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A~slrucl-Motivated by the phenomenal growth of the Internet 
in recent years, a number of cable operators are in the process 
of upgrading their cable networks to offer data services to resi- 
dentin1 subscribers, providing them direct access to a variety of 
community content ns well as to the Internet. Using cable modems 
thnt implement sophisticated modulation-demodulation circuitry, 
thcsc services promise to offer a several hundredfold increase in 
ncccss speeds to the home compared to conventional telephone 
modems, Initial experiences indicate that cable networks are 
susceptible to a variety of radio-frequency (RF) impairments 
lhnt cnn result in significant packet loss during data commu- 
nicntion. In the face of such losses, the transmission control 
protocol (TCP) that is predominantly used by data applications 
dcgrnda drnmaticnlly in performance. Consequently, subscribers 
of broad-band data services may not perceive the projected 
imndrcdfold increase in performance. In this paper, we analyze 
the performance of TCP under different network conditions using 
shmdntlons and propose simple modifications that can offer up 
to threefold increase in performance in access networks that are 
prone to losses. These modifications require only minor changes 
to TCP implementations at the local network servers alone (and 
not nt subscribers’ PC’s). 

brrfc,~ Term- Broad-band access, hybrid fiber coaxial net- 
works, residential data services, TCP performance. 

I. INTRODUCTION 

T I-10 RECENT phenomenal growth of the Internet has 
opened up a vast market for high-speed data services 

to the home. To pursue this emerging market, a number of 
telephone carriers and cable operators are actively deploy- 
ing various broad-band access technologies including wire- 
line technologies such as asymmetric digital subscriber line 
(ADSL) over telephone copper lines, hybrid fiber coaxial 
(HFC) technology-a variant of today’s cable networks, and 
fiber to the curb-an extension of the fiber in the loop concept 
[S], Local multipoint distribution alternatives using wireless 
technologies are also under development. In this paper, we 
focus on broad-band data services offered over HFC access 
networks, which have emerged as a cost-effective technology 
for many cable operators and a few telephone carriers. 

Using cable modems that employ efficient data modula- 
tion schemes, these HFC access networks are capable of 
transporting tens of megabits of information per second, 
thereby offering a several hundredfold increase in access 
bandwidth compared to conventional telephone modems [5]. 
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However, initial experiences indicate that real-world HFC 
networks are susceptible to a variety of radio-frequency (RF) 
impairments that can result in significant packet loss during 
data communication [7]. In the face of such losses, the trans- 
mission control protocol (TCP), which is predominantly used 
by data applications, degrades dramatically in performance. 
Consequently, subscribers of broad-band data services may not 
perceive the projected hundredfold increase in performance. 

This paper analyzes the performance of TCP under dif- 
ferent HFC network conditions. Based on this analysis, we 
highlight architectural considerations and maintenance targets 
for HFC networks supporting data services. To enhance the 
performance of TCP in an HFC network during periods when 
the network is error prone, various methods of tuning TCP 
parameters are proposed. Simulation studies demonstrate that 
these methods are complementary to one another and can result 
in an over threefold increase in performance under certain 
loss conditions. A major attractiveness of these enhancements 
is that the performance improvements can be obtained by 
tuning TCP implementations at the HFC network servers 
alone, without requiring any changes in subscribers’ PC’s, 

The rest of this paper is organized as folIows. Section II 
outlines the typical architecture of a broad-band data system. 
Section III highlights the performance problems experienced 
by TCP applications in HFC networks. Section IV char- 
acterizes the performance of TCP under different network 
conditions. Various methods for enhancing TCP performance 
over HFC networks are discussed in Sections V and VI. 
Section VII discusses the implications of the TCP performance 
results for cable operators deploying broad-band data services. 

II. BROAD-BAND DATA SERVICE ARCHITECTURE 

Fig. 1 depicts a typical architecture of a broad-band data 
system that services residential subscribers in a metropolitan 
area. At the heart of this system is a local sewer camnplex that 
houses servers supporting a variety of community services in- 
cluding bulletin boards, newsgroups, electronic mail, directory 
services, Web access, etc., as well as caching servers to main- 
tain local copies of Web pages that are frequently accessed 
from the Internet. The servers are interconnected by a high- 
speed asynchronous transfer mode (ATM) network. Routers 
and firewalls enable connectivity from the HFC network to 
external networks including the Internet. Data retrieved from 
the server compIex is routed over the HFC network via one 
or more signal conversion systems (SCS’s). To enable data 
transmissions to coexist with transmission of analog television 
signals, data transmissions over the HFC network are analog 
modulated. Frequency-division multiplexing is used over the 
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Pig. 2. Protocol layering in the broad-band data system. 

HFC network to permit the data channels to operate at different 
frequencies than analog television channels. The design of 
the HFC network forces distinct downstream and upstream 
channels to be used for communication to and from the home, 
respectively. In most deployments, the downstream channels 
operate in the 450-750-MHz frequency band whereas the 
upstream channels operate in the 5-40-MHz band. 

In a subscriber’s home, access to broad-band data ser- 
vices is enabled through a cable modem (CM) that connects 
over a lOBase-T interface to a home PC. The CM contains 
modulution-demodulation hardware to receive and transmit 
signals over the HFC network. In keeping with the current 
trend on the Internet, where a majority of the traffic is 
Web access from various servers, the traffic in the broad- 
band data system is expected to be predominantly retrievals 
from the server complex to subscribers’ homes. Many CM 
implementations themselves are asymmetric, offering up to 
30 Mb/s for downstream transmission to subscribers’ homes 
nnd OS-4 Mb/s for upstream transmission from subscribers’ 
homes to the server complex. 

Fig, 2 depicts the typical protocol layering in the broad-band 
dnta system, The client application component executes on the 
subscriber’s PC and communicates with server component(s) 
in the server complex, The standard Internet protocol (IP) 
suite is used for communication between subscriber PC’s, the 
server complex, and the Internet. IP packets are transported 
over ATM between the server complex and the SCS. For 
communication over the HFC network, the IP packets are 
encapsulated into HFC link packets. 

