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Undirected Graphs: Depth First Search

 Similar to the algorithm for directed graphs
 (v, w) is similar to (v,w) (w,v) in a digraph
 for the depth first spanning forest (dfsf), each 

connected component in the graph will have a tree 
in the dfsf
 (if the graph has one component, the dfsf will consist of one tree)

 in the dfsf for digraphs, there were 4 kinds of 
edges:      tree, forward, back and cross

 for a graph there are 2: tree and back edges               
(forward and back edges are not distinguished and there are 
no cross edges)



11/12/2016 DFR - DSA - Graphs 4 2

Undirected Graphs: Depth First Search

 Tree edges:
 edges (v,w) such that dfs(v) directly calls dfs(w) (or vice 

versa)

 Back edges:
 edges (v,w) such that neither dfs(v) nor dfs(w) call each 

other directly (e.g. dfs(w) calls dfs(x) which calls dfs(v) so that w 
is an ancestor of v)

 in a dfs, the vertices can be given a dfs number 
similar to the directed graph case
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example

a(1)b(2)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g



11/12/2016 DFR - DSA - Graphs 4 dfs 8

DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFS: Example
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DFSF: Example (Depth-First Spanning Forest)
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Undirected Graphs: Breadth First Search

 for each vertex v, visit all the adjacent vertices first
 a breadth-first spanning forest can be constructed

 consists of
 tree edges: edges (v,w) such that v is an ancestor of w (or 

vice versa)
 cross edges: edges which connect two vertices such that 

neither is an ancestor of the other

 NB the search only works on one connected 
component
 if the graph has several connected components then apply 

bfs to each component
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BFSF: Example
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Note that this represents the MST for an unweighted undirected graph
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BFSF: algorithm (Breadth-First Spanning Forest)

bfs ( )
{ mark v visited; enqueue (v);

while ( not is_empty (Q) ) {
x = front (Q); dequeue (Q);
for each y adjacent to x if y unvisited {

mark y visited; enqueue (y);
insert ( (x, y) in T );
}

}
}
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Articulation Point

 An articulation point of a graph is a vertex v such 
that if v and its incident edges are removed, a 
connected component of the graph is broken into 
two or more pieces

 a connected component with no articulation points 
is said to be biconnected

 the dfs can be used to help find the biconnected
components of a graph

 finding articulation points is one problem concerning 
the connectivity of graphs
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Connectivity

 finding articulation points is one problem concerning 
the connectivity of graphs

 a graph has connectivity k if the deletion of any (k-
1) vertices fails to disconnect the graph (what does this mean?)

 e.g. a graph has connectivity 2 or more iff it has no 
articulation points i.e. iff it is biconnected

 the higher the connectivity of a graph, the more 
likely the graph is to survive failure of some of its 
vertices
 e.g. a graph representing sites which must be kept in 

communication (computers / military / other )
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Articulation Points / Connectivity: Example

 articulation points 
are a and c

 removing a gives 
{b,d,e} and {c,f,g}

 removing c gives 
{a,b,d,e} and {f,g}

 removing any other 
vertex does not 
split the graph
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Articulation Points: Algorithm

 Perform a dfs of the graph, computing the df-
number for each vertex v
(df-numbers order the vertices as in a pre-order traversal of a tree)

 for each vertex v, compute low(v) - the smallest df-
number of v or any vertex w reachable from v by 
following down 0 or more tree edges to a 
descendant x of v (x may be v) and then following a 
back edge (x, w)

 compute low(v) for each vertex v by visiting the 
vertices in post-order traversal

 when v is processed, low(y) has already been 
computed for all children y of v
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Articulation Points: Algorithm

 low(v) is taken to be the 
minimum of
 df-number(v)
 df-number(z) for any 

vertex z where (v,z) is a 
back edge

 low(y) for any child y of v
 example

 e = min(4, (1,2), -)
 d = min(3, 1, 1) b = min(2, -, 1)
 g = min(7, 5, -)  f = min(6, -, 5)
 c = min(5, -, 5)
 a = min(1, -, (1,5))

 example
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Articulation Points: Algorithm

 the root is an AP iff it has 2 or more children
 since it has no cross edges, removal of the root must 

disconnect the sub-trees rooted at its children
 removing a => {b, d, e} and {c, f, g}

 a vertex v (other than the root) is an AP iff there is 
some child w of v such that low(w) >= df-number(v)
 v disconnects w and its descendants from the rest of the 

graph
 if low(w) < df-number(v) there must be a way to get from 

w down the tree and back to a proper ancestor of v (the 
vertex whose df-number is low(w)) and therefore deletion 
of v does not disconnect w or its descendants from the 
rest of the graph
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Articulation Points: Example 1

 root - 2 or more children

 other vertices

 some child w of v such that 
low(w) >= df-number(v)

 example

 a      root >= 2 children

 b low(e) = 1  dfn = 2

 c  low(g) = 5  dfn = 5

 d  low(e) = 1  dfn = 3

 e  N/A

 f  low(g) = 5  dfn = 6

 g N/A
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Articulation Points: Example 2
 root - 2 or more children
 other vertices

 some child w of v such 
that low(w) >= df-
number(v)

 example
 a      root >= 2 children
 b low(e) = 1  dfn = 2
 c  low(g) = 7  dfn = 5
 d  low (e) = 1  dfn = 3
 e  N/A
 f  low(g) = 7  dfn = 6
 g N/A
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Bipartite Graph

