
Signal Processing: Image Communication 17 (2002) 85–104

An overview of the visual optimization tools in JPEG 2000
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Abstract

The human visual system plays a key role in the final perceived quality of the compressed images. It is therefore

desirable to allow system designers and users to take advantage of the current knowledge of visual perception and
models in a compression system. In this paper, we review the various tools in JPEG 2000 that allow its users to exploit
many properties of the human visual system such as spatial frequency sensitivity, color sensitivity, and the visual
masking effects. We show that the visual tool sets in JPEG 2000 are much richer than what is achievable in JPEG, where

only spatially invariant frequency weighting can be exploited. As a result, the visually optimized JPEG 2000 images can
usually have much better visual quality than the visually optimized JPEG images at the same bit rates. Some visual
comparisons between different visual optimization tools, as well as some visual comparisons between JPEG 2000 and

JPEG, will be shown. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the Sydney JPEG meeting (where initial
JPEG 2000 proposals were made), the contribu-
tion from Sharp Labs of America [16] demon-
strated the impressive visual improvement that
frequency weighting can offer, particularly at
display/print resolutions greater than 200 dpi
(127 mm/pixel). Since then, the JPEG committee
working on JPEG 2000 has been aggressively
pursuing the goal of removing perceptual irrele-
vancy, in addition to statistical redundancy, of the
image data. Fig. 1 shows a typical visual quality
improvement that frequency and color weighting

can achieve for JPEG 2000. It can be seen that the
reconstructed image with proper frequency and
color weighting (left) preserves the fine texture
much better than the one generated without using
visual optimization tools (right). What is more
interesting is that the right-side image has 1.3 dB
better peak signal-to-noise ratio (PSNR) than the
other one, although its visual quality is much
worse. This is but one example that shows that
mean square error may not be a good measure of
image visual quality.
There has been substantial work in vision

science that tries to understand and model the
human visual system’s behavior. It has been
recognized that the visual sensitivity varies as a
function of several key image dimensions, such as
light level [27], spatial frequency [13,30], color [17],
local image contrast [27,23], eccentricity [26] and
temporal frequency [22]. The most common
method of visually optimizing compression
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algorithms is to transform the amplitudes of the
image to a perceptually uniform domain. Since the
visual system’s gray-scale behavior is approxi-
mately characterized by a cube-root front-end
amplitude nonlinearity, the theory is to convert the
image into that domain, and then quantize. Then
to display, the inverse nonlinearity is used to
convert to photon flux. The cascade of the
display’s inverse nonlinearity with the visual
system’s nonlinearity results in the quantization
levels being perceptually uniform. This technique
forms part of nearly all video [21], with the
exception that the power function of 3 is replaced
by values around 2.2–2.4; this domain is generally
referred to as gamma-corrected. Most compression
algorithms do this by default, as a consequence
of compressing images represented in the format
of video standards. The advantage of this
approach is so substantial that it is essentially
de facto in any compression algorithm. The key
remaining dimensions of a still image that can be
visually optimized are along spatial frequencies,
color, and the visual masking by the image
content.

Given the knowledge of the human visual
system’s behavior, the next step is to figure out
how to exploit these properties effectively in a
practical compression system. Some compression
systems may allow a more thorough exploitation
of the properties of the HVS than others. Table 1
shows the visual tools supported by JPEG 2000, as
compared to JPEG. It is well known that JPEG
has the Q tables that allow one to apply frequency
and color weighting to each 8� 8 block. JPEG
2000, however, supports many more new features
such as visual progressive weighting, neighbor-
hood masking, self-masking and point-wise ex-
tended masking. We will discuss each one in some
detail in the following sections, and will explain
why these features are feasible in JPEG 2000, but
not in JPEG. The other three featuresFlocal light
adaptation, eccentricity and temporal frequency,
are also supported by the structure of JPEG 2000,
although they are not currently available in the
JPEG 2000 Verification Model (VM) software
[14].
JPEG 2000 [11] is a wavelet-based bit-plane

coder where coefficients in each wavelet subband

Fig. 1. Portions of the compressed ‘‘woman’’ images (crop size: 310� 400, original image size: 2048� 2560) using JPEG 2000 at

0.75 bpp. Left: baseline JPEG 2000 with frequency and color weighting using Table 2, PSNR=34.6 dB; Right: baseline JPEG 2000

without frequency and color weighting, PSNR=35.9dB.
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are divided into blocks of the same size (called
code-block) and each code-block is embedded
coded independently (see Fig. 2). It introduces
the concept of abstract quality layers that allows a
post-compression optimization process where sub-
bitstreams from each code-block are assembled in
certain (e.g., a rate-distortion (R–D) optimized)
order to form the final bitstream. This quality
layer formation process is a key component in
JPEG 2000. Basically, after an embedded bit-
stream is generated for each code-block (shown as
vertical bars in Fig. 2 where bits at the top are
more important than those at the bottom), it is

up to the encoder to determine how to assemble a
sub-bitstream from each code-block to form the
quality layers. In other words, it is up to the
encoder to determine how to draw the quality
layer lines or choose the truncation points as
shown in Fig. 2. This flexibility basically enables a
code-block-wise adaptive bit allocation. As we will
see later, it is this flexibility that makes many
visual tools in JPEG 2000 feasible.
In this paper, we review the tools in JPEG 2000

that allow its users to take advantages of the
various properties of the HVS such as spatial
frequency sensitivity, color sensitivity, and the
visual masking effects. We will show that the visual
tool sets in JPEG 2000 are much richer than what is
achievable in JPEG, where only spatially invariant
frequency weighting can be exploited. As a result,
the visually optimized JPEG 2000 images can
usually have much better visual quality than
the visually optimized JPEG images at the same
bit rates. This paper is organized as follows.
Section 2 presents the visual tools that allow the
exploitation of the spatial frequency sensitivity
and the color sensitivity, including fixed frequency
weighting and visual progressive weighting.
Three different ways of exploiting the visual
masking effects are discussed in Section 3. Finally,
Section 4 shows some visual comparisons with
some discussions.