III, TCP PERFORMANCE IN HFC NETWORKS 

A, Problent Dejhitiort 

One of the primary ways of characterizing performance 
of the broad-band data system as perceived by subscribers 

is in terms of throughput observed by applications operating 
above the TCP layer. Since it is an end-to-end performance 
metric, throughput is dependent on several factors including 
the configuration and loading of the servers and of subscribers’ 
PC’s. From the networking perspective, the achieved through- 
put depends not only on the bandwidths available on the 
downstream and upstream channels but also on the specific 
TCP implementations used at the servers and PC’s (e.g., BSD 
Unix has Tahoe and Reno TCP variants that differ in the 
congestion control mechanisms they implement and, hence, 
offer differing throughput), and on the settings of different 
TCP parameters including the socket buffer size, the maximum 
segment size used, etc. ‘Iwo other dynamically changing 
factors that significantly affect the achieved throughput are the 
degree of loading of the network and the physical network’s 
noise characteristics, referred to henceforth as media errors. 
Since both of these contrasting network conditions result in 
the same symptom, i.e., packet loss, differentiating between the 
two cases is a challenge. TCP has many built-in congestion 
control mechanisms to handle network overload effectively, 
However, when operating in a network that is prone to 
media errors, TCP reacts in the same way as it does during 
congestion, i.e., it slows down transmissions even though the 
network is not overloaded. This results in a sharp decrease in 
TCP’s performance [ 121. 

This problem is especially significant in HFC access net- 
works which are prone to a variety of RF impairments owing 
to defects in home wiring and cracks that appear in the coaxial 
cables because of exposure to harsh environmental conditions 
[7]. Since most of the common noise sources operate in 
the lower frequencies, the upstream channels are especially 
vulnerable to RP impairments. Our initial experiences with 
monitoring data services over HFC networks indicate that the 
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RF impairments at the physical layer usually result in packet 
losses ranging from 1% to lo%, especially on the upstream 
channels, In extreme cases, packet losses have been observed 
to be as high as 50% [12]. 

II, Related Work 

1) TCP Congestion Control Mechanism: The various 
mechanisms that current TCP implementations incorporate to 
adapt to the network conditions are based on [lo]. In the 
initial slow-start phase of a TCP connection, the transmitter 
starts with a transmission window of one packet’ and then 
doubles its window during every round trip (this amounts to a 
growth of the window by one packet for each acknowledgment 
(ACK) received), until the maximum permissible window 
size, determined by the connection’s socket buffer setting, 
is reached, This exponential rate of growth of the window 
may be constrained when the receiver implements a delayed 
ackrrowlcdgmm strategy. As per this strategy, the receiver 
holds back the transmission of an ACK for a received packet 
until a subsequent packet is received, at which time it transmits 
a cmrrlutive ACK to acknowledge both of the received 
packets, RFC 1122 indicates that the receiver must transmit 
at least one ACK for every two maximum-sized data packets 
received [3], While using delayed ACK’s, the maximum 
period for which the receiver can wait for a subsequent packet 
is limited to about 200 ms. 

To detect packet losses, the transmitter uses the straightfor- 
ward method of estimating round-trip times of packets. Based 
on the transmission times of packets and the arrival times of 
ACK’s, the transmitter maintains an estimate of the maximum 
round-trip time over a TCP connection. When an ACK for a 
packet does not arrive within the maximum round-trip time 
(and no ACK’s for subsequent packets are received), the 
transmitter detects the packet loss, retransmits the lost packet, 
shrinks its transmission window to one, and reverts back to the 
slow-start phase, The time that the transmitter spends waiting 
for an ACK of a lost packet to arrive is referred to as a timeout. 
Following a timeout, slow-start happens until the transmission 
window reaches half the value it had when the timeout 
occurred. From this point onwards, the transmitter enters 
the congestion avoidance mode, growing its window by one 
packet for every round-trip time. In this mode, window growth 
is linear, rather than exponential as in the slow-start phase. 

While the above strategy is useful when several packets 
are lost in a transmission window, the TCP transmitter has 
a more eflicient way to detect and recover from isolated 
packet losses, Isolated packet losses result in out-of-sequence 
packet arrivals at the receiver and trigger the transmission 
of duplicate ACK’s (dupACK’s). Upon receiving three 
dupACK’s, assuming that the packet referred to by the 
dupACK’s has been lost, the transmitter performs fast 
retransmit by immediately retransmitting the lost data packet. 
When the ACK for the retransmitted packet is received, 

‘For simplicity, in this paper, TCP’s transmission window sizes are 
expressed In terms of maximum-sized data packets rather than in terms of 
bylcs, Rrthcrmore, packets arc assumed to be numbered with consecutive 
scqucncc numbers, rather than by the number of bytes contained in each 
pnckct, 

the transmitter performs fast recovery by shrinking its 
transmission window to half the value of the window at the 
time when the packet loss was detected. Then, the transmitter 
begins to operate in the congestion avoidance mode. 

2) TCP Over L.ossy Nefivorks: The problems in TCP per- 
formance over lossy networks have thus far been addressed 
mainly in the context of wireless local area networks (LAN’s), 
Three main approaches have been proposed for such networks. 

Reliable link layer protocols: In this approach, the link 
layer protocol incorporates retransmission mechanisms to 
recover from media errors, thereby masking the effect 
of media errors from the TCP layer above. Most SCS- 
CM protocols being currently used for communication 
over the HFC network do not guarantee reliable delivery, 
Incorporating reliability into these protocols would neces- 
sitate changes in the SCS and CM designs. Furthermore, 
since not all applications require reliability, a common 
reliable link protocol cannot be used for all applications. 
“TCP-aware” link layer protocols: A typical example 
in this category is the Snoop protocol [2]. As per this 
approach, a base station in a wireless LAN tracks all TCP 
connections and maintains a cache of recently transmitted 
packets. When the base station notices dupACK’s, it re- 
transmits packets locally on the wireless segment without 
the original TCP transmitter (that is on a wired network) 
even being aware of the loss. This approach is not suitable 
for large network deployments, in which a wireless base 
station or an SCS in an HPC network must snoop on all 
packets that they route and maintain state information for 
each TCP connection. 
“Split connection” prorocols: In this approach, a TCP 
connection between the source on a wired network and 
destination on a wireless network is transparently split 
into two transport connections: one for the wired network 
and another for the wireless network [l]. The TCP 
implementation for the wireless network is modified so 
as to be aware of handoffs in the wireless network and to 
initiate slow-start immediately after a handoff. Although 
initially designed to handle mobility issues, this approach 
is also useful in handling packet losses that occur in the 
wireless network locally [2]. In an HPC network, the split 
connection approach must be implemented at the SCS, 
thereby requiring per-connection state information and 
processing at the SCS. 

Many approaches that have been proposed for increasing 
the performance of TCP during congestion are applicable, to 
some extent, in lossy HPC networks. The implementation of 
selective acknowledgment in TCP to enable the transmitters 
to more precisely determine packets that are lost and recover 
from such losses is proposed in [l 11. Initial testing of the selec- 
tive acknowledgment feature promises significant performance 
gains in lossy networks. However, to be useful, selective 
acknowledgment requires changes in TCP implementations not 
only in the servers but also in the several hundred thousand 
subscriber PC’s. 

