e 15+ 11+ 14+ 3 5
f 18 15+ 18+ 7+ 5

11/12/2016 DFR - DSA - Graphs 4 41

TSP Problem

Start estimating!

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

a b c d e f
a 5 7+ 16+ 15+ 18
b 5 5 11+ 11+ 15+
c 7+ 5 14 14+ 18+
d 16+ 11+ 14 3 7+
e 15+ 11+ 14+ 3 5
f 18 15+ 18+ 7+ 5

11/12/2016 DFR - DSA - Graphs 4 42

TSP Problem

Adapt Kruskal PQ plus
degree max 2 (see below)

1. d-3-e
2. a-5-b, b-5-c, e-5-f
3. c-14-d
4. a-18-f
(0,0,0,1,1,0)  (1,1,0,1,1,0) 
(1,2,1,1,1,0)  (1,2,1,1,2,1) 
(1,2,2,2,2,1)  (2,2,2,2,2,2)

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

11/12/2016 DFR - DSA - Graphs 4 43

Travelling Salesman Problem (TSP)

 Euler / Hamilton
 E visits each edge once
 H visits each vertex

once
 to find an Euler cycle - O(n)

 Hamilton
 factorial or exponential

 Hamilton - applications
 TSP
 knight’s tour of n * n

board

 TSP
 Find the minimum-length

Hamiltonian cycle for G
 salesman starts and ends

at x
 TSP Algorithm

 variant of Kruskal’s
 edge acceptance

conditions
 degree(v) should not

>= 3
 no cycles unless #

selected edges = |V|
 greedy / near-

optimal

11/12/2016 DFR - DSA - Graphs 4 44

Graphs: Summary 1

 Directed Graphs
 G = (V, E)
 create / destroy G
 add / remove V

(=>remove E)

 add / remove E
 is_path(v, w)
 path_length(v, w)
 is_cycle(v)
 is_connected(G)
 is_complete(G)

 Undirected Graphs
 G = (V, E)
 create / destroy G
 add / remove V

(=>remove E)

 add / remove E
 is_path(v, w)
 path_length(v, w)
 is_cycle(v)
 is_connected(G)
 is_complete(G)

11/12/2016 DFR - DSA - Graphs 4 45

Graphs: Summary 2

 Directed Graphs
 navigation

 depth-first search
(dfs)

 breadth-first search
(bfs)

 Warshall
 spanning forests

 df spanning forest
(dfsf)

 bf spanning forest
(bfsf)

 minimum cost algorithms
 Dijkstra (single path)
 Floyd (all paths)

 Undirected Graphs
 navigation

 depth-first search (dfs)
 breadth-first search (bfs)
 Warshall

 spanning forests
 df spanning forest

(dfsf)
 bf spanning forest

(bfsf)
 minimum cost algorithms

 Prim (spanning tree)

 Kruskal (spanning tree)

11/12/2016 DFR - DSA - Graphs 4 46

Graphs: Summary 3

 Directed Graphs
 topological sort

(DAG)
 strong components
 reduced graph

 Undirected Graphs
 sub-graph
 induced sub-graph
 unconnected graph-

free tree
 articulation points
 connectivity
 bipartite graph &

matching
 Königsberg Bridge

Problem
 Hamiltonian cycles
 Travelling Salesman

