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Implementation and Performance Evaluation
of Indirect TCP

Ajay V. Bakre and B.R. Badrinath

Abstract —With the advent of small portable computers and the technological advances in wireless communications, mobile
wireless computing is likely to become very popular in the near future. Wireless links are slower and less reliable compared to wired
links and are prone to loss of signal due to noise and fading. Furthermore, host mobility can give rise to periods of disconnection
from the fixed network. The use of existing network protocols, which were developed mainly for the high bandwidth and faster wired
links, with mobile computers thus gives rise to unique performance problems arising from host mobility and due to the characteristics
of wireless medium.

Indirect protocols [4] can isolate mobility and wireless related problems using mobility support routers (MSRs) as intermediaries,
which also provide backward compatibility with fixed network protocols. We present the implementation and performance evaluation
of I-TCP, which is an indirect transport layer protocol for mobile wireless environments. Throughput comparison with regular (BSD)
TCP shows that I-TCP performs significantly better in a wide range of conditions related to wireless losses and host mobility. We
also describe the implementation and performance of I-TCP handoffs.

Index Terms —Mobile computing, transport protocols, TCP, wireless medium, handoff, mobility support routers.

——————————   ✦   ——————————

1 INTRODUCTION

OBILE internetworking involves adequately support-
ing network access from mobile (and wireless) com-

puters. By adequate support we mean that a mobile user
should be able to access the internetwork to obtain the same
kind of services that were available to him/her from a
desktop machine directly connected to the internetwork,
albeit accounting for the slower speeds and higher error
rates of the wireless links. Mobile internetworking thus in-
volves addressing a broad gamut of issues related to rout-
ing, addressing, wireless medium and even disconnected
operation.

It is possible to use existing fixed network transport
protocols such as UDP [5] and TCP [6] with one of the mo-
bile-IP proposals for communication between mobile hosts
and the fixed network. This naive approach, however, has
been shown to cause performance problems, especially
when a mobile host switches cells or is temporarily discon-
nected [7]. In addition, all mobile-IP proposals attempt to
hide mobility, disconnection and other features of mobile
wireless computing from transport and higher layers thus
ruling out any specialized handling of such features. In case
of TCP for example, host mobility causes temporary dis-
ruption in the network layer connectivity resulting in loss
of TCP segments. Error prone wireless links used by mobile
hosts to communicate with the fixed network also contrib-
ute to the increased loss of TCP segments sent to or from
mobile hosts. This loss of TCP segments triggers congestion
control at the transmitting host which severely limits the

end to end throughput. The congestion control mechanism
used by TCP is clearly too conservative when faced with
host mobility and wireless links.

One way to address the problem mentioned above is to
modify the TCP specifications to take host mobility into
account so that congestion control steps in only in case of a
genuine network congestion. There are two problems with
such an approach. First, it is infeasible to modify all the
existing TCP implementations because of the sheer number
of hosts on the Internet using TCP. Second, it is extremely
difficult to determine the exact cause of a packet loss at the
two end points of a TCP connection which may span mul-
tiple hops over the Internet. As an example, genuine con-
gestion conditions may prevail on the fixed network when
a mobile host switches cells. Attributing any packet loss in
such a case purely to mobility can worsen the congestion on
the fixed network.

Indirect TCP (or I-TCP), which is described in this paper,
is based on an indirect protocol model [4], [8]. In this ap-
proach, an end-to-end TCP connection between a fixed host
and a mobile host is split into two separate connections:

1) a regular TCP connection between the fixed host and
the mobility support router (base station) currently
serving the mobile host and

2) a wireless TCP connection between the mobility sup-
port router and the mobile host.

Use of mediation by the mobility support router (or indi-
rection) at the transport layer allows special treatment of
mobile hosts communicating over wireless links so as to
address the problems mentioned earlier without sacrificing
compatibility with existing fixed network protocols.

The remainder of this paper is organized as follows.
Section 2 describes our system model for mobile wireless
environments including the mobile computing testbed that
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we used to implement and test I-TCP. Section 3 gives a brief
overview of indirect protocols. Section 4 describes the de-
sign rationale behind I-TCP. Subsequent sections deal with
the implementation of various components of I-TCP in-
cluding handoffs. Section 7 compares I-TCP throughput
with that of regular TCP under a variety of conditions. Sec-
tion 8 analyzes the handoff performance of I-TCP. Section 9
lists some example applications that we ported to use I-TCP.
We compare our approach to some related work in Sec-
tion 10. Finally, Section 11 lists our conclusions and some
directions that we intend to pursue in the near future.

2 A SYSTEM MODEL FOR MOBILE
INTERNETWORKING

Our system model for mobile internetworking consists of
two separate network components:

1) A wired or fixed network which consists of local area
networks interconnected by high speed links.

2) A wireless network which consists of separate wire-
less cells each of which is supported by a wireless
base station and can provide connectivity to a few
mobile wireless hosts (MHs). We assume that each
base station (also known as a mobility support router or
MSR) is directly attached to the fixed network and
can route data packets to and from MHs in coopera-
tion with other base stations (MSRs).

A mobile host can freely move into other wireless cells
and it is the responsibility of MSRs to correctly route data
packets to the mobile host (MH) regardless of where it is
located. Each MSR may maintain some state information
about the MHs that are currently in its cell.

In our system model, wireless cells occupy the periphery
of the wired network as shown in Fig. 1, rather than form-
ing a parallel network of their own. Wireless cells also de-
pend on the wired network for routing data packets between
cells. These cells thus form islands of wireless connectivity,
interconnected by the fixed network.

Fig. 1. A system model for mobile internetworking.

2.1 Mobile IP
Several mobile IP schemes have been proposed in the last
few years to allow routing of IP datagrams to mobile hosts.
One of the first such schemes was the Columbia Mobile IP
protocol [9], [10] which used mobility support routers

(MSRs) to support location management and routing of
datagrams to mobile hosts within a campus. The Internet
Engineering Task Force (IETF) recently completed stan-
dardizing a version of mobile IP, popularly known as the
IETF Mobile IP protocol [11], which is expected to be
widely deployed in the near future. The IETF scheme is
slightly different from Columbia mobile IP in that it does
not require a “campus” structure to be imposed on the
wireless cells supporting mobile hosts. The key idea in mo-
bile IP is that hosts sending data to a mobile host use its
known IP address regardless of where the mobile is located.
It is the responsibility of the home network of the mobile
host to reroute the packets addressed to the mobile to its
current location. We assume in our system model that a
mobility aware IP layer protocol such as Columbia Mobile
IP is available for routing and location management of mo-
bile hosts.

2.2 Experimental Testbed
Our experimental testbed, which is shown in Fig. 2, consists
of three wireless cells, each one of which is controlled by a
mobility support router (MSR). All the MSRs are 33 MHz
486 PC-ATs with 16 MB memory and 400 MB disk drives.
The wireless cells supported by these MSRs overlap with
each other in terms of coverage area. The mobile hosts used
in our experiments are 66 MHz 486 PC-ATs. All the mobile
hosts and MSRs are equipped with 2Mbps NCR WaveLan
cards for wireless communication. The WaveLan radio uses
a configurable 16-bit MAC layer network ID in its transmis-
sions and each such radio in turn only picks up transmis-
sions that correspond to its own MAC layer identifier ig-
noring all others. This feature of the WaveLan radio is used
to model nonoverlapped wireless cells by simply forcing
each MSR to use its own unique MAC layer identifier. The
mobile hosts can configure their radios to pick up the
transmission from exactly one MSR at a given time.