The problems with the exponential window increase during 
the TCP’s slow-start phase are highlighted in [9]. In cases 
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when the TCP socket buffer setting is very large, the expo- 
nential window increase can overwhelm the network routers 
and lead to timeouts. To overcome this problem, a method 
for enabling the TCP transmitter to estimate and adapt to the 
nvailnble bandwidth on the network is proposed in [9]. 

An entirely new variant of TCP, called TCP Vegas, that im- 
plements new slow-start and congestion avoidance techniques 
to adaptively adjust the TCP window upon sensing network 
congestion is proposed in [4]. Unlike earlier implementations, 
TCP Vegas uses a line-grained timer to time every packet 
and ACK and to accurately estimate the round-trip time. 
Based on this estimate, TCP Vegas determines, much earlier 
than TCP Reno or Tahoe, if and when packets should be 
retransmitted, This proposal requires significant changes to 
existing TCP implementations and is yet to be adopted in 
commercial products, 

C, Corurihrtions of This Work 

This work analyzes the performance of TCP applications 
in the unique asymmetric and heterogeneous environment that 
HFC networks offer, Since different upstream and downstream 
channels with different noise characteristics are used in HFC 
networks, the paper studies the relative effect of packet loss 
and ACK loss on TCP applications and the variations of these 
effects with data transfer size. Simulations indicate that TCP 
npplications are much more sensitive to loss of data packets 
thnn to loss of ACK’s and that larger data transfers are likely to 
be affected much earlier and to a greater extent than smaller 
transfers. 

Focusing mainly on downstream data transfers from the 
server complex to subscribers’ homes, we explore various 
methods of tuning TCP parameters of existing TCP imple- 
mentations to ensure better network performance. Since it 
determines the maximum transmission window that a TCP 
connection can use, the socket buffer setting directly governs 
the nchieved throughput. Using simulations, we illustrate that 
proper sizing of TCP socket buffers by taking into account 
that the buffering capacity of the CM’s is critical for high 
performance in HFC networks. Toward this end, we derive an 
analytical model for determining the TCP socket buffer size 
setting. Since the effective socket buffer size is the minimum 
of the buffer sizes set at the two ends of a connection, the 
buffer size setting thus determined can be enforced from 
the local servers without requiring configuration changes to 
subscribers’ PC’s, 

WC also study the impact that delayed ACK implementation 
in subscriber PC’s has on throughput, especially during times 
when the network is prone to losses, and devise ways to over- 
come these problems using minor alterations to TCP parameter 
settings at the local servers. To further increase network 
performance under losses, we propose ways of tuning the TCP 
retransmission timeouts and fast retransmit implementations at 
the local servers to increase TCP’s reactivity to loss. These 
modilications are simple to implement yet highly effective. 
Moreover, these modifications require only minor changes to 
TCP implementations at the local network servers alone (and 
not at subscribers’ PC’s). Although designed in the context 
of HFC networks, the modifications are general enough to be 

applicable to other access technologies, especially wireless, 
that are prone to media errors. 

IV. CHARACIERIZING TCP PERFORMANCE 
IN HFC NETWORKS 

A. Network Model 

In order to characterize the performance of TCP applications 
in HFC networks, we have developed a model of a typical 
I-EC network using the ns network simulator from Lawrence 
Berkeley Laboratories. The downstream and upstream band- 
widths on the HFC network are assumed to be 25 and 3 
Mb/s, respectively. Based on experimentations in typical HFC 
networks, the round-trip delay between the servers and a 
subscriber PC is set to 20 ms. Since we are concerned mainly 
with the performance of TCP under losses introduced by media 
errors, the following simplifying assumptions are made. 

l Although an SCS can support multiple downstream and 
multiple upstream channels, only one downstream chan- 
nel and its corresponding upstream channel is modeled. 

l Since we are interested in TCP performance under media 
loss rather than under congestion, the precise contention 
resolution and network access algorithms of the HFC 
upstream link protocol are not modeled. Furthermore, in 
the simulations, the number of simultaneous connections 
is controlled so as to avoid network overload. 

l In the absence of precise models for media errors that 
happen over HFC networks, we model loss of TCP 
packs and acknowledgment using Poisson distributions. 
Consequently, the effect of burst losses is captured at 
high loss rate. 

The network traffic is assumed to be predominantly Web and 
PIP access from the local server complex. All receivers and 
transmitters are assumed to implement TCP Reno. In keeping 
with most commercial TCP implementations, the receivers 
are assumed to implement delayed ACK’s. The TCP data 
packets and ACK’s are assumed to be 1460 and 40 bytes in 
length, respectively. Since different downstream and upstream 
channels are used over the HFC network, we begin our analysis 
of TCP performance by considering cases when only TCP 
ACK’s are lost and when only data packets are lost. 

B. Effect of Acknowledgment Loss 

Fig. 3 depicts the degradation in TCP performance with loss 
of ACK’s for a 3-Mb data transfer. To study the effect of 
ACK loss in isolation, the downstream channel is assumed to 
be lossless. Because TCP uses a cumulative acknowledgment 
strategy, where each acknowledgment indicates the sequence 
number of the packet that the receiver expects next, loss of an 
ACK can be compensated for by the arrival of a subsequent 
ACK. For instance, when a transmitter receives the third 
delayed ACK out of a sequence of AN’s numbered 2, 4, 
8 ,--e, the transmitter can detect loss of the ACK numbered 
6. However, since it receives ACK 8 corresponding to data 
packets 6 and 7, and not a dupACK for packet 6, the 
transmitter can infer that data packets 4 and 5 (corresponding 
to ACK 6) were successfully received and therefore need not 
be retransmitted. From this example, it is clear that loss of 
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Pig, 4. Effect of downstream packet loss on performance of a TCP connection transferring 3 Mb of data downstream from a local server. 

an ACK does not necessarily result in retransmission of data 
packets. However, an increase in loss of ACK’s can have two 
consequences that reduce throughput. 

l Slowirlg t/le Irunnnifter: When an ACK is lost, the trans- 
mitter has to wait for a subsequent ACK to recover 
from the loss. Frequent ACK loss can introduce a signif- 
icant waiting time at the transmitter, thereby slowing the 
transmitter and lowering the throughput. Moreover, since 
TCP’s slow-start and congestion avoidance algorithms in- 
crease the transmission window based on AX’s received 
at the transmitter, loss of ACK’s also slows down the 
window increase, thereby reddcing throughput [13]. 

l Timeouts resulting in significant throughput reduction: 
When the ACK’s for all outstanding packets in a transmis- 
sion window are lost, the transmitter detects the loss only 
after a timeout. Since most commercial TCP implemen- 
tations use a coarse granularity (500 ms) retransmission 
timer to estimate round-trip time, the waiting time before 
a TCP transmitter retransmits a lost packet, computed 
as the sum of the mean and four tinies the maximum 

deviation in round-trip times, is at least 2-3 s [13]. 
Since typical data transfer times range from few tens of 
milliseconds to several seconds, even a single timeout 
during the lifetime of a TCP connection results in a 
significant degradation in performance. 