Embedded bitstreams from
each code-block
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Significant

Code-block
Code-block
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Fig. 2. JPEG 2000 codestream quality layer formation.

Table 1

Visual optimization tools supported by JPEG 2000 and JPEG

HVS properties JPEG 2000 JPEG

Frequency weighting + +

Color weighting + +

Visual progressive weighting + �
Neighborhood masking + �
Point-wise self-masking + �
Point-wise extended masking + �
Local light adaptation + �
Eccentricity + �
Temporal frequency + �

+: supported; �: not supported.
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2. Visual frequency weighting

One common visual optimization strategy for
compression is to make use of the contrast
sensitivity function (CSF) that characterizes the
varying sensitivity of the visual system to 2D
spatial frequencies [13,30], as shown in Fig. 3. In
general, human eyes are less sensitive to high-
frequency errors than to low-frequency errors. The
CSF can be used to determine the relative
accuracies needed across differing spatial frequen-
cies, where the term ‘‘weight’’ is used to describe
the desired proportional accuracy. To use the
CSF, which is usually described in visual frequen-
cies of cycles/degree (cpd), it must be mapped to
the compression domain of digital frequencies
such as cycle/pixel. The design of the CSF weights
is an encoder issue and depends on the specific
viewing condition under which the decoded image
is to be viewed [13]. Recent studies [33,31,5]
suggest that it may also depend on the distor-
tion/bit rate of the compressed image. In JPEG
2000, three default weighting tables have been
recommended for three common viewing distances
[11]. Weighting tables for color images have also
been recommended [5,18]. A sample weighting
table is shown in Table 2. It can be seen that the
weights for the low-frequency subbands are larger
than the high-frequency subbands. There is also a
bias toward the luminance component against the
Cb, Cr components. Note that in JPEG, the
differing importance of the channels is generally
handled by subsampling the chrominance compo-
nents by a factor of 2 in the vertical and horizontal
directions. Additionally, the downsampled chro-
minance components use more aggressive quanti-

zation tables than the luminance component.
JPEG 2000 has the advantage that a ‘‘soft down-
sampling’’ (using the weighting table without
explicitly downsampling the chrominance compo-
nents), as opposed to JPEG’s ‘‘hard downsam-
pling’’, can be implemented. A proper frequency
and color weighting can usually result in signifi-
cant detail and texture preservation with no
introduction of color distortions (see, e.g.,
Fig. 1). In general, frequency weighting is more
effective for large viewing distance or high dpi
printing. In fact, it can also be used to reduce
the flicking artifacts of Motion JPEG 2000, as
demonstrated in [9].

2.1. Fixed frequency weighting

In general, the CSF curve is a continuous
function of the spatial frequency. However, for a
discrete wavelet transform, it is common that only
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Fig. 3. A general unsampled 2D CSF.

Table 2

A sample weighting table for a viewing distance of about 1700 pixels for a five-level decomposition. A larger ‘‘level’’ value corresponds

to a lower resolution. A larger weight indicates higher quantization accuracy

Level Y (LH HL HH) Cb (LH HL HH) Cr (LH HL HH)

1 0.275783 0.275783 0.090078 0.089950 0.089950 0.027441 0.166647 0.166647 0.070185

2 0.837755 0.837755 0.701837 0.267216 0.267216 0.141965 0.375176 0.375176 0.236030

3 0.999994 0.999994 0.999988 0.488887 0.488887 0.348719 0.587213 0.587213 0.457826

4 1.000000 1.000000 1.000000 0.679829 0.679829 0.567414 0.749805 0.749805 0.655884

5 1.000000 1.000000 1.000000 0.812612 0.812612 0.737656 0.856065 0.856065 0.796593
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one CSF weight is chosen for each subband to
facilitate the implementation. This way of apply-
ing visual frequency weighting is referred to as
fixed frequency weighting. For example, based on
the specific viewing condition, the weight corre-
sponding to the sensitivity of the mid-frequency of
a subband could be chosen for that particular
subband [13]. The set of CSF weights can be
incorporated in one of two ways in JPEG 2000, as
described in the following. In both cases, the CSF
weights do not need to be explicitly transmitted to
the decoder.

2.1.1. Modify the quantization step size
At the encoder, the quantization step size qi of

the transform coefficients of subband i is adjusted
to be inversely proportional to the CSF weight wi.
The CSF-normalized quantization indices are then
treated uniformly in the R–D optimization pro-
cess. The CSF weighting information is reflected in
the quantization step sizes that are explicitly
transmitted for each subband. This approach
needs to explicitly specify the quantizers so it
may not be suitable for embedded coding that
generates a bitstream from lossy all the way to
lossless. (If lossless is not required, this approach
works fine.) Furthermore, this approach cannot be
extended to perform visual progressive weighting
where weights need to be changed at different bit
rates during embedded coding. This implementa-
tion can be invoked in the JPEG 2000 VM
software [14] by supplying the same file of visual
weights to both the ‘‘-Fsteps’’ and ‘‘-Fweights’’
arguments. This approach may be easier to under-
stand and to implement than the next approach.

2.1.2. Modify the embedded coding order
In this implementation, the quantization step

sizes are not modified, but the distortion weights
fed into the R–D optimization are altered instead,
linearly proportional to the CSF weight for each
subband. This effectively controls the relative
significance of including different numbers of
coding passes from the embedded bitstream of
each code-block to form the bitstream quality
layers (see Fig. 2). This is an encoder issue only.
The decoder does not need to be aware of it. This
implementation can be invoked through the

‘‘-Fweights’’ option in the VM software. This
implementation is recommended since it produces
similar results as the first implementation and is
compatible with lossless compression as well as
visual progressive weighting. The extension of this
approach to the visual progressive weighting will
be described in Section 2.2.
It is also possible to do cell-adaptive CSF

weighting [17,19], which allows a better adaptation
of the CSF weight to the signal spectrum in a sub-
region (e.g., code-block) of a subband. Basically, a
data-adaptive weighting factor can be determined
for a sub-region by filtering the wavelet coefficients
in that sub-region with the CSF filter of the
corresponding sub-part of the CSF. The weighting
can be done at the encoder only. Theoretically, by
considering the actual frequency content of the
sub-region, this approach would generate more
accurate weighting factors than just choosing the
CSF weight corresponding to the middle fre-
quency of the subband. However, it has been
shown [19] that, under the framework of JPEG
2000, the advantage of this strategy over the
above-mentioned fixed frequency weighting is
rather small for the compression of natural
images, but it might be of bigger impact for
images of non-natural scenery.

