
17/01/2017 JS - DSA - Heaps & PQs 1

Sequential Structures

Heaps1 and Priority Queues

1 Stapel är den bästa svenska översättningen

17/01/2017 JS - DSA - Heaps & PQs 2

Agenda

 In this lesson:
 Heaps (Binary)

 Terminology
 Organisation
 Definition/Properties
 Operations
 Algorithms

 Priority Queues
 Definition
 Properties
 Comparison with a “normal” queue
 Implementation

17/01/2017 JS - DSA - Heaps & PQs 3

Heap
 Terminology

 Left/right child
 Heap-invariant
 Complete Binary Tree

 Organisation
 Hierarchical Organisation
 Height order

 decreasing
 increasing

 Heap Order Properties
 For each node X the key/value in the

parent of X is less/greater than or
equal to the key in X, with the
exception of the root

 Implementation
 Sequence
 More effective with an array

8

7

16

10

9 3

14

8

2 4 1

7

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6

9 10

A

H

17/01/2017 JS - DSA - Heaps & PQs 4

Heap
 Definitions

 For some index i, in a heap represented by array A
 Parent: Parent(i) = Low(i / 2)1

 Left Child: Left(i) = 2i
 Right Child: Right(i) = 2i + 1

 Invariant for a descending order heap represented by
array A
 A[i] >= A[Left(i)] && A[i] >= A[Right(i)] OR
 A[i] >= A[2i] && A[i] >= A[2i + 1] i.e. the left/right child values

1 integer division – low is rounded down

17/01/2017 JS - DSA - Heaps & PQs 5

Heap

 Properties
 The greatest value is found in the first position in a

descending heap
 The smallest value in the first position in an

ascending heap
 performance - all operations: logarithmic O(log n)

except for Build whose complexity is O(n) and
findMin / findMax which are constant.

17/01/2017 JS - DSA - Heaps & PQs 6

Heap - Operationer

Operation In Out
Build A H
Create H
Add H x v H
Remove H x r H
Find H x v r
Size H n
Max1 H v
Min2 H v
RemoveMax1 H H
RemoveMin2 H H

A minimum number of operations is Min/Max, RemoveMin/Max, Add and
isEmpty. Often decreaseKey/increaseKey is required to change the
prioroty of an object. In general Remove is often not required. Why?

17/01/2017 JS - DSA - Heaps & PQs 7

Heap - Operations (contd.)

 New pseudo operation
 Heapify

 Recursive operation which
 Assumes that all children for a given element fulfil

the invariant
 Guarantees that the element fulfils the invariant

17/01/2017 JS - DSA - Heaps & PQs 8

Heap - Operations (contd.)
Heapify(A, i)

l = Left(i) // 2*i
r = Right(i) // 2*i+1
if l <= A.size and A[l] > A[i]

then largest = l
else largest = i

if r <= A.size and A[r] >
A[largest] then largest = r

if largest != i then
swap(A[i], A[largest])
Heapify (A, largest)

end if
end Heapify

8

7

16

10

9 3

14

8

2 4 1

7

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6

9 10

A

H

17/01/2017 JS - DSA - Heaps & PQs 9

Heap - Operations (contd.)

8

7

16

10

9 3

4

14

2 8 1

7

16 4 10 14 7 9 3 2 8 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6

9 10

A

H

Invariant violation

 This structure does NOT fulfil the heap
invariant, element 2 violates the
invariant

 To restore the invariant, the operation
Heapify(A, 2) is applied

17/01/2017 JS - DSA - Heaps & PQs 10

Heap - Operations (contd.)

 The operation
BuildHeap may be
defined with the help of
Heapify

 BuildHeap takes an
arbitrary array and
modifies it to a heap

BuildHeap(A)
for i = [A.size / 2]1 downto 1

do Heapify(A, i)
end Build

1 why do we begin with [A.size / 2]?

17/01/2017 JS - DSA - Heaps & PQs 11

Heap - Operations (contd.)

 The operation Remove may be
defined with the help of
Heapify.

Remove(A, i)
A[i] = A[A.size]
A.size--
Heapify(A, i)

end Remove

17/01/2017 JS - DSA - Heaps & PQs 12

Heap - Operations (contd.)

 Add is implemented
without Heapify
 Here we use the

fact that the
parent is ordered
with respect to
the child
(ascending
descending)

 The parents
“bubble” down the
tree!

Add(A, v)
A.size++
i = A.size
while i > 1 and A[Parent(i)] < v

do A[i] = A[Parent(i)]
i = Parent(i)

end while
A[i] = v

end Add

17/01/2017 JS - DSA - Heaps & PQs 13

Priority Queue (PQ)

 Definition
 A sequence
 Each element has an associated priority
 The first element in the queue has the

highest priority
 All other elements have the same or lower priority
 The order is thus based on the priority

17/01/2017 JS - DSA - Heaps & PQs 14

Priority Queue (PQ) (contd.)

 Compared with a “normal” queue
 Order

 properties
 The (normal) queue has FIFO-order
 The Priority Queue has priority-order

 Effect
 The first element added is not necessarily the first

element in the queue!

17/01/2017 JS - DSA - Heaps & PQs 15

Priority Queue - Operations

Operation In Out

Enqueue Q x v Q

Dequeue Q Q

Front Q v

IsEmpty Q True or False

17/01/2017 JS - DSA - Heaps & PQs 16

Priority Queue - Implementation

 List
 Using a linked list
 Performance - Linear access O(n)

 Heap
 Using a heap i in ascending or descending

order depending on how the priority is
defined.

 Performance - Logarithmic access O(log n)

17/01/2017 JS - DSA - Heaps & PQs 17

Application Area

 Priority Queues are used in
 Operating systems

 Process management (= executing programs)
 Printer queues

 Generally in systems where priority plays a
significant rôle

17/01/2017 JS - DSA - Heaps & PQs 18

Summary

 Heap
 Is implemented using a sequence

 Most efficient with an array (A)
 Invariant: A[i] >= A[Left(i)] && A[i] >= A[Right(i)] for a

descending order heap
 Order is defined between parents and children
 There is NO order between children
 The position of the lowest/greatest value is always known

(depending on the order)

17/01/2017 JS - DSA - Heaps & PQs 19

Summary

 Priority Queue
 This is not really a queue (not FIFO)

 There are “similar” operations applied to a queue
and priority queue but the semantics is different

 The highest priority value comes first, the
remaining values are of equal or lower priority

17/01/2017 JS - DSA - Heaps & PQs 20

Reference Literature

 Data Structures and Problem Solving Using C++,
[Weiss]
 sid. 755-777

 Introduction to Algorithms, [Cormen, Leiserson, Rivest]
 sid. 140-152