Fig. 3 contrasts the performance obtained for a Iarger TCP 
socket buffer size. The larger TCP socket buffer size results 
in a larger transmission window, which in turn results in a 
greater number of ACK’s per transmis’sion window (the total 
number of ACK’s generated during a data transfer remains 
unchanged). The increase in ACK’s in a transmission window 
reduces the probability of a timeout due to a loss of all of 
the ACK’s associated with the window, thereby increasing the 
robustness of the TCP connection to ACK loss. 

C. EIfect of Data Packet Loss 

In the previous section we have seen that by using larger 
buffers for TCP connections, the effect of upstream ACK loss 
can be mitigated. However, the effect of downstream data 
packet loss is much too severe to be easily mitigated. Fig. 4 
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depicts the dramatic reduction in throughput that results when 
packet loss occurs during a 3-Mb data transfer. To concentrate 
upon the effect of packet loss, the upstream channel is assumed 
to be lossless, As is evident from the figure, even a 1% packet 
loss results in over 50% degradation in throughput for an 8-kb 
socket buffer. The degradation is even larger for larger socket 
buffer sizes. 

There arc several reasons for the dramatic degradation in 
throughput when data packets are lost. Firstly, unlike in the 
cnsc of ACK loss, each data packet loss results in one or more 
dntn packet retransmissions. When a packet loss occurs, even 
though TCP may recover from the loss using fast retransmit 
followed by fast recovery, the TCP transmitter shrinks its 
current transmission window by half and begins to operate 
well below the maximum permissible window for several 
round-trip times, Subsequent periodic losses before the TCP 
connection reaches its maximum permissible window size can 
cause the nverage transmission window to reduce even further. 
Since TCP’s fast retransmit mechanism retransmits a packet 
only after the sender receives three dupACK’s, fast retransmit 
becomes ineffective when the TCP window falls below 4. At 
this time, TCP can recover from a packet loss only by means 
of a retransmission following a timeout. Timeout also happens 
when multiple packet losses occur in the same transmission 
window, In such cases, although the transmitter notices the 
first packet loss and recovers from it using fast retransmit, 
often following the recovery, TCP’s transmission window is 
not lnrge enough for three dupACK’s to be received to recover 
from a second packet loss [9]. 

The two consequences of packet loss mentioned above 
significantly impact throughput. Since they last for several 
seconds, the impact of TCP timeouts on performance is more 
advcrsc than that of fast retransmits. The dramatic reduction 
in throughput observed in Fig, 4 as packet loss increases is 
attributable to the significant increase in probability of time- 
outs with increase in packet loss. To illustrate the impact of 
timeouts on throughput, Fig. 5(a) and (b) presents simulation 
trnccs of a 3-Mb data transfer during times when packet loss is 
I% and 3%, respectively. A gap in transmission represents a 
timeout at the transmitter. Notice that whereas a 1% loss causes 
just one timeout, a 3% loss causes 11 timeouts, resulting in a 
fivefold increase in the transfer time. 

As is evident from Fig. 4, a larger TCP socket buffer does 
not improve performance when packet loss is high. This is 
because frequent packet loss forces TCP to operate with a 
smaller window and, hence, the connection does not make use 
of the larger available buffer. 

D. .l$ffcct of Packet Loss for DiJerertt Data Transfer Sizes 

Fig. 6 compares the sensitivity of different data transfer 
sizes to packet loss (their sensitivity to ACK loss follows a 
similar pattern). To evaluate the effect of packet loss without 
being biased by the implementation of delayed ACK at the 
PC’s, a modified TCP Reno transmitter is used in the simula- 
tion, (The peculiar problems introduced by delayed ACK and 
modifications to deal with this problem are discussed later, 
in Section V.) Under no loss conditions, the smaller transfers 
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Fig. 5. Simulation traces indicating the transmission times of packets during 
a 3-Mb data transfer for downstream packet loss rates of 1% and 3%. In the 
latter case, throughput is five times lower than in the former. 

yield much lower throughput than the larger transfers. This 
is because TCP starts with an initial window of one packet 
and requires several round-trip times to grow its transmission 
window. Once the transmission window reaches its maximum 
value, throughput achieved remains almost constant indepen- 
dent of the data transfer size. 

As Fig. 6 depicts, although packet loss affects data transfers 
of all sizes, the extent of its impact varies depending on 
the data transfer size. For the simulated network, throughput 
degrades much more rapidly for data transfers of 300 kb and 
above than for the smaller transfer sizes. For instance, when 
the packet loss rate increases to 5%, the average throughput 
of 300-kb data transfers drops from 2.8 to 0.2 Mb/s, whereas 
for 30-kb transfers, throughput only changes from 1.5 to 0.9 
Mb/s. To see why this is the case, consider Fig. 7, which 
contrasts the distribution of throughput values observed during 
30- and 300-kb data transfers. The 25 percentile, the median, 
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Fig, 7. Distribution of throughput achieved during 100 runs of the simulator 
for 30. and 300-kb datn transfers. 

and the 75 percentile values, computed based on 100 runs 
of the simulator for each loss rate and data transfer size, are 
shown. The following observations can be made from Fig. 7. 

l At a loss rate of l%, a majority of the 30.kb data transfers 
are unaffected [Fig. 7(a)]. In contrast, over half of the 
300.kb data transfers experience a significant reduction in 
throughput, and one-fourth of the transfers achieve only a 

third of the normal throughput [Fig. 7(b)]. This contrast- 
ing behavior is attributable to the relative durations of 
the two data transfers. Since a 30-kb transfer involves 
transmission of a few packets only (approximately 20 
packets of 1.5 kb each), the probability that such a transfer 
experiences a packet loss is less than the probability that 
a longer 300-kb transfer involving hundreds of packet 
transmissions experiences a loss. For instance, when the 
packet loss rate is l%, on an average, only one out of five 
data transfers of 30 kb (20 packets) experiences a loss. 
Furthermore, because of their smaller duration, the 30.kb 
transfers are unlikely to experience timeouts because of 
multiple packet losses. On the other hand, almost every 
data transfer of 300 kb experiences packet loss. More 
importantly, the probability of occurrence of multiple 
packet losses and of timeouts is also correspondingly 
higher for 300-kb transfers. 