2.2. Visual progressive weighting

JPEG 2000 allows the implementation of visual
progressive weighting, where different sets of CSF
weights can be applied at different stages of the
embedding to form different quality layers [11,15].
In particular, to implement the visual progressive
weighting, the JPEG 2000 VM (using the ‘‘-Cvpw’’
argument) changes, on the fly, the order in which
code-block sub-bitplanes should appear in the
overall embedded bitstream based on several sets
of frequency weights targeted for different bit-rate
ranges.
The initial motivation for visual progressive

weighting is that ‘‘as the embedded bitstream may
be truncated later, the viewing conditions for
different stages of embedding may be very
different’’ [15]. Visual progressive weighting thus
allows the use of different sets of CSF weights
that correspond to different viewing distances at
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different stages of the embedding. However, it
remains unclear what viewing distance should be
considered for a specific bit-rate range, or if that is
entirely application dependent.
Recent studies [33,31] have shown that even

with a fixed viewing distance, a more aggressive
weighting usually results in a better visual quality
than the ‘‘matched’’ weighting targeted for that
viewing distance, when the bit rate is low. This is
because, traditionally, CSF is usually derived
through experiments based on the just-notice-
able-difference (JND) criterion and such CSF
may not be fully applicable to the low-bit-rate
cases where coding errors are usually quite visible.
A distortion-adaptive visual weighting strategy,
based on a visual signal estimation approach (in
addition to the traditional visual signal detection
approach), has been proposed [33] to address
visual weighting at low bit rates for both fixed fre-
quency weighting and visual progressive weighting.
In traditional psychophysical experiments, the

amplitude of each frequency basis function is
increased until it reaches a just noticeable
frequency threshold (JND) where people can
detect the existence of the signal under a specific
viewing condition [13,30]. These frequency JNDs
are then used to generate the CSF curve to
represent the relative visual significance of each
frequency component. Typically, wi ¼ k=Ti; where
wi and Ti; respectively, are the CSF weight and the
frequency detection threshold for the ith frequency
basis function, and k is a constant normalization
factor. Most previous works on perceptual coding
usually implicitly assume that the relative weights
will remain unchanged for different distortions/bit
rates.
Experiments have shown [33,31] that the tradi-

tional CSF weights do not seem to work well in
low bit-rate scenarios. This is not necessarily
surprising because the traditional CSF curve is
derived based on just noticeable detection thresh-
olds (corresponding to a visually near-lossless
condition). At lower bit rates, the distortion is
quite visible and the visual effect has not been
conclusively understood in the literature. A
distortion-adaptive CSF weighting strategy was
proposed in [33] to address the visual frequency
sensitivity under the condition of large distortions.

It was argued that, for low bit rates, the effect of
visual distortion is an estimation problem rather
than just a detection problem [33]. In other words,
it becomes important to estimate the amount of
visual distortion of each frequency component
perceived by the human eyes when measuring the
frequency sensitivity. For wavelet-based systems,
different basis functions usually have different
spatial supports, and different non-flat envelops.
In general, low-frequency basis functions have
larger spatial supports than high-frequency basis
functions. In the visually near lossless scenario, the
side lobes of the basis function remain largely
undetected. So the spatial support of the basis
function is not of significant impact on the
perception. However, at low bit rates, the distor-
tion signal strength is increased and the side lobes
of the basis function become visible. The spatial
support of the basis function starts affecting the
perception of the distortion.
The following measure has been proposed in

[33] to compensate for the ‘‘side lobe effect’’. Let
fiðxÞ denote the basis function with unit peak-to-
mean amplitude for the ith subband. Assume the
distortion to each basis function is dfiðxÞ where d is
the normalized peak-to-mean amplitude (in the
unit of Ti). The normalization is with respect to the
frequency detection threshold Ti of each basis
function. It accounts for the visual sensitivity to
spatial frequency. We define the ‘‘effective’’ basis
distortion function gi (x; d) as

giðx; dÞ ¼ dfiðxÞj j if dfiðxÞ½ � > 1;

¼ 0 otherwise: ð1Þ

The coring to zero is a rough model of the
threshold aspect of the CSF. The compensation
factor li that accounts for the ‘‘side lobe effect’’
can be defined as

liðdÞ ¼
Z þN

�N

jgiðx; dÞj
p dx

� �1=p
if d > 1; ð2Þ

where 0ppoN: If dp1, liðd Þ will all be set to 1.
Therefore, if d is less than 1 (or equivalently, the
peak-to-mean amplitude of the distortion to each
basis function is less than the frequency detection
threshold Ti), there is no compensation for the
‘‘side lobe effect’’. If the actual peak-to-mean
amplitude of the basis distortion function is
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greater than Ti, then the portion of the basis
distortion function that has an amplitude exceed-
ing the threshold Ti will contribute to the visual
distortion. A special case is that p=2, and d-N:
In this case, the compensation factor li is in fact
the square root of the energy of the basis function
with unit peak-to-mean amplitude, subject to a
constant factor that is common to all basis
functions. In general, low-frequency basis function
with unit peak-to-mean amplitude will have larger
energy than high-frequency basis function with
unit peak-to-mean amplitude. This suggests that
low-frequency basis function is more sensitive to
distortion than high-frequency basis function, thus
demanding more protection than what the tradi-
tional CSF curve suggests that only accounts for
frequency sensitivity, but not the ‘‘side-lobe
effect’’. The final effective CSF weight for a
distortion to the ith basis function with a Ti -
normalized peak-to-mean amplitude of d should
be

w0
i ¼ wili; ð3Þ

subject to a constant normalization factor.
The model described above tries to characterize

the different amounts of distortion perceived by
the human eyes when the distortion signal for each
frequency has an amplitude that is d times of its
frequency detection threshold Ti: Note that pre-
vious works on perceptual coding usually assume
that these visual distortions are the same. The
proposed model therefore provides a fine adjust-
ment of the frequency weights based on the instant
Ti -normalized peak-to-mean amplitude of the
distortion signal during the embedded coding
process.

