
17/01/2017 JS - DSA - Heaps & PQs 1

Sequential Structures

Heaps1 and Priority Queues

1 Stapel är den bästa svenska översättningen

17/01/2017 JS - DSA - Heaps & PQs 2

Agenda

 In this lesson:
 Heaps (Binary)

 Terminology
 Organisation
 Definition/Properties
 Operations
 Algorithms

 Priority Queues
 Definition
 Properties
 Comparison with a “normal” queue
 Implementation

17/01/2017 JS - DSA - Heaps & PQs 3

Heap
 Terminology

 Left/right child
 Heap-invariant
 Complete Binary Tree

 Organisation
 Hierarchical Organisation
 Height order

 decreasing
 increasing

 Heap Order Properties
 For each node X the key/value in the

parent of X is less/greater than or
equal to the key in X, with the
exception of the root

 Implementation
 Sequence
 More effective with an array

8

7

16

10

9 3

14

8

2 4 1

7

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6

9 10

A

H

17/01/2017 JS - DSA - Heaps & PQs 4

Heap
 Definitions

 For some index i, in a heap represented by array A
 Parent: Parent(i) = Low(i / 2)1

 Left Child: Left(i) = 2i
 Right Child: Right(i) = 2i + 1

 Invariant for a descending order heap represented by
array A
 A[i] >= A[Left(i)] && A[i] >= A[Right(i)] OR
 A[i] >= A[2i] && A[i] >= A[2i + 1] i.e. the left/right child values

1 integer division – low is rounded down

17/01/2017 JS - DSA - Heaps & PQs 5

Heap

 Properties
 The greatest value is found in the first position in a

descending heap
 The smallest value in the first position in an

ascending heap
 performance - all operations: logarithmic O(log n)

except for Build whose complexity is O(n) and
findMin / findMax which are constant.

17/01/2017 JS - DSA - Heaps & PQs 6

Heap - Operationer

Operation In Out
Build A H
Create H
Add H x v H
Remove H x r H
Find H x v r
Size H n
Max1 H v
Min2 H v
RemoveMax1 H H
RemoveMin2 H H

A minimum number of operations is Min/Max, RemoveMin/Max, Add and
isEmpty. Often decreaseKey/increaseKey is required to change the
prioroty of an object. In general Remove is often not required. Why?

17/01/2017 JS - DSA - Heaps & PQs 7

Heap - Operations (contd.)

 New pseudo operation
 Heapify

 Recursive operation which
 Assumes that all children for a given element fulfil

the invariant
 Guarantees that the element fulfils the invariant

17/01/2017 JS - DSA - Heaps & PQs 8

Heap - Operations (contd.)
Heapify(A, i)

l = Left(i) // 2*i
r = Right(i) // 2*i+1
if l <= A.size and A[l] > A[i]

then largest = l
else largest = i

if r <= A.size and A[r] >
A[largest] then largest = r

if largest != i then
swap(A[i], A[largest])
Heapify (A, largest)

end if
end Heapify

8

7

16

10

9 3

14

8

2 4 1

7

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6

9 10

A

H

17/01/2017 JS - DSA - Heaps & PQs 9

Heap - Operations (contd.)

8

7

16

10

9 3

4

14

2 8 1

7

16 4 10 14 7 9 3 2 8 1

1 2 3 4 5 6 7 8 9 10

1

2 3

4 5 6

9 10

A

H

Invariant violation

 This structure does NOT fulfil the heap
invariant, element 2 violates the
invariant

 To restore the invariant, the operation
Heapify(A, 2) is applied

17/01/2017 JS - DSA - Heaps & PQs 10

Heap - Operations (contd.)

 The operation
BuildHeap may be
defined with the help of
Heapify

 BuildHeap takes an
arbitrary array and
modifies it to a heap

BuildHeap(A)
for i = [A.size / 2]1 downto 1

do Heapify(A, i)
end Build

1 why do we begin with [A.size / 2]?

17/01/2017 JS - DSA - Heaps & PQs 11

Heap - Operations (contd.)

 The operation Remove may be
defined with the help of
Heapify.

Remove(A, i)
A[i] = A[A.size]
A.size--
Heapify(A, i)

end Remove

17/01/2017 JS - DSA - Heaps & PQs 12

Heap - Operations (contd.)

 Add is implemented
without Heapify
 Here we use the

fact that the
parent is ordered
with respect to
the child
(ascending
descending)

 The parents
“bubble” down the
tree!

Add(A, v)
A.size++
i = A.size
while i > 1 and A[Parent(i)] < v

do A[i] = A[Parent(i)]
i = Parent(i)

end while
A[i] = v

end Add

17/01/2017 JS - DSA - Heaps & PQs 13

Priority Queue (PQ)

 Definition
 A sequence
 Each element has an associated priority
 The first element in the queue has the

highest priority
 All other elements have the same or lower priority
 The order is thus based on the priority

17/01/2017 JS - DSA - Heaps & PQs 14

Priority Queue (PQ) (contd.)

 Compared with a “normal” queue
 Order

 properties
 The (normal) queue has FIFO-order
 The Priority Queue has priority-order

 Effect
 The first element added is not necessarily the first

element in the queue!

17/01/2017 JS - DSA - Heaps & PQs 15

Priority Queue - Operations

Operation In Out

Enqueue Q x v Q

Dequeue Q Q

Front Q v

IsEmpty Q True or False

17/01/2017 JS - DSA - Heaps & PQs 16

Priority Queue - Implementation

 List
 Using a linked list
 Performance - Linear access O(n)

 Heap
 Using a heap i in ascending or descending

order depending on how the priority is
defined.

 Performance - Logarithmic access O(log n)

17/01/2017 JS - DSA - Heaps & PQs 17

Application Area

 Priority Queues are used in
 Operating systems

 Process management (= executing programs)
 Printer queues

 Generally in systems where priority plays a
significant rôle

17/01/2017 JS - DSA - Heaps & PQs 18

Summary

 Heap
 Is implemented using a sequence

 Most efficient with an array (A)
 Invariant: A[i] >= A[Left(i)] && A[i] >= A[Right(i)] for a

descending order heap
 Order is defined between parents and children
 There is NO order between children
 The position of the lowest/greatest value is always known

(depending on the order)

17/01/2017 JS - DSA - Heaps & PQs 19

Summary

 Priority Queue
 This is not really a queue (not FIFO)

 There are “similar” operations applied to a queue
and priority queue but the semantics is different

 The highest priority value comes first, the
remaining values are of equal or lower priority

17/01/2017 JS - DSA - Heaps & PQs 20

Reference Literature

 Data Structures and Problem Solving Using C++,
[Weiss]
 sid. 755-777

 Introduction to Algorithms, [Cormen, Leiserson, Rivest]
 sid. 140-152