l As the packet loss rate increases, 30-kb data transfers 
too begin to experience the effects of packet loss: a 
3% loss reduces the median by 25% and a 5% loss by 
66%. However, because of the shorter duration of the 
transfers, the median and the 75 percentile values for 
30.kb transfers are much higher than the corresponding 
values for 300-kb data transfers. The different distribution 
of throughput values in the two cases accounts for the 
higher average throughput of the 30.kb transfers seen in 
Fig. 6. 

l At loss rates of 3% and higher, the 25 percentile through- 
put values for the 30- and 300.kb transfers are compara- 
ble, implying that when packet loss impacts a data transfer 
instance, its effect on throughput is drastic, independent 
of the data transfer size. 

l Notice also the much larger difference between the 25 per- 
centile and the 75 percentile values for the 30.kb transfers, 
as compared to the 300.kb transfers. This implies that 
when packet loss is 3% or more, subscribers transferring 
30 kb of data are likely to observe significant variations in 
throughput. In contrast, at this loss rate almost all 300.kb 
transfers are likely to feel the impact of packet losses. 
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Pig, 8, Bffccl of CM buffer size on throughput of a TCP connection. In this simulation, there were no media errors at the physical layer. The CM 
buffer WIN assumed to be 10 kb. 

From a data service operator’s perspective, the above discus- 
sion indicates that subscribers who invoke larger data transfers 
are likely to experience the effects of packet loss earlier and 
to a greater extent than others. 

V, TUNING TCP FOR HIGHER PERFORMANCE 
BY SETTING TCP BUFFER SIZE 

To enhance TCP performance in lossy HFC networks, in 
the following sections we consider two complementary ap- 
proaches. The Arst approach involves adjusting the TCP socket 
buffer size to achieve maximum performance. The second 
approach involves tuning TCP’s timeout and fast retransmit 
mechanisms to reduce the frequency and the duration of 
timeouts, respectively. 

A, l!jfcct of Cable Modern B@er Capacity 
011 TCP Perfortnarrce 

A larger socket buffer allocation for a TCP connection 
permits a larger number of packets to be transmitted per 
unit time, thereby making better utilization of the available 
bandwidth, Consequently, a larger TCP socket buffer enables 
a signihcant increase in throughput when packet loss is not 
very high (see Fig. 4). As already explained, an increase in 
the socket buffer size also reduces the TCP connection’s 
vulnerability to ACK loss. 

However, in an HFC network, a limit on the TCP socket 
buffer size is imposed by the buffering available at the CM’s. 
Buffers are provided in a CM to counteract the difference in 
transmission speeds between the downstream channel on the 
HPC network (25 Mb/s in our simulated network) and the 
lOBase-T connection between the CM and the PC (10 Mb/s). 
Since the experiments described in Section IV were targeted 
at understanding the effect of media errors, buffering at the 
CM was assumed to be unbounded. However, in reality, in 
order to be cost-competitive, most CM implementations are 

Fig. 9. Illustration of timeout that occurs during the slow-start phase of a 
TCP connection because the socket buffer size is set to be much larger than 
the Chl buffer size. 

likely to have limited buffering. Fig. 8 depicts the variation in 
throughput for different data transfer sizes and socket buffer 
sizes over an HFC network in which the CM’s have IO-kb 
buffers. Since in this experiment we are interested in exploring 
the effect of bounded buffering at the CM’s, the HFC network 
is assumed to be lossless. Moreover, in this experiment, each 
CM supports only one TCP connection. 

As can be seen from Fig. 8, when the socket buffer size 
increases from 8 to 16 kb, throughput almost doubles for large 
transfers. However, when the buffer size is further increased 
to 24 kb, throughput reduces significantly for transfers less 
than 8 Mb. This drop in throughput is attributable to packet 
losses that result from buffer overruns at the CM. Recall that 
during the startup of a connection, in the slow-start phase, the 
TCP transmitter grows its window exponentially, doubling its 
window for each round trip. The window increase continues 
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Pig, 10, Variation in throughput for different TCP socket buffer sizes when three connections simultaneously access the HFC network via a CM 
wl~h n IO-kb buffer. 

either until the window reaches the socket buffer size, or until 
packet loss occurs, Since it is possible that an entire window 
of packets could be transmitted consecutively by a local server 
to the PC, all of these packets could arrive in succession at the 
CM, at the speed of the HFC downstream channel. Because of 
the slower speed of the outgoing lOBase-T connection from 
the CM, packets arriving in succession need to be queued by 
the CM, When the TCP socket buffer size is much higher 
thnn the CM buffer capacity, the CM may not be able to 
accommodate the arriving packets. Hence, buffer overruns may 
occur at the CM, resulting in several packet drops. Since the 
fast retransmit strategy of TCP is not effective when multiple 
packet drops occur in a window, the transmitter has to recover 
only after a timeout (see Fig, 9). 

Following the timeout, when slow-start is invoked again, 
the transmitter maintains a threshold that it sets to half the 
window size at which timeout occurred. When the window 
size increases to reach this threshold, the TCP transmitter 
moves into the congestion avoidance mode in which it begins 
to increase the window linearly, by one packet every round 
trip. As the window increases, eventually buffer overruns 
still occur, but owing to the linear increase in the window, 
only a single packet is dropped at the CM. Consequently, the 
transmitter recovers from the loss using fast retransmit, instead 
of having to timeout (see Fig. 9). However, the long initial 
timeout period significantly impacts the throughput achieved 
for data transfers of 8 Mb and less for socket buffer sizes of 
24 and 48 kb (see Fig, 8). Larger transfers are able to benefit 
from the larger socket buffer size. 

The above experiment highlights the need to consider the 
CM buffer capacity before setting the socket buffer size for 
TCP connections. Another factor that must be considered in 
deciding the socket buffer size is the number of connections 
simultaneously supported via a CM. Many common Web 
browsers frequently open multiple simultaneous connections 
in an attempt to retrieve Web objects in parallel. Fig. 10 
illustrates the performance observed when three simultaneous 
TCP connections, each transferring 300 kb, share the IO-kb 
buffer of a CM. In this case, packets could arrive over all three 
connections simultaneously and can result in buffer overruns. 
For the same socket buffer size, the larger the number of 

connections, the greater the probability of buffer overruns. 
In Fig. 10, the smaller socket buffer size performs the best. 
As the socket buffer size per connection increases, throughput 
degrades. 

