
11/12/2016 DFR - DSA - Graphs 4 1

Undirected Graphs: Depth First Search

 Similar to the algorithm for directed graphs
 (v, w) is similar to (v,w) (w,v) in a digraph
 for the depth first spanning forest (dfsf), each

connected component in the graph will have a tree
in the dfsf
 (if the graph has one component, the dfsf will consist of one tree)

 in the dfsf for digraphs, there were 4 kinds of
edges: tree, forward, back and cross

 for a graph there are 2: tree and back edges
(forward and back edges are not distinguished and there are
no cross edges)

11/12/2016 DFR - DSA - Graphs 4 2

Undirected Graphs: Depth First Search

 Tree edges:
 edges (v,w) such that dfs(v) directly calls dfs(w) (or vice

versa)

 Back edges:
 edges (v,w) such that neither dfs(v) nor dfs(w) call each

other directly (e.g. dfs(w) calls dfs(x) which calls dfs(v) so that w
is an ancestor of v)

 in a dfs, the vertices can be given a dfs number
similar to the directed graph case

11/12/2016 DFR - DSA - Graphs 4 3

DFS: Example

start: a
a b d e c f g

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 4

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 5

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 6

DFS: Example

a(1)b(2)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 7

DFS: Example

a(1)b(2)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 8

DFS: Example

a(1)b(2)d(3)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 9

DFS: Example

a(1)b(2)d(3)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 10

DFS: Example

a(1)b(2)d(3)e(4)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 11

DFS: Example

a(1)b(2)d(3)e(4)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 12

DFS: Example

a(1)b(2)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 13

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 14

DFS: Example

a(1)c(5)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 15

DFS: Example

a(1)c(5)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 16

DFS: Example

a(1)c(5)f(6)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 17

DFS: Example

a(1)c(5)f(6)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 18

DFS: Example

a(1)c(5)f(6)g(7)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 19

DFS: Example

a(1)c(5)f(6)g(7)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 20

DFS: Example

a(1)c(5)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 dfs 21

DFS: Example

a(1)

b

d e

c

f g

a a
b
c
d
e

g
f

b
a d
a
a b
a b
c
c f

c d e
e

f g
e
d

g

11/12/2016 DFR - DSA - Graphs 4 22

DFSF: Example (Depth-First Spanning Forest)

b

d e

c

f g

a
a1

b2 c5

d3

e4

f6

g7

tree tree

tree tree

treetree

back

back

back

back

11/12/2016 DFR - DSA - Graphs 4 23

Undirected Graphs: Breadth First Search

 for each vertex v, visit all the adjacent vertices first
 a breadth-first spanning forest can be constructed

 consists of
 tree edges: edges (v,w) such that v is an ancestor of w (or

vice versa)
 cross edges: edges which connect two vertices such that

neither is an ancestor of the other

 NB the search only works on one connected
component
 if the graph has several connected components then apply

bfs to each component

11/12/2016 DFR - DSA - Graphs 4 24

BFSF: Example

b

d e

c

f g

a a

b d e c

f g

tree
treetree

tree tree

tree

crosscross

cross

cross

Note that this represents the MST for an unweighted undirected graph

11/12/2016 DFR - DSA - Graphs 4 25

BFSF: algorithm (Breadth-First Spanning Forest)

bfs ()
{ mark v visited; enqueue (v);

while (not is_empty (Q)) {
x = front (Q); dequeue (Q);
for each y adjacent to x if y unvisited {

mark y visited; enqueue (y);
insert ((x, y) in T);
}

}
}

11/12/2016 DFR - DSA - Graphs 4 26

Articulation Point

 An articulation point of a graph is a vertex v such
that if v and its incident edges are removed, a
connected component of the graph is broken into
two or more pieces

 a connected component with no articulation points
is said to be biconnected

 the dfs can be used to help find the biconnected
components of a graph

 finding articulation points is one problem concerning
the connectivity of graphs

11/12/2016 DFR - DSA - Graphs 4 27

Connectivity

 finding articulation points is one problem concerning
the connectivity of graphs

 a graph has connectivity k if the deletion of any (k-
1) vertices fails to disconnect the graph (what does this mean?)

 e.g. a graph has connectivity 2 or more iff it has no
articulation points i.e. iff it is biconnected

 the higher the connectivity of a graph, the more
likely the graph is to survive failure of some of its
vertices
 e.g. a graph representing sites which must be kept in

communication (computers / military / other)