The MSRs are also connected to 10 Mbps ethernet seg-
ments which are part of a single administrative domain. The
MSRs run Mach 3.0 micro kernel from CMU with a Unix
server (MK84/UX40) [12] that is patched with Columbia
Mobile-IP source code dated July 1992. Additional modifica-
tions are needed in the MSR kernels (Unix servers) to support
indirect TCP as described in a later section. The mobile hosts
have a similar OS configuration but run a different version of
the Unix server that has only minor modifications for sup-
porting the protocols described in this paper.

3 INDIRECT PROTOCOLS

The basic idea behind the indirect protocol model [4], [8] is
as follows: Whenever an interaction between two hosts on
the internetwork, such as between a mobile host and a sta-
tionary host, involves communication over two drastically
different kinds of media (e.g., wireless and wired), we split
such an interaction into two separate interactions—one for
each kind of communication medium. In our system model,
described earlier, an indirect transport layer interaction
between an MH and an FH consists of a fixed network
protocol (e.g., TCP) used for communication between the
FH and the MSR; and a wireless protocol (e.g., wireless
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TCP) for communication between the MH and the MSR.
The highest protocol layer at which indirection occurs is
determined by the MH application—an indirect transport
layer can be used in conjunction with end-to-end session
and presentation layer. On the other hand, if presentation
requirements are different over wireless and wired links,
then an indirect presentation layer protocol can be used.
Furthermore, application layer proxies running on MSRs
that support MH applications are examples of application
layer indirection.

Our reasons for choosing the MSR currently serving a
mobile host, as the point where the split in end-to-end
protocols occurs, are as follows. Since the MSRs need modi-
fications to the routing software for supporting mobile
hosts anyway, adding modifications to support new proto-
cols on the wireless side is relatively easier. Further, the
MSR is a part of the fixed network that is closest to the
wireless link. By splitting the protocol stack at the MSR, the
corrective measures taken to address the change in the en-
vironment (from wired to wireless), are employed at the
place where the change occurs. We assume that an MSR has
enough resources (or at least that the required resources
can be easily added) in terms of processing power and
buffer space for supporting indirect interactions by mobile
hosts within its cell. We also assume that MSRs are inter-
connected by a network that is at least an order of magni-
tude faster than the wireless links to allow sufficiently fast
handoffs.

Notice that even though the indirect model replaces an
interaction between a mobile host (MH) and a fixed host
(FH) with one interaction between the MH and its MSR and
another between the MSR and the FH, the FH does not see
the MSR as its communicating peer. It actually sees the MH
itself as its peer host. The MSR fakes an image of the MH
which is used to communicate with the fixed hosts. This
image is handed over to a new MSR in case the MH en-
gaged in an indirect interaction switches cells.

4 I-TCP: AN INDIRECT TRANSPORT LAYER
PROTOCOL

I-TCP is a reliable stream-oriented transport layer protocol
for mobile hosts which is based on the indirect protocol
model. I-TCP is fully compatible with TCP/IP on the fixed
network and is built around the following simple concepts:

1) A transport layer connection between an MH and an
FH is established as two separate connections—one
over the wireless medium and another over the fixed
network with the current MSR being the intermediate
point.

2) If the MH switches cells during the lifetime of an I-TCP
connection, the center point of the connection moves
to the new MSR.

3) The FH is completely unaware of the indirection and
is not affected even when the MH switches cells, i.e.,
when the intermediate point of the I-TCP connection
moves from one MSR to another.

When a mobile host (MH) wishes to communicate with
some fixed host (FH) using I-TCP, a request is sent to the
current MSR (which is also attached to the fixed network)
to open a TCP connection with the FH on behalf of the MH.
The MH communicates with its MSR on a separate connec-
tion using a variation of TCP that is tuned for wireless links
and is also aware of mobility.

4.1 Indirect Transport Layer Advantages
At the transport layer, use of indirection results in the fol-
lowing benefits:

1) It separates the flow control and congestion control
functionality on the wireless link from that on the
fixed network. This is desirable because of the vastly
different error and bandwidth characteristics of the
two kinds of links.

2) A separate transport protocol for the wireless link can
support notification of events such as disconnections,

Fig. 2. Experimental mobile internetworking testbed.
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moves, and other features of the wireless link such as
the available bandwidth, etc., to the higher layers
which can be used by link aware and location aware
mobile applications.

3) Indirection at the MSR allows faster reaction to mo-
bility and wireless related events compared to a
scheme in which the remote communicating host tries
to react to such events.

4) An indirect transport protocol can provide some
measure of reliability over the wireless link for those
applications which prefer to use unreliable transport
over the fixed network.

5) Indirect transport protocols provide backward com-
patibility with the existing wired network protocols
thus obviating modifications at fixed hosts for ac-
commodating mobile hosts.

6) Indirection allows an MSR to manage much of the
communication overhead for a mobile host. Thus, a
mobile host (e.g., a small palmtop) that only runs a
very simple wireless protocol to communicate with
the MSR can still access fixed network services such
as WWW which may otherwise require a full TCP/IP
stack running on the mobile.

7) Indirect transport protocols allow the use of different
MTUs over the wired and the wireless part of the
connection. Since the wireless links have lower
bandwidth and higher error rate, the optimal MTU
for the wireless medium may be smaller than the
smallest MTU supported by the wired network.

4.2 I-TCP Components
The I-TCP support software consists of the following com-
ponents:

1) MH side—I-TCP can be accessed as a transport pro-
tocol by the applications running on a mobile host
using special library calls. These library calls are
similar in the interface they provide and the function
they perform, to the socket calls made by an applica-
tions using regular end-to-end TCP. The I-TCP library
is currently available for Unix systems based on 4.3

BSD [13]. This library hides from the applications the
communication needed with the MSR for the estab-
lishment and tearing down of an I-TCP connection.

2) MSR side—Most of the functionality for supporting
I-TCP connections lies with the MSR. The actual bridge
connecting the wired and wireless parts of the con-
nection consists of a user level Unix process pumping
data from one part of the connection into the other.
Handoff support for I-TCP connections is imple-
mented in the MSR kernels.

4.3 Establishing I-TCP Connections
When a mobile host (MH) requests for an I-TCP connection
to be established with a fixed host (FH), the MSR under
which the MH is currently registered performs the follow-
ing steps. It first establishes a regular TCP connection with
the FH named in the connection request on behalf of the MH
using the IP address and port number of the MH for local endpoint
parameters—this constitutes the wired part of the I-TCP con-
nection. Subsequently another connection is established
between the MSR and the MH using a transport protocol
that is tailored for mobile hosts and wireless links—this
forms the wireless part of the I-TCP connection. Currently
we use TCP itself for the wireless part of the connection
with some modifications that are described later. For the
wireless side TCP connection, the MSR uses its own IP ad-
dress and port number to identify the local endpoint. Thus
an I-TCP connection between the MH and the FH consists
of two separate TCP connections; and is uniquely identified
by the following three-tuple: <mh-address, mh-portnumber>,
<fh-address, fh-portnumber>, <msr-address, msr-portnumber>.

4.4 Handing Off I-TCP Connections
As an example, Fig. 4 shows the setup for an I-TCP connec-
tion. In the figure, a mobile host (MH) which had first es-
tablished a connection with a fixed host (FH) through MSR-1,
moves to another cell under MSR-2. When the MH requests
an I-TCP connection with the FH while located in the cell of
MSR-1, MSR-1 establishes a socket with the MH address
and MH port number to handle the connection with the fixed
host. It also opens another socket with its own address and

Fig. 3. Indirect transport layer.
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some suitable port number for the wireless side of the
I-TCP connection to communicate with the MH.