B. Determining the TCP Bujjeer Size 

To compute the socket buffer size of a TCP connection, let 
B represent the TCP socket buffer size and C the buffer capac- 
ity of the CM, both represented in terms of TCP packets. Let P 
represent the maximum TCP packet size in bits. Suppose that 
only one connection is established via the CM. As explained 
earlier, the socket buffer size setting that ensures data transfers 
without timeout must be determined by considering the case 
when an entire buffer full of data packets are transmitted 
at the maximum rate to a CM. Ignoring TCP/IP and link 
protocol header overheads for simplicity, for the simulated 
HFC network configuration with a downstream channel rate 
of 25 Mb/s, the time to receive a window full of packets at 
the CM is (B-P)/25 ps. The CM begins transmission over the 
lOBase-T connection to the PC connected to it only after the 
first packet has been fully received from the HFC downstream 
channel, at which time the available buffering at the CM is 
C - 1. From this time, B - 1 packets are received by the 
CM at the rate of 25 Mb/s and transferred from the CM at 
the rate of 10 Mb/s. Thus, net accumulation at the CM during 
this period is 

@ ,:’ ’ ’ . (25 - 10) h4b. 

To avoid any buffer overruns at the CM, the necessary 
condition is 

c> (B-l).P.15+1 
25 

. 

Since timeouts occur during slow-start only when multiple 
packet drops occur in a window, the above condition can be 
relaxed by permitting at most one packet drop in a window. 
This yields the relation 

c> (B-1)-P-15 
25 ’ 
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In the simulated network, for a CM buffer of 10 kb (seven 
packets), the maximum socket buffer size can be computed 
from the above equation to be 19 kb, which matches the results 
from Fig, 8. 

When there are n connections supported by the same CM, 
in order to guarantee that timeout does not occur, in the 
pessimistic case, no more than one packet loss should occur 
during buffer overflow. This leads to the condition 

From the above equations, the TCP socket buffer size 
setting can be computed based on the buffering at the CM 
and the number of simultaneous connections to be used. 
Since the per-connection throughput is directly related to the 
TCP socket buffer size setting, the average rather than the 
maximum number of simultaneous connections can be used 
in the computation above. Alternatively, to ensure a minimum 
throughput per connection, a data service operator may wish to 
impose a restriction on the maximum number of simultaneous 
connections supported from each subscriber PC. Since the 
effective socket buffer size used for a TCP connection is 
the minimum of the values supported at each end of the 
connection, the socket buffer size computed above can be 
enforced by setting the buffers of connections initiated from 
the local servers to the above value, without the need to modify 
subscribers’ PC configurations. 

VI. TUNING TCP FOR HIGHER PERFORMANCE 
BY REDUCING THE EFFEC-T OF TIMEOUTS 

Having determined the optimal buffer size setting for a TCP 
connection, WC now explore various facets of TCP that can be 
modilied in order to reduce the effect of TCP timeouts. 

A. Eflcct of Delayed ACK 

As indicated in Section IV, one of the causes of TCP time- 
outs is loss of several successive ACK’s. Although increasing 
the socket buffer size can reduce the probability of timeouts 
due to ACK losses, as seen in Section V, the CM buffer 
capacity imposes a limit on the TCP socket buffer setting. 
In this section, we explore an approach for minimizing the 
effect of ACK losses. Toward this end, we study the effect 
that support for delayed ACK in TCP implementations of 
subscriber PC’s has on performance. 

Even in the absence of packet loss, we have observed that 
delayed ACK implementation in the TCP receivers has an 
adverse effect on performance of Web and FTP applications 
in HPC networks (and in conventional LAN’s as well). In 
most TCP implementations, following the establishment of 
the TCP connection, the transmission window of the host 
initiating the connection is one packet and that of the other 
end of the connection is two packets. This is because although 
both ends of the connection start with an initial window of 
one packet, the last ACK in the TCP three-way handshake 
sequence (SYN/SYNACK/ACK) causes the window of the 
host accepting the TCP connection to increase by one packet. 

TCP 

TCP Window = lpkt 

FTP cUent 
at asubsuber PC 

FfP Server 

1 Data Transter I 

TCP Wbdow = 2pkt.s 

I-m-P 
Connectlon 
set-up 

t=tTrP Server 

TCP Wlndow =2pkiS 

DataTransfer Beglns 

TCP Window: 3pkts 

I I 

i i 

(b) 

Fig. 11. Illustration of the effect of delayed ACK implementation in TCP 
stacks of subscriber PC’s on performance of (a) m and (b) HlTP data 
transfers. In both cases, the initial delay of up to 200 ms for the first ACE: 
from the subscriber PC reduces throughput by over 50% for data transfers 
sizes of up to 150 kb. 

The difference in the initial TCP windows has different 
implications for FTP and HTTP applications. 

l As illustrated in Fig. 11(a), when a subscriber starts an 
FTP session with a server, a control connection is first 
established between the subscriber’s PC and the server. 
Get and pact requests for files are transmitted from the 
subscriber PC to the server over the control connection. 
The server then sets up separate TCP connections for 
each get or prrt request. Since the server is the connection 
initiator, its initial transmission window is one packet. 
When data is transferred from the server to fulfill a 
get request, the server starts off by transmitting one 
packet and waiting for an ACK. Since the TCP stack in 
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Pig. 12. Illustration of the deleterious impact that delayed ACK implementation at subscriber PC’s can have on throughput of HTI’P and Fl? data 
trnneferfi. Using an initial window of two packets for the TCP slow-start implementation at the local servces avoids the throughput degradation for 
dntn tmnsfcrs bf 150 kb and less. 

the subscriber PC supports delayed ACK, the subscriber 
PC waits for up to 200 ms for subsequent packets 
before generating an ACK for received packet. This 
long initial wait time significantly impacts performance. 
Fig. 12 illustrates that delayed ACK implementation at 
subscriber PC’s reduces throughput by more than 50% 
for transfers below 150 kb and by less than 10% for 
transfers of 5 Mb and more. Note that because the initial 
transmission window of the subscriber PC is two packets, 
prrt requests do not experience this problem. 

l HTTP requests experience a different problem. In this 
case, the subscriber PC first initiates the TCP connection 
to the server and transmits the HTTP request either to get 
or post data. Unlike FTP, data transmission to or from 
the server using HTTP occurs over the same connection. 
Since the subscriber PC initiates the TCP connection, 
the server has an initial window of two packets. Get 
requests, which are the most common form of HTTP 
access, may not experience the initial 200-ms delay if 
the server fully utilizes its transmission window. This 
is because the server can transmit two maximum-sized 
packets, thereby forcing an immediate ACK from the 
subscriber PC, However, many HTTP server implemen- 
tations (e,g., NCSA 1.5, Netscape Enterprise Server) 
transmit the HTTP response header separate from the 
data, Typically, the header is the first packet transmitted 
by the HTTP server in response to a request and is 
much smaller than the maximum-sized TCP data packet. 
Because of the transmission window restriction and the 
size of the data read from the disk (typically 8 kb), 
following the HTTP get response header, the server can 
transmit at most one other maximum sized data packet 
before it has to wait for an ACK from the subscriber PC. 
Since it receives less than two maximum sized packets 
worth of data, the subscriber PC delays its ACK, thereby 
resulting in an initial delay of upto 200 ms for all HTTP 
get responses, 

A similar problem is described in [S] in the context of 
persistent HTTP connections. [S] proposes an application 
modification to solve this problem, by using buffered 
I/O to ensure that the HTTP response header is never 
sent out separately. However, this approach not only 
requires changes to all application servers, but may not 
also be incompatible with existing Web browsers that 
expect to receive the header separately. Furthermore, this 
solution does not resolve the performance problem for 
FIP applications. 