The traditional CSF curve usually has a dip at
very low frequencies and reaches the peak value at
some mid-frequency fpeak. In practice, the weights
are usually set to 1 for all frequencies no larger
than fpeak, which is done to consider the more
practical usage of a range of viewing distances,
where only the closest is known or designed for.
For a reasonable compensation of the ‘‘side-lobe
effect’’, we assume that the peak will be assumed at
the next lower frequency level. For example, in
Table 3, the original CSF weights 1000.tbl have a
peak at level 3. The effective weights 1000 N.tbl
will then have a peak at level 4.
This technique, referred to as the distortion-

adaptive visual progressive weighting (DAVPW)
strategy, was implemented in [31] based on JPEG
2000 VM7.0 [14]. In particular, for each quality
layer, the instant Ti-normalized average distortion
of the whole image after encoding the previous
quality layer will be used to calculate the
compensation factors and update the effective
weights.
We compared the performance of the distortion-

adaptive visual progressive weighting to that of the
fixed weighting using the 1000.tbl table for the on-
screen 1000-pixel viewing distance case. Fig. 4
shows that DAVPW provides noticeable visual
improvement over fixed weighting at the low bit
rates. In general, the lower the bit rate, the larger
the visual improvement. Fig. 5 shows that while
the aggressive 1000 N.tbl table for fixed weighting
performs well at 0.25 bpp, it results in high-
frequency artifacts at 0.75 bpp. On the other hand,
DAVPW automatically adjusts the effective
weights, thus provides good visual quality across
different bit rates/distortions.

Table 3

Two sets of weights (for luminance only) for visual progressive weighting under 1000-pixel viewing distance condition. Left: traditional

weights; right: effective weights with p=2 and d=N (where the distortion is assumed to be very large)

Level 1000.tbl (LL, LH, HL, HH) 1000_N.tbl (LL, LH, HL, HH)

1 1.0000 0.5608 0.5608 0.2841 1.0000 0.1833 0.1833 0.0884

2 1.0000 1.0000 1.0000 0.7271 1.0000 0.5251 0.5251 0.3092

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7876

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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3. Visual masking

Frequency weighting is usually very effective for
applications with a high-resolution display or large
viewing distance. In both cases, the viewing
distance expressed in units of pixels will be greater
than around 1500. The advantage of this techni-
que, however, becomes less noticeable for lower
resolution display and closer viewing distance,
since the CSF curve mapped to the digital domain
tends to be flat under those viewing conditions
(that is, when the Nyquist is low when expressed in
visual frequency). In this case, visual masking
provides more leverage for improving the visual
quality.
Visual masking is a perceptual phenomenon

where signals are locally masked (i.e., hidden) by a
background texture. In compression applications
the image acts as a background that reduces the
visibility of the false signals generated by the
distortion. JPEG 2000 supports the exploitation of
self-masking [8], neighborhood masking [24] and
point-wise extended masking [32,12], as will be
discussed in this section. The visual masking

approaches in JPEG 2000 allow bitstream scal-
ability, as opposed to many previous works
[27,23,10].

3.1. Psychophysics background for masking

The design of a compression system that
exploits visual masking effects is based on psycho-
physical data for the threshold versus masking
contrast, as shown in Fig. 6. These curves describe
the elevation of threshold, which in the context of
compression relates to the maximum allowable
distortion. Also note that the inverse of threshold
is the visual sensitivity. The data show the visual
system’s behavior for two types of masking
patterns. One type is noise, having uncorrelated
phase and whose results are shown as the dashed
line. The shape of this result will occur if the noise
is white or narrow band. The other key type of
mask is a sine wave, which is entirely correlated in
phase. At low mask contrasts, the threshold is the
same as if it was presented on a uniform field (zero
contrast). This is true for both noise and sine
masks. As the contrast increases for the noise

Fig. 4. Foreheads of the ‘‘woman’’ image coded at 0.25 bpp using different weighting strategies.

Fig. 5. Fingers of the ‘‘woman’’ image coded at 0.75 bpp using different weighting strategies.
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mask, the threshold initially stays constant but
then the slope increases until it reaches a constant
slope in this log–log plot. The plot can be
described by the two asymptotic regions; one with
a zero slope for low contrast and one with a slope
near 1.0 for high noise contrast.
The data for sine masking are shown as the solid

line and there is an additional region where the
threshold is actually reduced from that of the
uniform field. This region indicates that masking is
not occurring, but rather the opposite, where the
background masking content actually makes the
visual system more sensitive. This effect is referred
to as facilitation, and the curve shape is referred to
as the dipper effect. This type of masking usually
displays a lower slope for high contrasts, and a
value of 0.7 is typical. Actual images consist of
regions that are various blends between these types
of masks. For a detailed discussion of how the
masking functions within the spatial frequency
channels of the visual system, as well as how it is
affected by global frequency weighting of the CSF,
see [7]. More recent work in attempting to unify
the understanding of masking by patterns and in
natural images can be found in [29].
One way to use this effect appears in [25,28]. The

quantization as a function of coefficient amplitude
is shown in Fig. 7 (from [28]), and is given by the

equation [25],

Q ¼
g�1CTO if CboCTO;

g�1CTO
Cb

CTO

� �s

otherwise;