When the MH switches cells, the state associated with
two sockets of the I-TCP connection at MSR-1 is handed
over to the new MSR (MSR-2). MSR-2 then creates two
sockets corresponding to the I-TCP connection with the
same endpoint parameters that the sockets at MSR-1 had asso-
ciated with them. Since the connection endpoints for both
wireless and the fixed parts of the I-TCP connection do not
change after a move, there is no need to re-establish the con-
nection at the new MSR. This also ensures that the indirec-
tion in the transport layer connection is completely hidden
from the FH. We currently use a modified version of TCP
itself for the wireless part of the I-TCP connection, although
in a future version we plan to use a transport protocol that
is optimized for the one hop wireless link.

4.5 End-to-End Semantics
Since I-TCP uses separate transport layer (TCP) connec-
tions for the wired and the wireless links, applications
using I-TCP cannot rely on end-to-end transport layer ac-
knowledgments. Many TCP-based applications such as ftp,
however, use application layer acknowledgments in addi-
tion to the end-to-end acknowledgments provided by TCP.
This is at least in part because TCP does not provide a
mechanism to notify a sending application when data is
actually removed by the receiving application from its
socket buffers. Thus, assuming that there are no MSR failures
and that an MH does not stay disconnected from the fixed net-
work indefinitely, using I-TCP instead of regular TCP does not
compromise end-to-end reliability. An MSR failure and subse-
quent reboot, however, results in the loss of I-TCP connec-

tions established via that MSR whereas an end-to-end TCP
connection can typically survive such a failure. I-TCP is
therefore well suited for applications such as ftp and Mo-
saic, in which a higher layer protocol (or the user) can retry
failed connections in case of (hopefully rare) MSR failures.
On the other hand, those applications which depend on the
end-to-end transport layer acknowledgments, e.g., telnet
are better off using regular TCP. We expect the former kind
of applications to predominate in a mobile computing envi-
ronment where mobile hosts will need to access informa-
tion services from the fixed network. Such applications are
also typically throughput intensive which we expect will
benefit the most from the use of I-TCP.

5 I-TCP IMPLEMENTATION

Fig. 5 shows an outline of various I-TCP components. The
MSRs in our testbed run a version of UX server patched
with Columbia’s Mobile IP and modifications to support
I-TCP connections and handoffs. The mobile hosts in our
testbed run a version UX server with minor modifications
to support I-TCP connections. User lever mhmicp and
msrmicp processes modified for I-TCP run on the mobile
hosts and the MSRs respectively and execute the Mobile
Internetworking Control Protocol (MICP) [9], which takes
care of beaconing and registration of mobile hosts in Co-
lumbia’s Mobile IP. In addition, a user level I-TCP daemon
running at each MSR manages I-TCP connections originat-
ing from all the MHs within its cell. The I-TCP daemon also
participates in handoffs with other MSRs when an MH
switches cells.

Fig. 4. I-TCP connection setup.
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5.1 I-TCP Interface at the MH
To establish an I-TCP connection instead of a regular TCP
connection from an MH to a fixed host, we provide special
I-TCP library calls which are similar to the socket interface
provided in Unix 4.3 BSD. These library calls must be used
by the MH applications instead of the regular socket system
calls (connect, listen, accept, and close) for opening and
closing an I-TCP connection. To send or receive data on an
I-TCP connection however, the MH can use the regular
send and receive primitives in Unix (e.g., send or write and
recv or read system calls). The I-TCP calls provide a wrap-
per around the regular socket system calls to perform the
necessary handshake with the MSR, the parameters of these
library calls being the same as the corresponding socket
system calls. A TCP-based application thus needs minimal
changes to run on an MH with I-TCP. In addition, no modi-
fication is needed to the applications running on a fixed
host to communicate with an MH using I-TCP.

The I-TCP library calls also inform the local mhmicp
process about active I-TCP connections. This information is
used in the registration protocol executed by an MH enter-
ing a new cell to assist in I-TCP handoffs as described later.
The details of I-TCP calls are given below:

1) itcp_listen—Similar to the listen system call except
that an indirect listening socket is also created at the
current MSR by its I-TCP daemon on behalf of the MH.
This listening socket at the MSR is bound to the same
address and port number which identify the listening
socket at the MH. Any connection attempt made by a
remote host after the itcp_listen call by the MH is in-
tercepted by the indirect listening socket at the MSR.
Following this, the I-TCP daemon makes a connection
over the wireless link to the listening socket at the MH
thus completing two parts of the I-TCP connection.

2) itcp_accept—Similar to the accept system call except
that the accepted connection request is received from
the current MSR after a connection attempt made by a
remote host is intercepted by the listening socket at
the MSR. The wrapper around the accept system call
provided by the I-TCP library makes indirection at
the MSR transparent to the calling process by return-
ing the address and port number of the remote host
that initiated the connection (and not of the MSR).

3) itcp_connect—Similar to the connect system call ex-
cept that the connection request is sent to the I-TCP
daemon at the MSR which in turn makes a connection
attempt to the remote host address specified in the
itcp_connect call. If the remote connection attempt by
the MSR succeeds, i.e., if the fixed network part of the
I-TCP connection is successfully established, the I-TCP
daemon then creates the wireless part of the connec-
tion with the MH process that issued the itcp_connect
call.

4) itcp_close—Similar to the close system call for a
socket, except that both (wireless and wired) parts of
the I-TCP connection are closed.

We had the following choices in implementing the I-TCP
interface at the MH:

1) As a library that emulated the socket interface in 4.3 BSD
by trapping access to system calls listen, accept, con-
nect, and close and calling I-TCP functions instead of
the code for the system call. This would require no
modification in MH applications but only one of
regular TCP or I-TCP could be used by an application.
Further the MH application would have to be re-
linked with the I-TCP library.

2) As a separate transport protocol accessible at the
socket creation time. This would require a small

Fig. 5. I-TCP implementation outline.
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modification in MH applications and would also re-
quire kernel changes at the MH.

3) A kernel-based mechanism that trapped all TCP con-
nection calls and redirected them to the I-TCP code.
This would allow us to run existing MH applications
to run without even the need to relink them with any
library.

4) As a library with its own set of calls which would be
identified by their names as distinct from but yet
similar to the socket based connection establishment
calls for TCP. This would require minimal changes in
the MH applications, but would allow accessing TCP
and I-TCP from the same application without requir-
ing kernel changes at the MH to implement a new
protocol.

We chose alternative 4 because it was easier to imple-
ment than the kernel-based mechanism required by alter-
native 3 and a separate protocol required by alternative 2.
We also had an application in mind (described in a later
section) that needed both TCP and I-TCP—that ruled out
alternative 1.

5.2 MSR I-TCP Daemon
The I-TCP daemon running on every MSR is responsible for
managing I-TCP connections through that MSR for all the
MHs that are currently local to the MSR. The daemon
maintains two open sockets for each active I-TCP connec-
tion between a locally registered mobile host (MH) and a
non-MSR fixed host (FH) as shown in Fig. 6. One of these
sockets is used for communication with the FH on the
wired network and the other for communication with the
MH on the wireless link. The I-TCP daemon binds its FH
side socket to the address and port number of the MH us-
ing an extended bind system call. Such a binding allows the
MSR to fake an image of the MH to the FH which is un-
aware of the indirection. Binding to the MH address and
port number also provides a mechanism in the IP layer of
the MSR kernel to grab the TCP segments that are sent by
the FH to the MH address and port number.

