
1

Intrusion Detection (IDS)

Simone Fischer-Hübner

Motivation for IDS

Developing absolutely secure systems is
not possible

Most existing systems have security flaws
Abuses by privileged insiders are possible
Not all kinds of intrusions are known

Quick detection of intrusions can help to
identify intruders and limit damage
IDS serves as a deterrent

Intrusion Detection (IDS) –
Basic concepts

Monitoring via sensors
(located on the hosts or on the
network)

Response
(Alarm/Actions)

Intrusion Detecion
(Analysis)

Misuse
Detection

Anomaly
Detection

Audit Data

Network
packets

Misuse
Siganture
Database

Statistical
Profiles

IDS: Software and/or hardware systems monitoring a system,
analysing it for signs of security intrusions and eventually
triggering response

Sensors - Network based IDS

Capturing and analysing network packets
Placed at various points in a network

Behind the external firewall (Location 1)
Outside the external
firewall (Location 2)
On major network
backbones (Location 3)
On critical subnets
(Location 4)

Sensors –
Host based IDS

Information is collected within an
individual computer or application
Installed on critical hosts
Audit data are collected on OS level
(system logs) and/or application level

Distributed Intrusion Detecion
– Architecture Example (centralised)

2

Distributed Intrusion Detection –
Issues

A distributed intrusion detection system may
need to deal with different audit record
formats
One or more nodes in the network will serve
as collection and analysis points for the data,
which must be securely transmitted to them
Architecture can be:

centralized (single point of analysis, easier but
bottleneck) or
decentralized (multiple centers that must be
coordinated)

Anomaly Detection
Based on the hypothesis that intrusions can be detected
by monitoring a system for abnormal patterns of system
usage
IDES (Intrusion Detection Expert System) developed by
D.Denning at SRI/International in 1986

Usually rule-based pattern matching system which
includes

Statistical profiles for representing the behavior of subjects with
respect to objects
Rules matching new audit records against profiles, acquire/update
profiles, detect anonalous behavior

Examples for anomalies for
intrusions:

Attempted break-ins:
abnormally high rate of password failure

Masquerading, successful break-ins
different login time, location or connection type,
different accesses to data, execution of programs

Penetration by legitimate users:
login at unusual times,
route data to remote printers not normally used,
execution of different programs, more protection violations,
access to commands/files not normally permitted to him/her

Viruses:
infected program needs more memory, disk space, CPU-time, I/O-
activities,
it modifies other executable code not normally done by it,
increase in the frequency of executable files rewritten in the infected
system

IDES Anomaly Detection –
Audit Records

Generated by the target system, translated into standard format, transmitted to
the IDES system for analysis

Audit record structure:
(subject, action, object, exception-condition, resource-usage, time-stamp)

Decomposition of activities involving multiple objects to single-object actions:
e.g.: COPY GAME.EXE to <LIBRARY>GAME.EXE issued by Smith is aborted,

because he does not have write-permission to <LIBRARY>

Audit Records:
(Smith, execute, <Library>COPY.EXE, 0, CPU=0002, 1105821678)
(Smith, read, <Smith>GAME.EXE, 0, RECORDS=0, 1105821679)
(Smith, write, <Library>GAME.EXE, write-viol, Records=0, 1105821679)

IDES Anomaly Detection –
Statistical Profiles (I)

Profiles characterize the behaviour of a subject with respect to an object in
terms of a statistical metric and model

Metric:
Random variable x representing a quantitative measure accumulated over
a period (period: fixed or time between 2 events)

Examples of types of metrics:
Event counter:

x is the number of audit records satisfying some property occurring during a period,
e.g. number of logins during one hour, number of execution failures during one
session

Interval timer:
x is the length of time between two related events, e.g. time length between
successive logins into one account

Resource measure:
x is the quantity of resources consumed by some action during a period, e.g.
number of pages printed per day

IDES Anomaly Detecion –
Statistical Profiles (II)

Statistical Model:
Given a metric for a random variable x and n observations x1,...,xn.
The statistical model shall determine whether a new observation xn+1 is
abnormal with respect to the previous observations.

Operational Model:
Abnormality is detected by comparing a new observation of x against fixed
limits, e.g. limitation of number of password failures during a short period.