11/12/2016 DFR - DSA - Graphs 4 28

Articulation Points / Connectivity: Example

 articulation points
are a and c

 removing a gives
{b,d,e} and {c,f,g}

 removing c gives
{a,b,d,e} and {f,g}

 removing any other
vertex does not
split the graph

b

d e

c

f g

a

11/12/2016 DFR - DSA - Graphs 4 29

Articulation Points: Algorithm

 Perform a dfs of the graph, computing the df-
number for each vertex v
(df-numbers order the vertices as in a pre-order traversal of a tree)

 for each vertex v, compute low(v) - the smallest df-
number of v or any vertex w reachable from v by
following down 0 or more tree edges to a
descendant x of v (x may be v) and then following a
back edge (x, w)

 compute low(v) for each vertex v by visiting the
vertices in post-order traversal

 when v is processed, low(y) has already been
computed for all children y of v

11/12/2016 DFR - DSA - Graphs 4 30

Articulation Points: Algorithm

 low(v) is taken to be the
minimum of
 df-number(v)
 df-number(z) for any

vertex z where (v,z) is a
back edge

 low(y) for any child y of v
 example

 e = min(4, (1,2), -)
 d = min(3, 1, 1) b = min(2, -, 1)
 g = min(7, 5, -) f = min(6, -, 5)
 c = min(5, -, 5)
 a = min(1, -, (1,5))

 example
a1

b2 c5

d3

e4

f6

g7

1

1

1

1 5

5

5

11/12/2016 DFR - DSA - Graphs 4 31

Articulation Points: Algorithm

 the root is an AP iff it has 2 or more children
 since it has no cross edges, removal of the root must

disconnect the sub-trees rooted at its children
 removing a => {b, d, e} and {c, f, g}

 a vertex v (other than the root) is an AP iff there is
some child w of v such that low(w) >= df-number(v)
 v disconnects w and its descendants from the rest of the

graph
 if low(w) < df-number(v) there must be a way to get from

w down the tree and back to a proper ancestor of v (the
vertex whose df-number is low(w)) and therefore deletion
of v does not disconnect w or its descendants from the
rest of the graph

11/12/2016 DFR - DSA - Graphs 4 32

Articulation Points: Example 1

 root - 2 or more children

 other vertices

 some child w of v such that
low(w) >= df-number(v)

 example

 a root >= 2 children

 b low(e) = 1 dfn = 2

 c low(g) = 5 dfn = 5

 d low(e) = 1 dfn = 3

 e N/A

 f low(g) = 5 dfn = 6

 g N/A

a1

b2 c5

d3

e4

f6

g7

1

1

1

1 5

5

5

11/12/2016 DFR - DSA - Graphs 4 33

Articulation Points: Example 2
 root - 2 or more children
 other vertices

 some child w of v such
that low(w) >= df-
number(v)

 example
 a root >= 2 children
 b low(e) = 1 dfn = 2
 c low(g) = 7 dfn = 5
 d low (e) = 1 dfn = 3
 e N/A
 f low(g) = 7 dfn = 6
 g N/A

a1

b2 c5

d3

e4

f6

g7

1

1

1

1 7

6

5

11/12/2016 DFR - DSA - Graphs 4 34

Bipartite Graph

 A graph G is bipartite
if V is the disjoint union
of V1 and V2 such that
no xi and xj in V1 are
adjacent (similarly yi
and yj in V2)

 example
 set of courses
 set of teachers
 edge => can teach

course
 (marriage problem!)

T1

T2

T3

T4

T5

C1

C2

C3

C4

C5

11/12/2016 DFR - DSA - Graphs 4 35

Bipartite Graph: Matching
Problem

 A matching in a bipartite graph (BG) is a set of edges whose
end points are distinct

 a matching is complete if every member of V1 is the end point
of one of the edges in the matching

 a matching is perfect if every member of V is the end point of
one of the edges in the matching

 in a BG where V = V1 disjoint union V2, there is a complete
matching iff for every subset C of V1 there are at least |C|
vertices in V2 adjacent to members of C

 in a BG where V = V1 disjoint union V2, there is a perfect
matching iff for every subset C of V1 there are at least |C|
vertices in V2 adjacent to members of C and | V1 | = | V2 |

11/12/2016 DFR - DSA - Graphs 4 36

BG Matching: Example

T1

T2

T3

T4

T5

C1

C2

C3

C4

C5

T1

T2

T3

T4

T5

C1

C2

C3

C4

C5

11/12/2016 DFR - DSA - Graphs 4 37

Königsberg Bridge Problem (Euler)