8><
>: ð4Þ

where Q is the quantization interval, g is the gain
of the coefficient to display contrast, CTO is the
visual contrast threshold for the band, Cb is
the contrast of the wavelet band coefficient to be
quantized, and S is the masking slope, which is
usually between 0.5 and 0.7. In the figure, the x-
axis c/C is analogous to mask contrast, the
quantization levels are L0, L1, L2, etc., and the
quantization intervals derive from the thresholds,
T1, T2, T3, etc.
Further work in applying masking to compres-

sion suggested its application to a Cartesian-
separable wavelet transform [30], which is
computationally more efficient than the Cortex
transform but less accurate with respect to the
visual system. The quantization strategy prior to
entropy coding was suggested to be

Qb ¼ Dly

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2ly

q
; ð5Þ

where Qb is the quantization scale factor of a band
b having wavelength l and orientation y: The
value Dly is the visual threshold for that band b.
The variance, s2ly; is that of the band and possibly
neighboring orientation bands taken over a local
area. The effect of using this masking was never
demonstrated in the paper, however. This would
have caused the resulting quantization to be

Fig. 6. Threshold versus masking contrast for noise mask (dash

line) and sine mask (solid line).

Fig. 7. Encoder quantization (from [28]).
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applied to a coefficient as a function of its band’s
s; which for the AC bands is proportional to
contrast. The resulting quantization makes the
high-contrast asymptotic power-function slope
equal to 1.0, rather than 0.7. In [10], an algorithm
that locally adapts the quantizer step size at each
pixel according to an estimate of the masking
measure is presented. To eliminate the overhead, it
exploits masking based on an estimate of the
current coefficient value from neighboring already
coded coefficients. The estimate, however, may not
be accurate given that the coefficients are pretty
much de-correlated. It is not amenable to scalable
coding. Another approach is to implement the
nonuniform quantization by applying a nonlinear-
ity prior to a uniform quantizer. This will require a
different nonlinearity from that shown in Fig. 6.
Such a nonlinearity would be derived from the
integral of the threshold data. That is the
approach employed in JPEG 2000, and is to be
discussed in this section.

3.2. Self-contrast masking

It is understood nowadays that the masking
property of human vision primarily occurs locally
within spatial frequency channels that are each
limited in radial frequency as well as orientation. It
is then possible to exploit the masking effects by
nonuniform quantization which quantizes more
coarsely as a function of the activity in spatial
frequency and spatial location [28], as opposed to
overtly adaptive techniques such as [23,6,20]. Since
these masking effects are approximately the same
in each channel, once normalized, the same
masking procedure could be used in each channel
without incurring any overhead [8].
The basic idea of this technique is to use a de-

accelerating nonlinearity, referred to as a transdu-
cer function, prior to a uniform quantizer within a
compression system. Ideally, a scaled derivative of
these transducer functions equals the threshold
function of Fig. 6. The block diagram for the
system in JPEG 2000 is shown in Fig. 8. Basically,
at the encoder, a power function can be used to
capture the essence of the transducer function, i.e.,

y ¼ xa; 0oap1; ð6Þ

is applied to each coefficient, prior to uniform
quantization and bit-plane coding. The output of
the transducer function is regarded as being the
perceived visual response, which is perceptually
uniform. At the decoder, the inverse process is
applied. Since a coefficient’s quantization increase
(i.e., coefficient masking) is entirely determined
from that coefficient’s value, we refer to this
technique as self-contrast masking.
Fig. 8 shows that the band coefficient images are

generally scaled in a calibration step so the
coefficients are linearly scaled prior to their trans-
form by the non-linearity. This scaling can be
band-dependent, and is done for optimizing to the
frequency characteristics of the visual system,
shown dashed in the figure. Consequently, the x-
axis of Fig. 9 should be regarded as relative
amplitudes.
The decoder nonlinearity, or inverse transducer

function, is shown in Fig. 10, for both the noise-
based and sine-based masking curves. Since higher
slopes at the decoder magnify the quantization
error more, we see that less quantization error is
allocated to the lower amplitude coefficients than
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Fig. 8. Bock diagram for the self-masking approach in JPEG

2000.
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the higher. With quantization, the cascade effect is
essentially non-uniform quantization, as shown in
Fig. 11 for the sine-based masking curves of
Figs. 9 and 10. It has a small region of slightly
increased quantization near zero due to the dipper
effect, as well as the vastly increased quantization
for high coefficient values. As stated previously,
these x-axis amplitudes are, of course, relative.
In general, the resulting step size as a function of

coefficient amplitude is given by the derivative of

the transducer function at the encoder. This is
shown in Fig. 12 for the power function as a
dashed line and the sigmoidal function as a solid
line. This curve should be compared to the
psychophysical data in Fig. 6.
In addition to the actions of the nonlinearity

described before, there are a few specific details.
The first of these is that the nonlinearity is not
employed on specific bands. There are bands
eliminated based on their location in the wavelet
decomposition pyramid. For example, this

Fig. 9. Nonlinearity at the encoder for self-masking. Dashed

line for noise masking, solid line for sine wave masking.

Fig. 10. Nonlinearity at the decoder for self-masking. Dashed

line for noise masking, solid line for sine wave masking.

Fig. 11. Cascaded encoder/decoder nonlinearities with quanti-

zation.

Fig. 12. Error size as a function of signal amplitude.
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nonlinearity should never be employed on the
baseband of the pyramid, that is, the band that
includes the DC value of the image. It can also be
advantageous to avoid applying masking to low-
frequency bands, since there is little to gain in bits
from these bands. It should be noted that, in
Fig. 8, the frequency weighting should be applied
prior to the masking non-linearity. It acts as a
calibration step between coefficient and visual
threshold as a function of frequency.
While consideration was given toward allowing

the users to design their own transducer function
(to use a sine-based or noise-based image model,
for example), it proved difficult to preserve this
flexibility in the JPEG 2000 VM. Consequently,
only a power function nonlinearity is allowed in
the standard, since its shape can be conveyed with
a single parameter. The exploitation of self-
contrast masking could be invoked in the VM
software using the ‘‘-Xmask’’ option with the
parameter b set to 0. A good value for a is 0.7.
Note that due to the derivative relation between
transducer and quantization result, the value of a
corresponding to a slope of 0.7 in Fig. 6 should be
0.3. However, experiments have shown that a good
value for a is the less aggressive 0.7. This is partly
because there exists a mismatch between the
wavelet band structure and the HVS’s band
structure.

