Sequential Structures

Heaps! and Priority Queues

1 Stapel ar den béasta svenska 6versattningen

17/01/2017 JS - DSA - Heaps & PQs

Agenda

= |n this lesson:
Heaps (Binary)

O

17/01/2017

Terminology
Organisation
Definition/Properties
Operations
Algorithms

Priority Queues

Definition
Properties

Comparison with a “normal” queue

Implementation

JS - DSA - Heaps & PQs

Hea

= Terminology
@ Left/right child
@ Heap-invariant
@ Complete Binary Tree
= Organisation
@ Hierarchical Organisation
@ Height order
n decreasing
n increasing 8
m Heap Order Properties

@ For each node X the key/value in the
parent of X is less/greater than or
equal to the key in X, with the 1 2 3 4 5 6 7 8 9 10
exception of the root

= Implementation
@ Sequence
@ More effective with an array A

17/01/2017 JS - DSA - Heaps & PQs 3

Hea

= Definitions
o For some index I, In a heap represented by array A

= Parent: Parent(i) = Low(i / 2)}
= Left Child: Left(i) = 2i
= Right Child: Right(i) =2i+1
o Invariant for a descending order heap represented by
array A

= A[i] >= A[Left(i)] && A[i] >= A[Right(i)] OR
m Ali] >= A[21] && A[i] >= A[21 + 1] i.e. the left/right child values

1 integer division — low is rounded down

17/01/2017 JS - DSA - Heaps & PQs

Hea

= Properties
o The greatest value is found in the first position in a

O

17/01/2017

descending heap

The smallest value In the first position in an
ascending heap

performance - all operations: logarithmic O(log n)
except for Build whose complexity is O(n) and
findMin / findMax which are constant.

JS - DSA - Heaps & PQs

Heap - Operationer

Operation In Out
Build A H
Create H
Add HXxv H
Remove HXxr H
Find HXvV r
Size H N
Max* H ;
Min? H Y,
RemoveMax! H H
RemoveMin? H H

A minimum number of operations is Min/Max, RemoveMin/Max, Add and
ISEmpty. Often decreaseKey/increaseKey is required to change the
prioroty of an object. In general Remove is often not required. Why?

17/01/2017 JS - DSA - Heaps & PQs

Heap - Operations (contd.)

= New pseudo operation
o Heapify
= Recursive operation which

= Assumes that all children for a given element fulfil
the invariant

m Guarantees that the element fulfils the invariant

17/01/2017 JS - DSA - Heaps & PQs

Heap - Operations (contd.)

Heapify(A, i) H
1 = Left(1) // 2%
r = Right(r) // 2*i+1
iIT I <= A_size and A[l] > A[i1]
then largest = 1
else largest = 1
If r <= A_.size and A[r] >
Al largest] then largest = r
iIT largest = 1 then
swap(A[1]., A[largest])
Heapifty (A, largest)
end if 1 2 3 4 5 6 7 8 9 10
end Heapify 16 |14 (10| 8 | 7| 9 | 3 | 2 | 4 |1

17/01/2017 JS - DSA - Heaps & PQs 8

Heap - Operations (contd.)

This structure does NOT fulfil the heap
invariant, element 2 violates the
invariant

To restore the invariant, the operation !nvariant violation = 2
Heapify(A, 2) is applied

A

16 | 4 10 | 14

17/01/2017 JS - DSA - Heaps & PQs

Heap - Operations (contd.)

= The operation Bui ldHeap(A)
BuildHeap may be for 1 = [A.size / 2]! downto 1
defined with the help of E?J)I IHdeap'W(A, D
Heapify

= BuildHeap takes an
arbitrary array and
modifies it to a heap

1why do we begin with [A.size / 2]?
17/01/2017 JS - DSA - Heaps & PQs

10

Heap - Operations (contd.)

The operation Remove may be Remove(A, 1)
defined with the help of A[1] = A[A.size]
Heapify. A_size--

Heapifty(A, 1)
end Remove

17/01/2017 JS - DSA - Heaps & PQs

11

Heap - Operations (contd.)

= Add is implemented
without Heapify

©)

17/01/2017

Here we use the
fact that the
parent is ordered
with respect to
the child
(ascending

descending)

The parents
“bubble” down the
tree!

Add(A, v)
A.size++
1 = A.size
while 1 > 1 and A[Parent(i1)] < v
do A[1] = A[Parent(1)]
I = Parent(1)

end while
A[1] = v
end Add

JS - DSA - Heaps & PQs

12

‘ Priority Queue (PQ)

= Definition
o A sequence
o Each element has an associated priority

o The first element in the queue has the
highest priority
= All other elements have the same or lower priority
= The order is thus based on the priority

17/01/2017 JS - DSA - Heaps & PQs 13

Priority Oueue (PQ) (contd.)

= Compared with a “normal” queue

o Order
m properties
o The (normal) gueue has FIFO-order
O The Priority Queue has priority-order
m Effect

O The first element added is not necessarily the first
element in the queue!

17/01/2017 JS - DSA - Heaps & PQs

14

‘ Priority Queue - Operations

17/01/2017

Operation

Enqueue
Dequeue
Front

ISEmpty

In Out

QXxv Q

Q Q

Q Y,

Q True or False

JS - DSA - Heaps & PQs

15

‘ Priority Queue - Implementation]

m List
o Using a linked list
o Performance - Linear access O(n)

= Heap

o Using a heap i in ascending or descending
order depending on how the priority Is
defined.

o Performance - Logarithmic access O(log n)

17/01/2017 JS - DSA - Heaps & PQs 16

‘ Application Area

= Priority Queues are used In

o QOperating systems
= Process management (= executing programs)
= Printer queues

o Generally in systems where priority plays a
significant role

17/01/2017 JS - DSA - Heaps & PQs

17

Summar

= Heap

O

17/01/2017

Is iImplemented using a sequence

= Most efficient with an array (A)

Invariant: A[i] >= A[Left(i)] && A[i] >= A[Right(i)] for a
descending order heap

Order is defined between parents and children

There is NO order between children

The position of the lowest/greatest value is always known
(depending on the order)

JS - DSA - Heaps & PQs 18

Summar

= Priority Queue

o This is not really a queue (not FIFO)

= There are “similar’ operations applied to a queue
and priority queue but the semantics is different

o The highest priority value comes first, the
remaining values are of equal or lower priority

17/01/2017 JS - DSA - Heaps & PQs 19

Reference Literature

= Data Structures and Problem Solving Using C++,
[Welss]
o sid. 755-777

= Introduction to Algorithms, [Cormen, Leiserson, Rivest]
o sid. 140-152

17/01/2017 JS - DSA - Heaps & PQs

20