Managing I-TCP connections at the MSR from a daemon
running in user space involves additional copying over-
head on each half of a duplex connection. At the MSR data
received from the wireless side (MH) on an I-TCP connec-

tion has to go up through the TCP and socket layers in the
Unix kernel to the I-TCP daemon in user space; and down
again on the fixed side of the connection through the socket
and TCP layers of the kernel to the IP output routine. On
the other hand, a data packet received from the MH over an
end-to-end TCP connection would be forwarded by the IP
layer in the kernel to the fixed network with nominal proc-
essing overhead.

We chose to build a user level daemon to manage I-TCP
connections for two reasons. First, it is easier to build an
indirect higher layer protocol such as RPC on top of an in-
direct transport layer with a user level implementation.
Second, a user level daemon is easier to modify and debug
than a kernel resident implementation. The additional data
copying overhead is not so critical for throughput intensive
applications which are the primary focus of our imple-
mentation. This overhead does however cause an addi-
tional end-to-end latency of approximately 20 ms as seen by
MH applications.

5.3 MSR Kernel Support
We implemented the support for transport layer handoffs
in the Unix kernel since efficient handoffs are critically im-
portant for the performance of indirect transport layer.
Modifications were also needed to the Unix kernel at the
MSR to allow indirect connections to be established on be-
half of local MHs.

5.3.1 IP Layer Support
At any MSR, we allow binding sockets to the addresses and
port numbers of MHs that are currently local to the MSR.
This is essential to capture the TCP packets on a per con-
nection basis, which originate from fixed hosts and are ad-
dressed to a local MH. Binding to MH addresses also pro-
vides a mechanism using which the MSR can act as a proxy
for the local MHs. For the wireless side of the I-TCP con-
nection, the MSR uses its own IP address and port number.
When an MH with an open I-TCP connection moves to an-
other MSR, the MSR address on the wireless side of the
connection needs to be changed to reflect the new MSR’s
address. Currently however, we keep the connection end-
points on the wireless side fixed even after a move for the
sake of simplicity. For this purpose, at any MSR we also

Fig. 6. I-TCP connection state at the MSR.
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allow binding sockets to addresses and port numbers of
other MSRs. A small change was needed in the IP input
routine at the MSR to send the IP packets that are ad-
dressed to MH address and I-TCP port numbers up to the
TCP layer at the MSR instead of forwarding them to the
MH using mobile IP routing. A list of such I-TCP port num-
bers (which correspond to active connections) is maintained
on a per MH basis by the MSR along with the mhinfo entry
of the MH used for routing in mobile IP [9].

5.3.2 Primitives for I-TCP Handoff
If a mobile host with an open I-TCP connection switches
cells, handoff in mobile IP [9] causes rerouting of IP packets
addressed to the MH so that they are forwarded via the
new MSR. To maintain the indirect nature of the I-TCP
connection, the I-TCP daemon at the new MSR needs to
take over the connection from the previous MSR where the
MH was located earlier. Transferring the state of the I-TCP
connection from one MSR to another involves transferring
the state of two sockets associated with the connection.
Furthermore, this movement of sockets needs to be com-
pletely transparent from the perspective of the fixed host
with which the MH is communicating. The socket state
handoff also needs to be fast enough so as not to become a
performance bottleneck even with frequent moves. While
the transport layer handoff is in progress, the data seg-
ments that are in transit need to be buffered at one of the
two MSRs. This buffering is necessary to avoid congestion
control being triggered on either of the two sides (wired
and wireless) of the I-TCP connection due to lost segments.

To achieve the objectives for a socket state handoff listed
above, we designed and implemented our own handoff
primitives in the form of special ioctl calls in the MSR Unix
kernels. Complete details of a transport layer handoff using
these primitives are given in a later section. Implementation
details of these primitives can be found in [4]. SIOCSETSTATE
are used by the I-TCP daemons to reliably transfer the state
information corresponding to a connected socket from the
kernel of one MSR to that of another with minimum copy-
ing overhead. We also provided two other ioctls namely
SIOCCREATE and SIOCDELETE to create a connected
skeleton socket that does not have full state information
available with it and to silently delete a socket whose state
has been transferred to another MSR, respectively. Table 1
summarizes the four ioctls. The ioctl mechanism was given
preference over system calls primarily because it is much
easier to add an ioctl than it is to add a system call to Unix.
SIOCCREATE and SIOCDELETE operate on I-TCP sockets
whereas SIOCGETSTATE and SIOCSETSTATE operate on a
handoff socket which is used for MSR-to-MSR state transfer.
The latter two take an additional argument which lists the
I-TCP socket descriptor whose state is to be sent or received.

The SIOCGETSTATE ioctl avoids unnecessary copying of
data between kernel and user spaces by packing the send/receive
buffers and state of the I-TCP socket inside the kernel and queu-
ing it directly in the send buffer of the handoff socket. Similarly,
SIOCSETSTATE avoids copying by retrieving the state and
send/receive buffers of the I-TCP socket directly from the receive
buffer of the handoff socket.

5.4 TCP for Wireless Links
Though the indirection at the transport layer gave us the
option of using a different transport protocol for the wire-
less part of I-TCP, we chose to modify and use TCP itself
because of a readily available implementation. In the cur-
rent version of I-TCP, the wireless side comes with the fol-
lowing modifications to the standard (4.3 BSD) TCP:

1) We added a new flag by the name TF_INDIRECT to
mark I-TCP connections and a user level socket option
TCP_INDIRECT to set this flag. The TF_INDIRECT
flag is automatically set by the I-TCP library on the
MH side and by the I-TCP daemon on the MSR side
at the time of establishing an I-TCP connection. This
flag is checked by the TCP code in the kernels of MH
and MSR to make sure that the actions listed below
are performed only on I-TCP connections.

2) When a move by an MH is detected by the TCP code
on both sides of the wireless link, the retransmission
timers for I-TCP connections are cleared at the MSR
and the MH following which the wireless part of I-
TCP immediately enters the slow start phase, thus for-
getting the past congestion behavior. This allows the
wireless part of I-TCP to come back up to normal
speed faster than what normal congestion control and
recovery in TCP would allow. Since the wireless part
of I-TCP spans only one network hop, resetting the
retransmission timers cannot have any adverse effect
on network congestion that might occur in the fixed
network at the same time when an MH switches cells.

3) When an MH reconnects after a disconnection, similar
actions are performed over I-TCP connections as de-
scribed above in case of a move. This makes sure that
disconnections do not cause long pauses in I-TCP
connections after wireless contact is reestablished.

Detection of moves on the MSR side is easy since after a
move, the I-TCP daemon at the new MSR receives the state
related information from the previous MSR about the I-TCP
connections opened by the MH. Thus, the TCP code at the
MSR resets congestion related parameters as mentioned
above when a connection handoff is completed in the kernel.

TABLE 1
NEW SOCKET IOCTLS

Ioctl Parameters Description
SIOCCREATE <target socket,

connection
endpoints>

Establish the connection
endpoints of the target
socket as if bind  and con-
nect  have been called on
the socket but without any
communication with the
peer host.

SIOCDELETE <target socket> Delete the target socket
without any communication
with the peer host.

SIOCGETSTATE <target socket,
moving socket>

Pack the state of the mov-
ing socket and place it in
the send buffer of the
target socket.

SIOCSETSTATE <target socket,
moving socket>

Unpack and establish the
state of the moving socket
from the receive buffer of
the target socket.
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Detection of moves at the MH is slightly more difficult. We
have implemented notifications for these events that travel the
TCP/IP protocol stack upwards from the bottom using the
protocol-to-protocol control input interface in 4.3 BSD. More
details on this notification mechanism can be found in [4].