A more general way to avoid the above problems without 
requiring any change in the application servers is to increase 
the initial setting of the TCP window size used during slow- 
start at the local servers alone to two packets (see Fig, 12). 

Another drawback of delayed ACK is the reaction it induces 
in TCP connections when media errors cause ACK loss. 
Fig. 13 illustrates that for a 3-Mb data transfer, when upstream 
ACK loss happens, a receiver that does not implement delayed 
ACK remarkably outperforms a receiver that implements 
delayed ACK. The difference in performance is attributable 
to the 50% reduction in number of ACK’s when a receiver 
implements delayed ACK, since only one ACK is transmitted 
for every two received packets. This reduction in ACK’s 
makes the TCP connection more vulnerable to experiencing 
timeouts because of loss of all of the ACK’s in a window. 
Furthermore, even in cases when timeouts do not occur, 
because of the reduction in number of ACK’s, the transmitter 
has to wait for longer time periods for an ACK that follows a 
lost ACK. The large degradation in performance observed in 
Fig. 13 indicates the need to increase the frequency of ACK’s 
during communication over lossy HFC networks. 

Avoiding delayed ACK at the receiver does not have the 
same dramatic effect when the losses occur in the downstream 
channels. This is because TCP Reno does not delay its ACK’s 
when it notices packets arriving out of sequence. In contrast, 
since the earlier TCP Tahoe implementation continues to delay 
ACK’s even after it notices a packet loss, PC’s that implement 
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Pi& 13, Implementation of delayed ACK increases a TCP connection’s vulnerability to ACK loss. This example involves a 3-Mb data transfer over 
II conncclion with maximum window size of 8 kb. 

Pin. 14. Throunhout variation with ACK loss for different MSS values for a 3-Mb data transfer. By using a smaller MSS. a server can reduce the 
cff&t of ACK& on throughput. 

TCP Tahoe arc likely to see a significant improvement in 
performance if delayed ACK is not used. 

Avoiding the usage of delayed ACK requires changes in 
TCP implementations of the several hundreds of thousands of 
subscribers’ PC’s, an enormous and unrealistic task. Moreover, 
applications such as telnet that transmit small TCP packets 
frequently in both directions over a TCP connection benefit 
signilicantly from delayed ACK implementation. In the next 
section, we discuss changes to TCP implementations at the lo- 
cal servers that can overcome the drawbacks of using delayed 
ACK in the PC’s for bulk transfer applications. 

ll, Setting TCP MSS Values 

Observe that the number of ACK’s transmitted from a TCP 
rccciver in a round-trip time is determined not only by the 
socket buffer size but also by the maximum size of each data 
packet, referred to as the maximum segment size (MSS). The 
smaller the MSS value, the larger the number of ACK’s in a 
window. To increase the robustness of TCP connections to 
ACK loss, it is more efficient to use smaller MSS values 
during periods of loss. Fig. 14 illustrates the improvement 
in performance that can be obtained from reducing the MSS 
even when the TCP receiver implements the delayed ACK 
strategy. Importantly, since the MSS value for a downstream 
data transfer is determined by the local server itself, TCP 

connections originating from the local server can be made 
more robust to upstream ACK loss by configuring the server 
to use a smaller MSS. 

There are, however, several tradeoffs that must be consid- 
ered when deciding whether the smaller MSS value should 
be used always or only during times of significant upstream 
loss. On the positive side, besides offering greater resilience 
to ACK loss, the smaller MSS may also decrease the packet 
loss rate (e.g., depending on the burstiness of errors, if the 
loss probability of I-kb packets is lo%, the loss probability 
of 0.5kb packets will be between 5% and 10%). Another 
advantage of smaller MSS is that a larger number of ACK’s 
are generated by the receiver, which increases the probability 
that the transmitter receives three dupACK’s necessary for 
fast retransmit to be triggered following a packet loss. On 
the negative side, a smaller MSS results in greater TCP/IP 
and link protocol header overhead. Furthermore, TCP’s slow- 
start and congestion avoidance mechanisms are slowed down 
for the smaller MSS since TCP’s slow-start and congestion 
avoidance mechanisms increase the transmission window in 
terms of packets, irrespective of the MSS in use. 

C. Using a Finer Granularity Retransmission Timer 

An obvious improvement to enable TCP to react more 
quickly to network losses is to use a finer granularity timer 
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pig, 15, Increase in performance from increasing the granularity in TCP’s 
rctrnnsmission timer to 200 ms (a) during downstream packet loss and (b) 
during upntrcnm ACK loss. In this example, a 3-Mb data transfer was initiated 
from n local server to a subscriber’s PC. 

than the SOO-ms timer used in most current implementations. 
This would enable the TCP transmitter to obtain a tighter upper 
bound on the round-trip times, which in turn results in a reduc- 
tion in the time that elapses before the transmitter times out and 
retransmits a lost packet. Current TCP implementations use 
two types of timers: a 200-ms timer that is used for supporting 
delayed ACK and a 500-ms timer that is used for computing 
round-trip times. Using the 200 ms timer to estimate round- 
trip delays as well can increase TCP’s reactivity without 
overly increasing its implementation overhead. As illustrated 
in Fig, 15(a) and (b), this modification in the timer granularity 
improves performance both for upstream and downstream 
losses. The degree of improvement achieved depends on 
the percentage of losses experienced over the network. For 
example, when network loss on the downstream is 3%, this 
simple modification yields an almost twofold increase in 
performance. 