 A graph G is bipartite
if V is the disjoint union 
of V1 and V2 such that 
no xi and xj in V1 are 
adjacent (similarly yi
and yj in V2 )

 example
 set of courses
 set of teachers
 edge => can teach 

course
 (marriage problem!)
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Bipartite Graph: Matching 
Problem

 A matching in a bipartite graph (BG) is a set of edges whose 
end points are distinct

 a matching is complete if every member of V1 is the end point 
of one of the edges in the matching

 a matching is perfect if every member of V is the end point of 
one of the edges in the matching

 in a BG where V = V1 disjoint union V2, there is a complete 
matching iff for every subset C of V1 there are at least |C| 
vertices in V2 adjacent to members of C

 in a BG where V = V1 disjoint union V2, there is a perfect 
matching iff for every subset C of V1 there are at least |C| 
vertices in V2 adjacent to members of C and | V1 | = | V2 |
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BG Matching: Example
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Königsberg Bridge Problem (Euler)

 Find a cycle in the 
graph G that includes 
all the vertices and all 
the edges in G –
Euler Cycle

 if G has an Euler
cycle, then G is 
connected and every 
vertex has an even 
degree

 degree(v) = number of 
edges incident on v

A
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Hamiltonian Cycle

 Hamiltonian cycle:  cycle 
in a graph G = (V,E) which 
contains each vertex in V 
exactly once, except for the 
starting and ending vertex 
that appears twice

 degree(v) = 2 for all v in V
b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

length = 50.0 length = 48.39length = 49.78
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TSP Problem

 What may we assume?
 Graph is fully connected
 a-b,5 =  5
 a-c,sqrt(50) =  7+
 a-d,sqrt(274) = 16+
 a-e,sqrt(241) = 15+
 a-f,18 = 18
 b-c,5 =   5
 b-d,sqrt(137) = 11+
 b-e,sqrt(122) = 11+

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)
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TSP Problem

Start estimating!

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

a b c d e f
a 5 7+ 16+ 15+ 18
b 5 5 11+ 11+ 15+
c 7+ 5 14 14+ 18+
d 16+ 11+ 14 3 7+
e 15+ 11+ 14+ 3 5
f 18 15+ 18+ 7+ 5
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TSP Problem

Start estimating!

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)
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TSP Problem

Adapt Kruskal PQ plus
degree max 2 (see below)

1. d-3-e
2. a-5-b, b-5-c, e-5-f
3. c-14-d
4. a-18-f
(0,0,0,1,1,0)  (1,1,0,1,1,0) 
(1,2,1,1,1,0)  (1,2,1,1,2,1) 
(1,2,2,2,2,1)  (2,2,2,2,2,2) 

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)
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Travelling Salesman Problem (TSP)

 Euler / Hamilton
 E visits each edge once
 H visits each vertex 

once
 to find an Euler cycle - O(n)

 Hamilton 
 factorial or exponential

 Hamilton - applications
 TSP
 knight’s tour of n * n 

board

 TSP
 Find the minimum-length 

Hamiltonian cycle for G
 salesman starts and ends 

at x
 TSP Algorithm

 variant of Kruskal’s
 edge acceptance 

conditions
 degree(v) should not 

>= 3
 no cycles unless # 

selected edges = |V|
 greedy / near-

optimal
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Graphs: Summary 1

 Directed Graphs
 G = (V, E)
 create / destroy G
 add / remove V 

(=>remove E)

 add / remove E
 is_path(v, w)
 path_length(v, w)
 is_cycle(v)
 is_connected(G)
 is_complete(G)

 Undirected Graphs
 G = (V, E)
 create / destroy G
 add / remove V 

(=>remove E)

 add / remove E
 is_path(v, w)
 path_length(v, w)
 is_cycle(v)
 is_connected(G)
 is_complete(G)
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Graphs: Summary 2

 Directed Graphs
 navigation

 depth-first search 
(dfs)

 breadth-first search 
(bfs)

 Warshall
 spanning forests

 df spanning forest 
(dfsf)

 bf spanning forest 
(bfsf)

 minimum cost algorithms
 Dijkstra (single path)
 Floyd (all paths)

 Undirected Graphs
 navigation

 depth-first search (dfs)
 breadth-first search (bfs)
 Warshall

 spanning forests
 df spanning forest 

(dfsf)
 bf spanning forest 

(bfsf)
 minimum cost algorithms

 Prim (spanning tree)

 Kruskal (spanning tree)
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Graphs: Summary 3

 Directed Graphs
 topological sort 

(DAG)
 strong components
 reduced graph

 Undirected Graphs
 sub-graph
 induced sub-graph
 unconnected graph-

free tree
 articulation points
 connectivity
 bipartite graph & 

matching
 Königsberg Bridge 

Problem
 Hamiltonian cycles
 Travelling Salesman