6 MOBILITY MANAGEMENT—INTERACTION WITH
MOBILE IP

In Columbia mobile IP protocol, a user level msrmicp
daemon at the MSR is responsible for sending periodic bea-
cons and for registration and expiration of mobile hosts.
Similarly, a user level mhmicp daemon running at each
mobile host is responsible for listening to MSR beacons,
sending greeting messages, and informing the MSR about
its previous location so that the MSR can send a forwarding
pointer to the old MSR which was earlier routing IP packets
for the MH. We integrated I-TCP handoff with the handoff
in mobile IP since both need the information about MHs
entering a cell and their previous locations.

6.1 MICP i-Entries
We extended the Mobile Internetworking Control Protocol
(MICP) [9] to carry information about I-TCP connections in
the initial greeting that an MH sends to an MSR on entering
the MSR’s cell. At every MH, the mhmicp daemon main-
tains the endpoint information for each active I-TCP con-
nection opened by the MH. This information is maintained in
what are known as MICP i-entries (i for indirect) and in-
cludes the end point parameters (corresponding to the MH,
the peer FH and the first MSR where the connection was ini-
tially established) for the I-TCP connection. An i-entry is cre-
ated when the I-TCP library linked with an MH application
sends a message to the mhmicp process as part of an I-TCP
call establishing a connection. When an MH enters a new
cell, i.e., when the mhmicp process at the MH hears a bea-
con in the new cell after losing contact with the previous
MSR, a greeting message (called MICP_GREET packet in
mobile IP) is sent to the new MSR. The mhmicp process
sends its list of MICP i-entries in this greeting message in
addition to the address of the previous MSR.

6.2 Handoff Sequence at MSRs
On the MSR side, when the msrmicp process receives a
greeting from an MH entering its cell that contains MICP
i-entries, it sends a copy of the greeting message to the local I-
TCP daemon. The I-TCP daemon establishes skeleton sockets
for each I-TCP connection from the i-entries using SIOC-
CREATE calls. It also sends an ACK to the msrmicp daemon
after which a forwarding pointer (MICP_FWDPTR) is sent to
the previous MSR named in the MH greeting message indi-
cating that the new MSR’s I-TCP daemon is ready for
handoff.

When the msrmicp process at the previous MSR receives
a forwarding pointer from the new MSR, it updates its data
structures to reflect the new location of the MH. It also
sends a copy of the forwarding pointer to its local I-TCP
daemon which then establishes a handoff connection with
the I-TCP daemon at the new MSR. The I-TCP daemon at
the previous MSR then sends the state of each I-TCP con-

nection to the I-TCP daemon at the new MSR over the
handoff connection using SIOCGETSTATE calls to transfer
the state of individual I-TCP sockets. The I-TCP daemon at
the new MSR concurrently executes SIOCSETSTATE calls
to receive the state of each I-TCP socket over the handoff
connection and restarts each I-TCP connection. The handoff
algorithms executed by the new MSR and the previous
MSR are shown in Fig. 7. The I-TCP handoff sequence is
graphically shown in Fig. 8. The intermediate stages of an
I-TCP connection at the two MSRs during handoff can be
seen in Fig. 9.

Fig. 7. Handoff algorithms for MSRs.

7 I-TCP THROUGHPUT PERFORMANCE

We present performance figures for experiments conducted
using the ttcp benchmark which measures TCP throughput
between two hosts. The throughput experiments were con-
ducted on our wireless testbed which was described earlier
in Section 2. We experimented with two distinct cases to
study the performance of I-TCP for connections spanning
over local area and wide area networks, i.e.,

1) when the FH to MH communication involved only a
few hops within the Rutgers LCSR administrative
domain, and

2) when the FH to MH communication involved a long-
haul link over the Internet.
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Fig. 8. I-TCP / Mobile-IP handoff sequence.

Fig. 9. Intermediate stages in I-TCP connection handoff.
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7.1 Experiments to Study the Effects of Mobility
Our experiments were inspired by similar experiments re-
ported by Cáceres and Iftode [7] to study the effect of mo-
bility on reliable transport protocols. In all our experiments
the end-to-end throughput was measured at the receiving
host with four different cell configurations:

1) No Moves—The MH stayed in one wireless cell dur-
ing the lifetime of a connection.

2) Moves between overlapped cells—MH switching
between overlapped cells every eight seconds such
that the MH stayed in contact with the previous MSR
during handoff. For a brief period after switching
cells, the MH continued to receive packets from the
previous MSR before the Mobile-IP routing adjust-
ments take effect. Overlapped cell configuration is
shown in Fig. 10a.

3) Moves between nonoverlapped cells with 0 second
between cells—In case of nonoverlapped cells, the
cell boundaries were sharply defined and therefore no

communication was possible with the previous MSR
after a move to another MSR. This is shown in Fig. 10b.
The MH started looking for a beacon from the new
MSR immediately after a move and thus in the worst
case the link layer connectivity could be lost for one
full interval between successive beacons which was
one second in our testbed. The cell switching again
occurred every eight seconds.

4) Moves between nonoverlapped cells with one sec-
ond between cells—Same as in 3 above but, in this
case, the MH started looking for a beacon one second
after moving out of the previous cell. As in the previ-
ous case, an additional one second could elapse be-
fore a beacon was received by the MH and the link
layer connectivity was reestablished. This configura-
tion is shown in Fig. 10c where MH loses connectivity
for a brief period while crossing the cell boundary.

Geographically, the two MSRs serving the two wireless
cells were close together in our setup so that the two cells

Fig. 10. Wireless cell configurations.



BAKRE AND BADRINATH:  IMPLEMENTATION AND PERFORMANCE EVALUATION OF INDIRECT TCP 271

had a large overlap area. Non-overlapped cells were simu-
lated with the two MSRs transmitting using different Wav-
elan (MAC layer) network IDs. Cell switching was imple-
mented in software to allow better control on the timing of
cell crossovers.

Table 2 shows local area throughput comparison be-
tween I-TCP and regular TCP for 4 MB data transfer be-
tween a mobile host (MH) and a fixed host (FH), both when
MH is the receiver and the sender. Table 3 shows similar
comparison for 2 MB data transfer over a wide area con-
nection between an FH and an MH both when MH is the
receiver and the sender. The experiments were conducted
using a TCP window size of 16 KBytes and read/write
buffer sizes of 2 KBytes.

7.1.1 Performance Over Local Area
With local-area experiments, we observed that I-TCP per-
formed slightly better compared to regular TCP when the
MH stayed within one cell. In the second case when the
MH switched between two completely overlapped cells, the
link-layer connectivity was maintained at all times since the
MH was in contact with the new MSR as well as with its
previous MSR during handoff. There was still some degra-
dation in TCP throughput since the TCP segments that are
in transit during handoff are delayed because of IP layer
routing adjustments by the MSRs. I-TCP performance suf-
fered only marginally in this case despite the additional
overhead of I-TCP state handoff between the two MSRs on
every move. We believe that the main reason for improved
performance with I-TCP in the first two test cases was that
the sending host (FH) saw more uniform round-trip delays
for data segments with I-TCP than with regular TCP. In
other words, the MSR receiving data over the fixed network
(in case of I-TCP) resulted in a better pacing of the sending
fixed host than the MH receiving data over the wireless link
(in case of regular TCP). Loss of data segments over the
wireless link, though infrequent, was also responsible for
the difference in performance since I-TCP seemed to re-
cover faster from a packet loss than regular TCP.