D, Using “Super” Fast Retransmit 

A further improvement in performance can be obtained by 
tuning TCP’s fast retransmit mechanism to HFC networks. 
Since in-sequence delivery of packets is guaranteed over the 
I-WC network and all the way to the local server complex, 
the receipt of the first dupACK at the server is a clear 
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Fig. 16. Demonstration of the advantages of super fast retransmit when 
muttiple packet losses occur in a transmission window of size eight packets. 
(a) Fast retransmit causes a timeout when packets 11 and 14 are lost. (b) The 
fast retransmit causes a timeout when packets 11 and 14 are lost. (b) Super 
fast retransmit is able to recover from the two packets. 

signal that a data packet has been lost. However, since TCP 
has been designed to operate in more general networks, 
where packets may be routed via different paths and may 
therefore arrive out of sequence, the TCP transmitter waits 
for three dupACK’s to arrive before retransmitting a missing 
packet. In networks where packets are guaranteed to be 
received in order, this strategy of TCP unnecessarily delays 
the detection and retransmission of lost packets. Even more 
significantly, this strategy makes TCP more vulnerable to 
timeouts during periods of high loss-since at least three 
dupACK’s are necessary to trigger a fast retransmit, TCP 



IEEE/ACM TRANSACI’IONS ON NETWORKING, VOL. 6. NO. 1. FEBRUARY 1998 

- + - Normal TCP 

- - i - -TCP with 200ms Tiier 

+TCP v&h 200ms Timer and Super fast retransmit 

0.03 0.04 
Downstream Packd Len 

0.05 0.06 0.07 

Pig, 17, The complementary effects of increasing the retransmission timer granularity and invoking super fast retransmit for a 3-Mb data transfer betlveen 
n local server nnd a subscriber’s PC. 

- +- 1% packet lcss.TCP 

-1% packet loss. Modified TCP 
- 4 - 5% p%cket Iuss. TCP 

-5% packet loss. Modified TCP 

- - i - -10% packet loss. TCP 
+--w-m -----a--, +lO% packet loss. h4alified TCP 

0 100 a0 
Data Tmndr~br (KByW) 

400 500 coo 

Pig. 18, Illustration of the performance improvements that modified TCP offers for different data transfer sizes and different data packet loss rates. 

requires the operating window to be at least four packets for 
the fast retransmit mechanism to be effective. During periods 
of significant loss, TCP’s operating window drops many times 
below four, and a single packet loss during the time when the 
window stays below four (which could be up to two round-trip 
times) results in a timeout. 

WC propose to modify TCP implementations at the local 
servers of HFC networks so that fast retransmit is triggered 
after the llrst dupACK is received at the server. By initiating 
retransmission earlier, this approach, referred to as “superfast 
I’I’IYUIISI&,” speeds up the recovery of TCP from isolated 
packet losses, Much more significantly, super fast retransmit 
reduces the probability of timeouts. Since it requires only a 
single dupACK to retransmit a packet, super fast retransmit 
can be triggered even when the window size drops to two and 
a packet loss occurs. In addition, super fast retransmit increases 
the possibility that the TCP transmitter detects and recovers 
from multiple packet losses in a transmission window, as 
demonstrated in Fig. 16. In this example, when two packets, 11 
and 14, arc lost, a transmitter that implements fast retransmit 

experiences a timeout for packet 14 since it receives only two 
dupACK’s for this packet. In comparison, a transmitter using 
super fast retransmit retransmits packet 14 soon after receiving 
the first dupACK and is thereby able to recover from the packet 
losses without experiencing a timeout. 

The effects of increasing the retransmission timer granular- 
ity and employing super fast retransmit are complementary. 
Whereas the former reduces the duration of each timeout, the 
latter reduces the number of timeouts. Fig. 17 illustrates the 
performance improvement that can be obtained from using a 
TCP implementation with these modifications during different 
network loss conditions for a 3-Mb data transfer. 

Fig. 18 illustrates the performance improvements for differ- 
ent transfer sizes. For the loss rates shown in the figure, the 
modified TCP performs uniformly well for data transfers of 
50 kb and above, offering performance improvements ranging 
from 25% to 300%. For smaller transfers of 50 kb and less, 
the effect of modified TCP is less dramatic for loss rates of 5% 
and less. At higher loss rates, the performance improvements 
even for small transfer sizes are very significant. For instance, 
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for a 30-kb data transfer at a 10% loss rate, modified TCP 
doubles the achieved throughput. 

VII. IMPLICATIONS FOR BROAD-BAND 
DATA SERVICE OPERATORS 

In this section, we discuss some implications of our analysis 
for HFC network operators and equipment manufacturers. 

l Viability of data services even under harsh upstream net- 
work conditions: In recent times, critics have doubted the 
viability of providing data services over HFC networks, 
mainly on account of the high error rates on the upstream 
channels [GJ. Our analysis indicates that for downstream 
access, TCP connections can be tuned to be highly robust 
to loss of ACK’s on the upstream channel, so that 
acceptable performance can be achieved even under harsh 
upstream conditions. For example, with the enhancements 
proposed in the previous sections, even a 20% loss of 
ACK’s on the upstream channels results in less than 10% 
reduction in TCP performance. 

l Need to optimize performance by careful design and main- 
Ic/tance: To the many who have believed that data com- 
munication protocols are tolerant to loss, our analysis 
has demonstrated that a low (1%) downstream packet 
loss can degrade performance by up to 50%. To meet 
subscriber expectations, data service operators must strive 
to tune and maintain the physical network to reduce 
RF impairments. Considering the predominance of down- 
stream data transfers, the downstream channels must be 
especially carefully tuned. Forward error correction and 
bit interleaving techniques incorporated in the CM’s can 
mask physical layer errors from the TCP Iayer. Proactive 
monitoring can alert operators about impairments before 
subscribers notice the problem. 

In the future, when applications transfening data up- 
stream become commonly used, upstream errOr rates must 
be strictly controlled. Based on our analysis, we con- 
jecture that upstream packet loss, more than the limited 
upstream spectrum available, is likely to limit the achiev- 
able throughput. Channel error sensing and frequency 
agility capabilities in the CM’s can help in sustaining 
high performance levels on the upstream channels. 

9 I~riplications for CM-SCS architectures: In many first gen- 
eration architectures, like the CM’s, the SCS too transmits 
on the upstream frequencies and a separate frequency 
translator is used to reflect upstream transmissions on 
the downstream channels. Since noise on the upstream 
channels is also reflected downstream, in such CM-SCS 
architectures, even transmissions from the server complex 
to subscribers’ PC’s may be affected by upstream noise 
in the HFC network. Our analysis indicates that CM- 
SCS architectures which separate upstream transmissions 
from CM’s and downstream transmissions from the server 
complex are likely to yield much higher performance for 
TCP traffic. 

l 5’Irrru’rg TCP socket buffer settings for optimal perjor- 
ittartce: Until now, very little attention has been placed 
to tune the TCP connection parameters to the specific 
CM architecture. We have demonstrated the performance 
advantages that can be obtained simpIy by tuning the TCP 
socket buffer parameters based on the buffering capacity 

of the CM’s and the number of simultaneous connections 
supported by the CM. 

We are beginning to implement and experimentally evaluate 
the impact of our proposed modifications in real-world HFC 
networks. 
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