 Find a cycle in the
graph G that includes
all the vertices and all
the edges in G –
Euler Cycle

 if G has an Euler
cycle, then G is
connected and every
vertex has an even
degree

 degree(v) = number of
edges incident on v

A

D

B C

A3

B5 C3

D3

11/12/2016 DFR - DSA - Graphs 4 38

Hamiltonian Cycle

 Hamiltonian cycle: cycle
in a graph G = (V,E) which
contains each vertex in V
exactly once, except for the
starting and ending vertex
that appears twice

 degree(v) = 2 for all v in V
b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

length = 50.0 length = 48.39length = 49.78

11/12/2016 DFR - DSA - Graphs 4 39

TSP Problem

 What may we assume?
 Graph is fully connected
 a-b,5 = 5
 a-c,sqrt(50) = 7+
 a-d,sqrt(274) = 16+
 a-e,sqrt(241) = 15+
 a-f,18 = 18
 b-c,5 = 5
 b-d,sqrt(137) = 11+
 b-e,sqrt(122) = 11+

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

11/12/2016 DFR - DSA - Graphs 4 40

TSP Problem

Start estimating!

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

a b c d e f
a 5 7+ 16+ 15+ 18
b 5 5 11+ 11+ 15+
c 7+ 5 14 14+ 18+
d 16+ 11+ 14 3 7+
e 15+ 11+ 14+ 3 5
f 18 15+ 18+ 7+ 5

11/12/2016 DFR - DSA - Graphs 4 41

TSP Problem

Start estimating!

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

a b c d e f
a 5 7+ 16+ 15+ 18
b 5 5 11+ 11+ 15+
c 7+ 5 14 14+ 18+
d 16+ 11+ 14 3 7+
e 15+ 11+ 14+ 3 5
f 18 15+ 18+ 7+ 5

11/12/2016 DFR - DSA - Graphs 4 42

TSP Problem

Adapt Kruskal PQ plus
degree max 2 (see below)

1. d-3-e
2. a-5-b, b-5-c, e-5-f
3. c-14-d
4. a-18-f
(0,0,0,1,1,0) (1,1,0,1,1,0)
(1,2,1,1,1,0) (1,2,1,1,2,1)
(1,2,2,2,2,1) (2,2,2,2,2,2)

b (4,3)

a (0,0)

c (1,7) d (15,7)
e (15,4)

f (18,0)

11/12/2016 DFR - DSA - Graphs 4 43

Travelling Salesman Problem (TSP)

 Euler / Hamilton
 E visits each edge once
 H visits each vertex

once
 to find an Euler cycle - O(n)

 Hamilton
 factorial or exponential

 Hamilton - applications
 TSP
 knight’s tour of n * n

board

 TSP
 Find the minimum-length

Hamiltonian cycle for G
 salesman starts and ends

at x
 TSP Algorithm

 variant of Kruskal’s
 edge acceptance

conditions
 degree(v) should not

>= 3
 no cycles unless #

selected edges = |V|
 greedy / near-

optimal

11/12/2016 DFR - DSA - Graphs 4 44

Graphs: Summary 1

 Directed Graphs
 G = (V, E)
 create / destroy G
 add / remove V

(=>remove E)

 add / remove E
 is_path(v, w)
 path_length(v, w)
 is_cycle(v)
 is_connected(G)
 is_complete(G)

 Undirected Graphs
 G = (V, E)
 create / destroy G
 add / remove V

(=>remove E)

 add / remove E
 is_path(v, w)
 path_length(v, w)
 is_cycle(v)
 is_connected(G)
 is_complete(G)

11/12/2016 DFR - DSA - Graphs 4 45

Graphs: Summary 2

 Directed Graphs
 navigation

 depth-first search
(dfs)

 breadth-first search
(bfs)

 Warshall
 spanning forests

 df spanning forest
(dfsf)

 bf spanning forest
(bfsf)

 minimum cost algorithms
 Dijkstra (single path)
 Floyd (all paths)

 Undirected Graphs
 navigation

 depth-first search (dfs)
 breadth-first search (bfs)
 Warshall

 spanning forests
 df spanning forest

(dfsf)
 bf spanning forest

(bfsf)
 minimum cost algorithms

 Prim (spanning tree)

 Kruskal (spanning tree)

11/12/2016 DFR - DSA - Graphs 4 46

Graphs: Summary 3

 Directed Graphs
 topological sort

(DAG)
 strong components
 reduced graph

 Undirected Graphs
 sub-graph
 induced sub-graph
 unconnected graph-

free tree
 articulation points
 connectivity
 bipartite graph &

matching
 Königsberg Bridge

Problem
 Hamiltonian cycles
 Travelling Salesman