3.3. Problems with self-masking in wavelet
compression

Since the self-masking was designed to be
closely based on current spatial models of the
visual system, it should be expected to properly
reallocate bits to where (in terms of spatial and
frequencies) the viewer is most sensitive, thus
preventing visible distortions. However, the corre-
spondence between the visual system and wavelet
structure of the compression algorithm is only
approximate. Not surprisingly, issues delineating
the compression algorithm from the visual model
lead to non-optimal visual performance, and
distortion artifacts of the compression process
can indeed be more visible than expected as the
bit-rate is reduced (see, e.g., Fig. 15). These issues
will be discussed below.

3.3.1. Diagonal band
The most well-known difference between this

implementation and a good visual model lies in the
2D spatial arrangement of the filter bank, which
stems from the Cartesian-separable filter construc-
tion used in the wavelet decomposition. One of the
key problems is the fact that the diagonal band
contains the mixed orientations [13,1] of 451 and
�451. The reason this causes problems with
masking is that in the visual system, energy near
451 does not significantly mask energy near �451,
whereas in the Cartesian-separable wavelet im-
plementation such cross diagonal masking will
occur. So at a diagonal edge, the visual system’s
masking would hide oriented distortions parallel
to the edge, but those orthogonal would be visible.
However, in the self-masking wavelet implementa-
tion, the quantization of coefficients in a diagonal
edge leads to distortions both parallel as well as
perpendicular to the edge, and the perpendicular
distortions are easily visible, since they are not
visually masked.

3.3.2. Horizontal and vertical bands encroaching
on diagonal frequencies
Less well known is a problem due to the shape

of the filters. Notice that along the diagonal
frequencies, the horizontal and vertical bands
encroach into the diagonal region at multiples of
1/2n cycles/pixel (where n is the resolution level).
The energy of a diagonal (D) edge can end up in
the H and V bands. If the edge contrast is high
enough, the amplitudes of the coefficients related
to the edge in the H and V bands may be high
enough so that the resulting masking effect can
increase their quantization intervals. This can
cause H and V linear distortions along a diagonal
edge, which will easily be seen by the visual system.
Further, the energy displaced away from the
diagonal band into the horizontal and vertical
bands will be energy that is not taken into account
in the masking of diagonal structures. Any energy
that causes masking in the visual system but is lost
by the masking structure of the algorithm repre-
sents a higher bit rate. In rate-controlled imple-
mentations, this lost masking energy will lead to
higher distortions.
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3.3.3. Zero-crossings and phase sensitivity
Another serious deviation of the algorithm’s

masking from the visual masking is the issue of
phase. The visual channels have limited phase
sensitivity (i.e., phase uncertainty), which is greater
than 901 for an isolated visual channel, but can be
as low as 451 phase for signals with two adjacent
channels [2,3]. Due to this limited phase sensitivity
and since the masking effect is based on local
activity in a visual channel, it is not solely limited
to the peaks and valleys of a waveform. It can also
extend across the zero-crossings. The effect is

shown in Fig. 13 for range of phase uncertainties.
In many visual models, this phase uncertainty is
caused by the visual channel being a quadrature
phase summation of sine and cosine receptive
fields, modeled as

RðxÞ ¼ ðsin2ð2pfxÞ þ cos2ð2pfxÞÞ1=2; ð7Þ

where R is the response of a receptive field with
dominate frequency f. This can be generalized to
any phase uncertainty, Dy; behavior by

RðxÞ ¼ ðsinpð2pfxÞ þ sinpð2pfx þ DyÞÞ1=p: ð8Þ

Fig. 13. Effect of phase uncertainty on spatial extent of masking (B) y=p/4; (C) y=3p/8; (D) y=p/2.
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In part A of the figure, the dashed line shows a
localized sine wave, representing one band’s
view of a textured area. The solid line in that
figure shows the resulting masking in the band,
where we only model the rectification aspect of
masking from Eq. (8) and having zero phase
uncertainty. The upper line in part B shows
the masking caused by a phase uncertainty (Dy)
of p/4 via Eq. (8), while C shows a phase
uncertainty of 3p=8 and D shows a Dy of p/2 (all
with p=2). If such a phase uncertainty of p/2 is
approximately equal to that of the visual system, it
results in a uniform masking over the textured
area.
In the self-masking implementation of JPEG

2000, the masking is confined to the coefficient
having a phase width near zero degrees (for the
highest frequency in a band), so the masking due
to energy near the zero-crossings is not taken into
account. While visual masking may occur over an
entire texture region in actual images, the self-
masking approach of the compression process can
only take into account the masking at the peaks
and valleys of the textured region, and not the
entire region. This means that entropy savings in
these regions is lost, thus driving up the bit rate or
driving down the quality in other frequencies and
regions.

3.4. Neighborhood masking

Another way of exploiting visual masking is
through the control of individual code-block
contribution in the quality layer formation process
[24]. In this approach, the embedded coding of
each individual code-block is performed without
considering visual masking effect. In particular,
there is no non-linearity interspersed between
the wavelet transform stage and the quantization
stage. However, in the post-compression rate-
distortion optimization process, the distortion
metric is modified to take into account the
visual masking effect. More specifically, the
distortion of each coefficient is weighted by a
visual masking factor that measures the local
texture activity and is in general a function of the
neighboring coefficients. That is, it treats each
coefficient value, Vi; as though it were equal to V 0