The two cases of nonoverlapped cells, where the MH
temporarily lost contact with the fixed network (for 0 and
one second, respectively) before such contact was reestab-
lished at the new MSR, affected the end-to-end throughput
more severely. With regular TCP, congestion control kicked
in at the FH on every handoff because of packet loss and it
took some time after a cell crossover before the FH was able
to send data again at full speed. In addition, the exponential
back off policy of TCP resulted in the FH going into long
pauses that continued even after the MH was ready to
communicate in its new cell.

In case of I-TCP however, a cell crossover by the MH
caused MSR buffers to be filled with data sent by the FH
which was not sent over wireless because the MH moved
out of the MSR’s cell. When MSR buffers were full, flow
control on the wired part of the connection prevented the
FH from sending more data. This was achieved by the MSR
advertising a shrinking receive window size. After a hand-
off the new MSR, which receives the indirect TCP connec-
tion from the previous MSR, could send more data to the
MH over the wireless link. When MSR buffers started
clearing up again, TCP flow control over the wired network
allowed the FH to send more data on the connection. In
case of I-TCP, loss of data segments because of mobility
thus caused flow control to be kicked in on the wired net-
work; whereas, in case of regular TCP, the loss of data seg-
ments caused congestion control to be kicked in. Conges-
tion control did kick in on the wireless link between the
MSR and the MH, however, and so did exponential back-
off. We found that resetting the TCP retransmission timer at
the new MSR immediately after an I-TCP handoff forced
the MSR to initiate a slow-start on the wireless link, and
was enough to quickly get the wireless part of I-TCP out of
the congestion recovery phase. In the worst case, when the
MH lost connectivity with the fixed network for one sec-
ond, I-TCP showed an improvement by a factor of about 1.5
over regular TCP.

In the experiments where the MH sent data to the FH,
the performance in all categories for both TCP and I-TCP
was slightly better than corresponding numbers in the case

TABLE 2
LOCAL AREA PERFORMANCE COMPARISON WITH HANDOFFS

Protocol No moves Overlapped cells Nonoverlapped cells Nonoverlapped cells
with 0 sec. b/w cells with 1 sec. b/w cells

FH to MH throughput in Kbytes/sec.
Regular TCP 65.5 62.6 38.7 23.7
I-TCP 70.1 65.4 44.8 36.3

MH to FH throughput in Kbytes/sec.
Regular TCP 76.3 71.5 53.1 35.9
I-TCP 87.6 74.3 67.9 58.0

TABLE 3
WIDE AREA PERFORMANCE COMPARISON WITH HANDOFFS

Protocol No moves Overlapped cells Nonoverlapped cells Nonoverlapped cells
with 0 sec. b/w cells with 1 sec. b/w cells

FH to MH throughput in Kbytes/sec.
Regular TCP 13.3 13.3 8.9 5.2
I-TCP 26.8 28.0 19.1 16.0

MH to FH throughput in Kbytes/sec.
Regular TCP 31.0 30.0 16.9 10.6
I-TCP 71.3 61.7 57.4 46.4
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when MH was the receiving host. There are three main rea-
sons for this improved performance when MH was the sender:

1) In our experiments, MH was a 486 machine running
at 66 MHz whereas the MSR was a 486 machine run-
ning at 33 MHz. This means that the host transmitting
over the wireless link was a faster machine in the case
when MH was the sending host, which is likely to re-
sult in a better throughput.

2) When wireless link is the bottleneck in an end-to-end
connection, attaching the sender directly to the wire-
less link is likely to yield better performance than the
case where the sender is a few hops away from the
wireless link. In other words, better performance can
be expected when the bottleneck link is the first one
rather than the last one because in the latter case, the
host transmitting over wireless (MSR) can only
transmit data as fast as it receives it from the fixed
network whereas in the former, the transmitter (MH)
always has data to transmit.

3) I-TCP connection state at the MSR, which was handed
off to another MSR after a move, was much lighter in
the case when MH was the sender than when MH
was the receiver, thus requiring less time for handoff.
This is because the bottleneck link was the first hop
when MH was sending data—the MSR was always
able to send away any data received from the MH to
the FH over the wired network.

7.1.2 Performance Over Wide Area
Our wide area experiments highlight the benefits of I-TCP
even more clearly. Due to the relatively long round-trip
delays with wide area connections, any packet loss over the
wireless link severely affects the end-to-end throughput of
regular TCP. This is because the time needed to recover from
falsely triggered congestion control increases with the round-trip
delay. Similarly, any perturbations such as cell crossovers or
transient changes in the observed round-trip delay, have a
more drastic effect over wide area connections than over
local area connections.

For the first two test cases, i.e., when the MH stayed
within one cell and when it switched between overlapped
cells, the observed performance of I-TCP was about two
times better than that of regular TCP. Since there was no
packet loss because of mobility in these two cases, the per-
formance improvement with I-TCP comes entirely from
separating the TCP connections over wired and wireless
links. This separation is beneficial in two respects. First,
since the retransmissions due to lost segments over wireless
(even though such losses were infrequent in our experi-
ments) were restricted to the wireless link, the recovery
from such losses was much faster compared to the end-to-
end retransmission and recovery done by regular TCP. The
second factor for improvement in the throughput was the
aggregating effect at the MSR which received TCP seg-
ments of size 512 bytes1 from the FH and sent segments of
1440 bytes2 over the wireless link to the MH. This points to
another parameter, namely the segment size, that can be

1. Maximum segment size for wide area TCP connections.
2. To allow an additional IP header with IPIP encapsulation.

tuned to suit a particular wireless link regardless of the
segment size chosen by the TCP implementation on the
wired network. We did not observe any significant degra-
dation in performance with the MH switching between
overlapped cells either with I-TCP or with regular TCP
which suggests that the effect of variation in round trip de-
lay because of handoff related IP level routing changes was
negligible for wide area connections.

With the MH moving between nonoverlapped cells, the
throughput with regular TCP dropped to almost a third (61%
degradation) of the no-moves throughput in the case when
the MH lost contact with the fixed network for one second.
With I-TCP, the corresponding degradation in throughput
was only 40%. The net effect was that I-TCP throughput in
this case was three times better than that of regular TCP.
The main reason for this improved performance with I-TCP
was that retransmissions due to packets lost on the wireless
link (due to moves and due to wireless errors) were con-
fined only to the wireless part of I-TCP which can recover
much faster from the congestion control phase because of
the following two factors:

1) much shorter round-trip delay between MH and MSR
as compared to the delay between MH and FH, and

2) resetting the retransmission timer by I-TCP at the
MSR immediately after a handoff.

Wide area performance numbers for handoff experiments
with MH as the sender show that I-TCP outperformed regu-
lar TCP by factors ranging from about 2.3 to 4.5. The im-
provement over TCP was even better than in wide area ex-
periments with MH as the receiver, which can be attributed
to the fact that the separate wireless connection between MH
and MSR was not constrained by the lack of data on the
sending side. Thus, when conditions on the wireless link
were good (i.e., from the time a handoff was completed until
it was time to switch cells again for the MH), I-TCP could
keep the MSR buffers full, since the maximum observed end-
to-end throughput of 70 KBytes/sec was easily sustainable
on the 2 Mbps wireless link. I-TCP throughput thus suffered
only during the period when the MH was disconnected
(while switching cells) and during I-TCP handoffs. As soon
as an I-TCP handoff was completed, the sender reset its con-
gestion state and performed a slow start which brought the
connection over wireless to full speed reasonably fast be-
cause of the short round trip delay between the MH and the
MSR. TCP throughput on the other hand, suffered not only
during periods of disconnection but even during periods
with good link conditions after the MH had established
wireless connectivity in the new cell because of exponential
back-off and congestion control that was triggered during a
cell crossover. Another observation that can be made from
the wide area throughput numbers is that the throughput
when MH was the sender was twice as much the throughput
when MH was the receiver. Although we expected the
throughput in the former case to be a little better, as ex-
plained in performance experiments over local area, the main
reason for throughput difference in the two cases was that
these experiments were performed at different times and
thus under different traffic conditions possibly including
different routes over the wired network.
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7.2 Experiments to Study the Effects of Wireless
Losses

