
19/06/2015 DFR - DSA - Searching 1

 Search Methods
 internal (memory)
 external (file/disk)
 static (content fixed)

 dynamic (changeable)

 key comparison
 key transformation

 Searching is closely
linked to sorting

 Basic Points
 Search returns

 found
 not found

 Related terms
 table lookup
 find operation

 Performance
 may vary with size

of collection

Searching

19/06/2015 DFR - DSA - Searching 2

Searching: Examples

 Sequence lookup
 hash tables
 compiler symbol

tables
 database systems
 key searching

(info = key + data)
 Sequence

 array / file / table /
database

 linked list / strings
(patterns)

 Sequential Searching
 O(n)

collection of e where
e = key + data (+ ref)

ref = first(C)
while (not eoc(C))

if (V = value(e)) return T
else ref = next(ref)

19/06/2015 DFR - DSA - Searching 3

Abstract Model

 Collection Operations
 size: C int
 is_empty: C Bool
 get_key: ref key
 get_data: ref data
 find: C x key ref
 add: C x e C
 remove: C x ref C
 display: C C

key data
1

N

19/06/2015 DFR - DSA - Searching 4

Implementation Issues

 Example Performance
 size of C
 disk swapping/buffering
 search methods

 hashing / B-trees
 key / data ratio
 number of key

collections
 primary (one)
 secondary (>= 0)

buffermemory

program

disk

file

19/06/2015 DFR - DSA - Searching 5

Sorted Sequence

 Collection (sorted) Keys sorted
 binary search

 initialise lo_ref / hi_ref
Klo<= K<= Khi

 get mid-point Kmid

 compare
 K = Kmid =>

found
 > search upper
 < search lower

 repeat process

key data
1

N

A
C
D

E

F

H
G

19/06/2015 DFR - DSA - Searching 6

Binary Search Tree

1

2

3

4

5

6

7

19/06/2015 DFR - DSA - Searching 7

Binary Search Tree + Sequence

1

2

3

4

5

6

7

1 20 3 4 5 6 7

keys

data

19/06/2015 DFR - DSA - Searching 8

Problem (pathological) cases

 bst created from
1 2 3 4 5 (sorted)

 Deep trees

1

5

2

3

4

19/06/2015 DFR - DSA - Searching 9

Deep Trees

 Disadvantages
 path length (#

accesses)

 if node = disk page =>
high cost for swapping

 BTs can easily become
deep as N increases

 N (max) = 2 d+1 - 1

19/06/2015 DFR - DSA - Searching 10

Unbalanced Trees

 Disadvantages
 path length (#

accesses)

 if node = disk page =>
high cost for swapping

 BTs can easily become
deep as N increases

 depends on distribution
of the input data

 static/dynamic analysis

19/06/2015 DFR - DSA - Searching 11

Solution: Balanced Shallow Trees

 Advantages
 shorter search paths
 index + sequence set
 index = p1 k1 p2 k2 …
 sequence = d1 d2 d3 …
 sequence set may still

be accessed linearly

 Issues
 add/remove algorithms

etc

etc

ref key ref key ref

Knuth’s B+ variant of a B-tree

19/06/2015 DFR - DSA - Searching 12

Summary

 Search found / not found

 performance depends on size(C) -
O(N), O(logN), …

 internal / external searching

 source data distribution

 unsorted => linear search - O(n)

 sorted => binary search - O(logN)

 -ve : deep / unbalanced trees

 +ve : shallow / balanced trees

 b-tree family of trees

 based on key comparison

 Applications
 file / DB searching
 table lookup

 symbol / function
tables

 primary / secondary
key indexes

 lexicographical search
 natural language
 pattern matching

 fundamental to CS