i

(from the perspective of distortion estimates),
where

V 0
i ¼ Vi=Mi ð9Þ

and the masking strength function is

Mi ¼ A
X

fk near ig

Vkj jU; ð10Þ

with A being a normalization factor, and U
assumes a value between 0 and 1. Note that
although each coefficient may have a different
value of the visual masking factor Mi, this
approach can only adjust the truncation points
of each code-block to form different quality layers.
We will refer to this type of masking as block-
based neighborhood masking. This approach
adjusts only the distortion metric at the encoder,
which is an advantage from an implementation
point of view. The decoder does not need to be
aware of that. The masking effect exploited can
also be spatially extensive which is not exploited in
the self-masking approach discussed in Section 3.2.
Another advantage is that it allows a lossless
embedded bitstream to be generated, since integer
implementation is feasible. This approach works
very well for large images with diverse contents
such as the ‘‘woman’’ image. Its weakness is that it
can only adjust the truncation points of each code-
block (i.e., the bit-allocation is code-block-based),
which is a spatially coarser adjustment than the
sample-by-sample compensation offered by the
self-masking approach [8]. Within a code-block,
no visual masking effect is exploited. As a result, it
may not work very well for smaller images. This
block-based neighborhood masking is accessible
via the ‘‘-Cvis’’ option in the JPEG 2000 VM
software.

3.5. Point-wise extended masking

Amore comprehensive visual masking approach
has been developed [32,12] that extends the point-
wise ‘‘non-linearity’’ of self-masking [8] to an
‘‘extended nonlinearity’’. It also takes care of the
masking effect and spatial summation contributed
from spatially neighboring coefficients. This is to
overcome the over-masking problem of the self-
masking approach [8] that occurs at diagonal
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edges, as discussed in Section 3.3. The main
advantage of this strategy is its ability to
distinguish between large amplitude coefficients
that lie in a region of simple edge structure and
those in a complex region, such as texture. This
feature will assure the good visual quality of
simple edges in a smooth background, which is
often critical to the overall perceived quality.
This point-wise extended masking approach

treats visual masking as a combination of two
separate processes. The first step is to apply a
point-wise power function to the original coeffi-
cient xi; i.e.,

xi-yi ¼ signðxiÞ xij ja: ð11Þ

This is basically to account for the self-masking
effect. This step assumes each signal with which a
coefficient is associated is lying on a common flat
background. Under this assumption, {yi} are per-
ceptually uniform. In a real image, however, this is
usually not the case. Each signal is superimposed
on other spatially neighboring signals. There is
some masking effect contributed from spatially
neighboring signals due to the phase uncertainty,
receptive field sizes, as well as possible longer range
effects that increase detection (‘‘pooling’’) [8]. To
further exploit this neighborhood masking effect,
the second step normalizes yi by a neighborhood
masking factor mi that is a function of the
amplitudes of the neighboring signals. A good
model that has been adopted by the JPEG 2000
standard [12] is to use the nonlinear transform

zi ¼ yi= 1þ a
X

fk�near�ig

j xk
4
jb=jfi j

 !
; ð12Þ

where fi



 

 denotes the size of a causal neighbor-
hood, a is a normalization factor with a constant
value of (10000/2bitdepth-1)b and bitdepth denotes
the bit depth of the original image, #xk denotes the
quantized (bit-truncated) neighboring coefficients
(that only retain the first few most significant bits
of the quantization index to allow for embedded
coding), and the neighborhood contains coeffi-
cients in the same band that lie within an N�N
window centered at the current coefficient. These
neighborhood coefficients also appear earlier than
the current coefficient in the raster scan order

(see Fig. 14 for an example). The neighborhood
does not include the current coefficient itself so
that an explicit solution for the inverse process is
available. The causal neighborhood should also
respect code-block boundaries when a ‘‘respect_
block_boundaries’’ switch is selected at the
encoder. This switch should cause the neighbor-
hood masking weighting factor mi not to include
coefficients outside of the current code-block.
Also, this switch must be transmitted to the
decoder to tell it exactly how the neighborhood
is formed. When the switch is on, it allows parallel
implementation and restricts error propagation,
but it may sacrifice some performance. The
parameter a assumes a value between 0 and 1,
and is used to control the degree of self-masking.
A typical value of a is 0.7. The parameter b
assumes a positive value, and, together with N, are
used to control the degree of neighborhood
masking. The parameters b and N play important
roles in differentiating coefficients around simple
edge from those in the complex area. The degree of
averaging is controlled by N; b controls the
influence of the amplitude of each coefficient. It
is important that b assumes a value much smaller
than 1, and a good value of b is 0.2. This is quite
different from some previously proposed variance-
based neighborhood activity measure [23,10]. It
helps to protect coefficients around simple sharp
edges, since the coefficients around sharp edges
usually have high values. A variance-based mea-
sure may not be able to distinguish a local sharp
edge area (with few large coefficients and all the
rest close to zero) from a local complex area (with
many mid-amplitude coefficients). This is because

xx

x x x x

x

x

x x

x x o

Fig. 14. An example of the causal neighborhood (N ¼ 5;
jfi j ¼ 12). o: current coefficient; x: coefficients in the causal
neighborhood.
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the large coefficients, although only a few, in a
local sharp edge area could contribute significantly
to the overall variance, due to the square opera-
tion. Note that masking is lower than expected
near sharp edges (as opposed to textures) due to
‘‘pooling’’. A small value of b suppresses the
contribution of a few large coefficients around
sharp edges to the neighborhood masking factor,
thus implicitly distinguishing coefficients around
sharp edges from coefficients in a complex region.
For example, two neighborhood sets of {5, �5, 5,
�5, 5, �5, 5, �5} and {0, 0, 0, 10, �10, 0, 0, 0}
have the same variance of 5. But their ‘‘L0.2-
norms’’ are 1.38 and 0.40, respectively.
The resultant zi values are then subject to