In addition to studying I-TCP performance under host mo-
tion, we also performed experiments to study the effects of
packet loss due to bit errors over the wireless link on I-TCP
and regular TCP. Bit errors for these experiments were
simulated by introducing a packet dropping routine in the
input processing code of the ethernet (IF) layer in Unix both
at the MH and at the MSR. The packet dropping routine
was based on a pseudorandom number generator that pro-
duced uniformly distributed numbers in a specified range.
The probability of finding a packet in error was determined
from the length of the packet and the configured bit error
rate. Such a simple model for simulating bit errors provides
reasonable error characteristics for low error rates but be-
comes inaccurate as the reciprocal of the bit error rate ap-
proaches the length of the packet. Since the error simulation
was used both at the MH and at the MSR, it affected the
data traffic (traveling in one direction) as well as the ac-
knowledgments (traveling in the other).

7.2.1 Performance Over Local Area
Fig. 11 shows a comparison of I-TCP throughput with that
of regular TCP for 2 MB data transfer between a fixed host
(FH) and a mobile host (MH) for different bit error rates
(BER) when the FH is located only a couple of ethernet
hops away from the wireless subnet. The BER of 0 corre-
sponds to no simulated packet loss. The comparison shows
that I-TCP performed better than regular TCP for error rates
of up to 2 ¥ 10-6. For excessive wireless losses that character-
ize even higher error rates, the throughput of I-TCP and
regular TCP was about the same. The TCP implementations
used by the FH, as well as those used by the MSR and the
MH in our experiments did not have the fast retransmit and
fast recovery mechanisms recently proposed [14]. Also, the
minimum TCP retransmission timeout was 500 msec. even
for the wireless link, which clearly did not allow early de-
tection of lost segments. In such circumstances, there was
not much difference between retransmitting lost segments
from the MSR and from an FH that was only a couple of
ethernet hops away. Employing a TCP implementation (or
a different transport protocol) for the wireless part of I-TCP,

which uses smaller timeouts and possibly selective ac-
knowledgments, should further improve I-TCP perform-
ance over regular TCP.

Local area experiments with wireless losses, when MH
was the sending host, showed performance improvement
with I-TCP in much the same way as in the case when MH
was the receiver. The only difference was that the through-
put for both TCP and I-TCP was slightly better than the
case when MH was the receiving host. The reason for this
was explained earlier with mobility experiments.

7.2.2 Performance Over Wide Area
Fig. 12 shows a comparison of I-TCP throughput with that
of regular TCP when the communication between the FH
and MH involved a long haul link. It can be seen that I-TCP
throughput was about twice as much as that of regular TCP
for error rates of up to 5 ¥ 10-6. Even for a BER as high as
10-5, I-TCP performance was significantly better than
regular TCP. The reasons for this improvement are the
same as mentioned earlier in case of wide area mobility
experiments, viz.,

1) faster recovery from wireless losses because of shorter
round trip delay over wireless, and

2) aggregating effect at the MSR.

The aggregating effect (i.e., combining 512 byte segments
from the wide area connection over wired network into
1,440 byte segments over local area wireless connection)
worked in favor of I-TCP when error rates were low but
with higher error rates, when smaller packets were more
likely to get through than the larger packets, the same effect
worked against I-TCP. This can be seen in Fig. 12 as the
throughput of I-TCP dropped faster than that of regular
TCP when error rates were high. In practice, the packet size
(MTU) over wireless will be decided by the expected error
rate and the link speed. Nevertheless, I-TCP can be used to
match the MTU of the wireless link with that of the wired
network. With regular TCP, any mismatch in the MTUs will
cause inefficient utilization of available packet size in one
direction and IP layer fragmentation in the other.

Wide area experiments with wireless losses when MH
was the sending host show performance improvements

Fig. 11. Local area performance comparison with wireless losses.
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similar to the case when MH was the receiving host. The
absolute throughput numbers are higher both for TCP and
I-TCP, mainly because the two experiments were per-
formed at different times and therefore under different traf-
fic conditions on the fixed network. The performance im-
provement with I-TCP was somewhat better when MH was
the sender than when MH was the receiver especially with
low error rates. This is again because I-TCP was able to ex-
ploit the periods with reasonably good wireless link condi-
tions better when MH was the sender than when MH was
the receiver.

7.3 Performance Summary
From the performance comparison shown earlier between
I-TCP and end-to-end TCP we can draw the following
conclusions:

1) Performance improvement with I-TCP is small to
moderate when data is transferred over a local area
connection.

2) Performance improvement with I-TCP is moderate
to large when data is transferred over a wide area
connection.

It is not very difficult to pinpoint the reason for the dif-
ference in performance improvement between local area
and wide area connections. First, with local area connec-
tions, wireless link is the part with lower bandwidth than
the wired network. On the other hand, the long haul wired
network spanning the continent is the part with lower
available bandwidth than the wireless part because the ag-
gregate bandwidth over the backbone network is shared
among a large number of users. This means that the best
throughput we can expect in case of local area connections
is determined by the capacity of the wireless link, whereas,
in the wide area cases, it is determined by the conditions
prevalent over the backbone network at the time of experi-
ment. The best throughput we saw for data transfer be-
tween an MH and its MSR over a TCP connection between
two user level processes with the hardware and software
configuration described in Section 2 was of the order of 100
KBytes/sec. From the local area performance figures given
earlier, we see that I-TCP throughput was fairly close to this

number when conditions over the wireless link were good.
TCP performance was only slightly inferior because of the
increased delays in receiving end-to-end acknowledgments
from the receiver. With wide area experiments we saw that
the best throughput we could achieve with TCP between
MH and FH was only 50–70% of the throughput between
the MSR and FH. This degradation was introduced entirely
by the wireless link even though it added only about 20 ms
to the end-to-end delay of 100 ms.

When we introduced host mobility, which caused dis-
ruption in the end-to-end data transfer, we saw that degra-
dation in I-TCP performance in all the categories of local
and wide area experiments was slower than the corre-
sponding degradation in TCP throughput. One major rea-
son for the slower degradation was the corrective action
taken by the host transmitting over wireless (MH or MSR),
which made the transmitter forget the past congestion his-
tory immediately after a move by the MH.

With artificially introduced bit errors over the wireless
link, we saw small performance gains with I-TCP in the
local area experiments, although the corresponding gains in
the wide area experiments were impressive. These per-
formance benefits were due entirely to the reason that I-
TCP was able to isolate the lossy wireless link from the rest
of the connection resulting in faster recovery from a lost
segment. We did not incorporate any special measures to
recover from wireless losses for the I-TCP connection over
wireless, but we believe that using a smaller retransmission
timeout and fast retransmissions possibly coupled with
selective acknowledgments should result in a much better
performance by I-TCP.

8 HANDOFF PERFORMANCE

For handoff performance, we measured the handoff time
for an MH that had one I-TCP connection established with
a fixed host two Ethernet hops away from both the MSRs
used in the experiments. The MH kept switching back and
forth between the two MSRs every 10 seconds. The handoff
time was measured at the new MSR as the time elapsed
between the instant when a greeting message arrives from
the MH entering the cell and the instant when the I-TCP

Fig. 12. Wide area performance comparison with wireless losses.
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handoff is completed. Handoff measurements were per-
formed for different socket buffer sizes which determine
the amount of state to be transferred.