Mean and Standard Deviation Model:
A new observation of x is defined to be abnormal, if it falls outside a
confidence interval:

mean + d * stdev (the probability of a value falling outside this interval
is at most 1/d2).

sum = x1 + x2 ++ xn
sumsquares = x1

2 +....+ xn
2

mean = sum / n
stdev = √¯ (sumsquares / (n-1) - mean2)

3

IDES Example Profile
Structure

Profile structure:
(name,
subject-pattern,
action-pattern,
object-pattern,
exception-pattern,
resource-usage-pattern,
period,
metric,
statistical-model,
value,
threshold)

Example of patterns:
Subject patterns: ´Smith´, * → user
Object patterns: ´<Library>*´ , IN(GAME.EXE,EDITOR.EXE)

Anomaly Detection –
Examples of Metric/Model Combinations in
Profiles

Login Frequency (event counter, mean/ standard deviation model)

Location Frequency (event counter, mean/ standard deviation model)

Session Output (resource measure, mean/ standard deviation model)

Password Fails (event counter, operational model)

Execution Frequency (event counter, mean/standard deviation model)

Execution Denied (event counter, operational model)

Read-, Write,- Delete-Frequency (event counter, mean/standard
deviation model)

Read-, Write, Delete-Fails (event counter, operational model)

File Resource Exhaustion (event counter, operational model)

IDES Anomaly Detection –
Pattern Matching Rules

Rule-Structure: Condition --> Action-Body

Audit Record Rules:
Condition: A new audit record matches a profile
Body: update of the profile, checking for anomalous behaviour,

(generation of an anomaly record, if an abnormality is
detected)

Periodic Activity Update Rules:
Condition: The system clock implies a period of length p

completes, the period component of a profile is p
Body: update of the matching profile,

checking for anomalous behavior,
(generation of an anomaly record, if a
abnormality is detected)

Anomaly Detection –
Pros & Cons

Can detected an attack
without previous
knowledge about it
Can deliver the base for
signature generation

Requires sophisticated
mathematical analysis
which is time intensive
Produces a large number
of false alarms
Requires extensive
training sets for the
system
Vulnerable to attacks
based on slow change of
behavior
Affects privacy of users

++ --

Analysis – Misuse detection
System activities are scanned for attack signatures,
i.e. patterns of network traffic or activities in log files
indicating malicious behavior
Examples:

patterns of bits in an IP packet indicating a buffer overflow
certain types of TCP SYN packets indicating a SYN flooding
attack
Sequence of action typical for computer viruses

Majority of commercial-based IDS products are based
on misuse detection
SNORT is a popular open-source Network Misuse
detection based IDS tool (www.snort.org)

Misuse Detection-
Example: Buffer overflow attack
signatures

An exec system call audit records for a buffer
overflow has the following pattern:

The exec call concerns a setuid program, i.e. the
effective user id and the real user id fields are
different
The argument passed to the exec call is relatively
long, making the length of the entrire audit record
significantly exceed the length al almost all normal
setuid exec call

Buffer overflow atatcks typcially produce exec audit records
with a length > 500 bytes. Only 0.15 % of normal exec audit
records are longer than 400 bytes.

The exec argument contain opcode in the range of
ascii control characters

4

Misuse Detection –
Example: Virus signature

Typcial Attack signature of com-Infectors (sequence of system calls):
Open executable (.com) file to be infected
Get date of last modification
Get time of last modification
Read first 3 bytes to get jump address
Go to end of file
Append code (of the virus)
Go to beginning of the file
Write new jump address (3 bytes)
Reset date and time
Close file

Advantage/Disadvantage

The ratio between
detection to false alarm is
acceptable
By counting the
occurrence of patterns
protective measurements
can be applied
Is not (so much)
dependent on the
qualification of the
maintainers

Can only detect
previously known attacks
which requires huge
databases of attack
patterns
Small variations in an
attack can make the
attack undetectable

++ --

Honeypots
decoy systems to lure attackers

away from accessing critical systems
to collect information of their activities
to encourage attacker to stay on system so
administrator can respond

are filled with fabricated information
instrumented to collect detailed information on
attackers activities
single or multiple networked systems
cf IETF Intrusion Detection WG standards

Anomaly Detection – Examples
for Statistical Models (I)

Anomaly Detection – Examples
for Statistical Models (II)

Anomaly Detection – Examples
for Statistical Models (II)