uniform quantization. The inverse is performed
at the decoder. Note that quantized neighboring
coefficients will be used at the encoder to ensure
that both the encoder and the decoder perform
exactly the same operation to calculate mi. For
embedded coding, unfortunately, the encoder
cannot do the nonlinear transformation based on
the exact final compressed/quantized version of
the coefficient xk because the ‘‘extended nonlinear-
ity’’ is applied prior to scalable compression, and
the decoder can have any bitstream that has a
lower rate than the final rate. Nevertheless, the
discrepancy of mi calculated at the encoder and the
decoder can be completely eliminated or reduced
by a conservative strategy where only the same
very coarsely quantized (i.e., bit-truncated) coeffi-
cients are used to calculate the masking weighting
factor mi at both the encoder and the decoder. In
fact, after zi is quantized, only the Bits retained
most significant bits of the quantization index will
be retained (the rest bits are replaced with 0). This
modified quantization index is then converted
back to the x domain, and is used for calculating
mi, As long as Bits retained is small enough (with
respect to the available bit rate at the decoder), the
decoder will be able to obtain exactly the same bit-
truncated version of the neighboring coefficients.
The compromise here is a coarser granularity of mi

which may slightly affect the accuracy of the
masking model. However, experiments have sug-
gested that the performance usually is not very
sensitive to which quantized version of the
neighboring coefficients is used. As a result,

bitstream scalability is feasible. This is essentially
a coefficient-wise adaptive quantization without
any overhead. The system diagram of the point-
wise extended masking approach is the same as
Fig. 8 except that the power function is replaced
by the extended non-linearity presented in
Eq. (12). Note that visual masking may be applied
to all frequency levels that have an index value not
less than a particular level Minlevel which can be
specified in the bitstream. It should not be applied
to the lowest frequency band (the DC band).
Fig. 15 shows that the point-wise extended

masking approach significantly improves the
visual quality for the ‘‘woman’’ image. What
happens here is that the neighborhood masking
factor mi assumes a smaller value for those
coefficients in the simple sharp edges (e.g., fingers)
than those in the more complex areas (e.g.,
sweater, see Fig. 16). As a result, more bits are
allocated to improve the simple sharp edge areas
while the more complex areas are allocated less
bits to take advantages of the texture masking
effects.

4. Discussions

The various visual optimization tools in JPEG
2000 have their own merit and weakness. The
visual frequency weighting is usually very effective
for large viewing distances or high-resolution
displays, but it is tied to a specific viewing
condition. Under different viewing conditions,
the perceived quality can vary a lot. In other
words, the weights used at the encoder have to
match the viewing condition under which the
image is to be viewed. When using a viewing
distance for an application or image study, it is
important to use a frequency weighting set for the
closest distance expected. Three sets of CSF
weights have been recommended in JPEG 2000
for some common viewing/printing scenarios.
These are csf1000, csf2000 and csf4000, where
1000, 2000 and 4000 refer to the viewing distance
in pixels. Unlike the JPEG default, these are based
solely on the CSF and hence, do not include any
display MTF effects, such as the CRT MTF
implicitly occurring in the JPEG default tables.
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We decided to omit the display MTF in the
default, since with today’s technology it is
equally as likely that the display will be a direct
view LCD, DLP projector, or hardcopy as it will
be a CRT.
Fig. 17 shows some visual comparison between

JPEG 2000 and JPEG, both using frequency and
color weighting (the default Q tables were used for
JPEG using the IJG implementation of JPEG with
optimized Huffman table, and Table 2 that
corresponds to a viewing distance of 1700 pixels
was used for JPEG 2000). The results are based on
6 observers and 6 color images, using 300 dpi
printing. The graph shows the bit rates of JPEG
2000 against JPEG to achieve similar visual

quality. For example, it costs JPEG 0.53 bpp to
achieve similar visual quality as using JPEG 2000
at 0.25 bpp. The dashed line represents the
reference points where JPEG and JPEG 2000
assume the same bit rates. Overall, JPEG 2000
provides a bit rate saving of 10–50%, to achieve
similar visual quality.
The visual masking approaches usually are less

sensitive to the viewing condition. The self-
masking approach usually protects the fine texture
well, which is especially suitable for high-quality
photographic images that contain human faces. It,
however, may have some problems with sharp
edges, especially at low bit rates. The block-based
neighborhood masking approach usually tends to
smooth out the fine texture a little bit, but protects
high contrast edges well. It also has some
limitations for relatively small images, mainly
due to its block-based nature. It, however, has
successful performance for large images with
diverse content. The point-wise extended mask-
ing approach combines the strength of both
self-masking and neighborhood masking, thus
resulting in mutual synergism. All three masking
approaches we discussed achieve the adaptive
behavior without explicit segmentation, edge
detectors, and overhead bits. They all allow
bitstream scalability, which is very important in
many applications. In general, they improve the
image quality for cases where the CSF weighting
does not offer much advantage. The major
improvement areas are the low amplitude texture

Fig. 15. Self-masking result (left) versus point-wise extended masking result (right) at 0.25 bpp.

Fig. 16. A neighborhood masking factor (mi) map for the

point-wise extended masking approach. The amplitudes have

been amplified for display purpose.

W. Zeng et al. / Signal Processing: Image Communication 17 (2002) 85–104 101



and high-contrast sharp edges. Fig. 18 shows some
results of the self-masking approach, as compared
to frequency weighting case and the case where no
visual tool is applied. Self-masking preserves the
low amplitude texture better than the other two.

This is more evident in the close-up views of the
foreheads. Some comparisons between different
masking approaches are shown in Fig. 19. It
can be seen that the point-wise extended
masking approach preserves the fine details best,
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Fig. 17. Visual comparison between JPEG 2000 and JPEG. Courtesy of Troy Chinen and Alan Chien [4].

Fig. 18. Advantageous results of self-masking approach coded at 0.5 bpp, with close-up view of the foreheads.
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as compared to block-based neighborhood mask-
ing, and self-masking alone. The block-based
neighborhood masking approach does not seem
to work well on this relatively small size image
(512� 768).
The various visual optimization tools can in fact

be combined together to maximize the visual
performance. It has been observed that, for some
complex images with diverse content, the visual
improvement can be equivalent to a saving of up
to 50% in bit rate. Finally, as mentioned before,
JPEG 2000 also supports the exploitation of
other HVS properties such as local light adapta-
tion, eccentricity and temporal frequency sensitiv-
ity. These could be some of the future research
topics.
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