Fig. 13 shows the time taken by I-TCP connection hand-
off using different socket buffer sizes in a nonoverlapped
cell configuration where cell boundaries are sharply de-
fined and cell switching is instantaneous. The case marked
as idle connection in the figure denotes the handoff time for a
connection on which no data is being sent. The graph
shows that it took about 265 ms just to transfer the connec-
tion state with no (empty) socket buffers. The size of such
an idle connection state was about 500 bytes which in-
cluded the socket data structures and the TCP control
blocks for the two (MH side and FH side) sockets plus some
control information. In all the other cases, the handoff times
were measured with the FH pumping data as fast as it
could, given that the maximum window size for both parts
of the I-TCP connection was equal to the socket buffer size.

Our measurements show that the handoff time increased
with the size of socket buffers. This can be explained as
follows: Because of the large difference in the bandwidths
of the wireless and the wired media (2 Mbps WaveLAN
versus 10 Mbps Ethernet), the socket buffers at the MSR
remained full most of the time since data was being
pumped from a higher bandwidth link to a lower bandwidth
link. Therefore, when the MH switched cells, the I-TCP con-
nection handoff involved transferring a full send buffer for
the MH side socket and a full receive buffer for the FH side
socket from one MSR to the other. Thus the I-TCP handoff
in case of 32 Kbyte socket buffers added up to 64 Kbytes
(and possibly some more due to any pending user level
buffers) to the idle connection state of about 500 bytes. The
handoff time using 32 Kbytes of socket buffers was ob-
served to be 1,430 ms.

8.1 Handoff Analysis
We analyzed the I-TCP handoffs to determine how much
time was spent in each step. The results of our analysis are
summarized in Fig. 14 for two representative cases:

1) idle connection and
2) active connection with 32 Kbyte socket buffers.

All timing data shown is with reference to the instant when
a greeting was received by the MSR from an MH entering
its cell. In the case with idle connection, the new MSR took
about 60 ms to establish the socket skeletons from the in-
formation contained in the MH greeting message after
which it sent a forwarding pointer (MICP_FWDPTR) to the
old MSR. It took an additional 150 ms before the handoff
request arrived at the new MSR. The actual state transfer
took only 55 ms.

In the second case, with 32 Kbyte socket buffers, we see
that after the handoff request was received by the new
MSR, another 1,230 ms elapsed before the handoff was
completed. Out of these, the state of MH side socket was
transferred in 790 ms, whereas the state of FH side socket
took 410 ms. Thus with large socket buffer sizes, a major
part of the handoff time is spent in transferring the buffered
data. The time to transfer MH side socket was larger than
the corresponding time for the FH side socket mainly be-
cause the TCP handoff connection between the two MSRs
was still in a slow start phase while transferring the MH
side socket state.

The above analysis of handoff events suggests that the
bandwidth available for handoff traffic between two MSRs
is an important factor in determining the time required for
handoffs, especially if a mobile host has multiple indirect
connections at the time it switches cells. The latency in-
curred by the pre-handoff control traffic should also be
minimized. Pre-existing handoff connections between
MSRs can significantly speed up I-TCP handoffs.

9 EXAMPLE APPLICATIONS

We have used I-TCP to improve the performance of TCP
based applications running on mobile hosts in our indoor
wireless LAN environment. Some of these applications are
listed below along with a description of the changes needed
for I-TCP:

Fig. 13. Handoff times for different socket buffer sizes.
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1) ttcp benchmark—We used the ttcp benchmark to per-
form the handoff experiments reported in the previ-
ous section. The regular socket calls for connect, lis-
ten, accept, and close were replaced by their I-TCP
equivalents. Throughput experiments conducted us-
ing the ttcp benchmark comparing the performance of
I-TCP with that of regular TCP have been reported
earlier in Section 4.

2) ftp—ftp uses two kinds of TCP connections—one for
control and the other for data. The control connection is
used to exchange application layer control messages
between the ftp client and the server while a separate
data connection is opened for every file transfer. We
developed a hybrid ftp implementation called i-ftp to
use I-TCP for data connections but regular TCP for
control connections. Using I-TCP for data connections
gives us throughput advantages over regular TCP
while using regular TCP for the control connection
gives us protection against MSR failures which may
cause loss of I-TCP (data) connections.

3) Chimera WWW browser—Chimera,3 which is a World
Wide Web (WWW) browser, uses the Hypertext Transfer
Protocol (HTTP) [15] to access WWW services over the
Internet. HTTP itself uses TCP to transfer data. We
modified Chimera sources to use I-TCP instead of TCP
for data transfer at mobile clients, which considerably
improved the time needed to download large files.

We mentioned earlier that I-TCP is not particularly
suited for applications such as telnet which rely heavily on

3. Chimera was developed by John Kilburg.

end-to-end reliability of TCP. An additional end-to-end
latency incurred by I-TCP connections (about 20 ms) could
also be significant for telnet. On the other hand, telnet per-
formance in the presence of moves could improve with the
use of I-TCP, since lost segments during cell crossovers will
force regular TCP into retransmission timer backoff.

10 RELATED WORK

Cáceres and Iftode [7] demonstrated in their experiments that
TCP throughput deteriorates rapidly when a mobile host
switches cells at a constant rate. Their experiments showed
that the loss of throughput was much higher when there was a
loss of link layer connectivity during the cell crossover than
with overlapped wireless cells. The main reason for the loss of
throughput was the packet loss accompanying cell crossovers,
which triggers congestion control at the sending host. The loss
of throughput can also occur because of packets lost over the
wireless medium due to bit errors. Fast retransmission [14] can
be used over wireless links to recover from packet loss due to
occasional wireless errors. Cáceres and Iftode [7] also sug-
gested sending duplicate acknowledgments from a mobile
host after a move to trigger fast retransmission at the sending
host so that the data rate over a TCP connection can be quickly
brought to the normal speed. Such modifications are not ade-
quate to recover from multiple losses per window because the
transmitting host still performs a slow start if more than one
segment is lost per window, thus limiting the effective
throughput. Further, sending duplicate acknowledgments
from the mobile host at a time when the fixed network is con-
gested, can exacerbate the congestion.

Fig. 14. Analysis of I-TCP handoff events.
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Link layer retransmission (LLR) can bring the error rate
of error-prone wireless links on par with that on the wired
networks. Such an approach however, interferes with the
end-to-end retransmissions of TCP and does not result in
improved performance [16] for certain loss characteristics.
A somewhat better approach that uses retransmissions on
the (last) wireless link was suggested in [17], which falls
somewhere between LLR and our approach. In this
method, a snoop layer at the base station (MSR) caches TCP
segments sent by a (fixed) sending host to the mobile host.
The snoop layer also intercepts acknowledgments flowing
from the MH to the sending host. If the acknowledgments
(e.g., duplicate ACKs) indicate that a TCP segment was lost
over wireless, the lost segment is retransmitted over the
wireless link from the base station. The snoop layer ap-
proach has an advantage over indirect TCP in that the end-
to-end semantics of TCP are preserved. However, any
method that attempts to correct for wireless errors locally
without the knowledge of the sending host can help very
little if the sending host on the fixed network times out
while the retransmission mechanism on the wireless link is
trying to get a data packet to the mobile host. In contrast,
the MSR in I-TCP acknowledges TCP segments received
from the fixed sending host promising to deliver those to
the mobile host as and when the conditions over the wire-
less link are favorable. The sending host is thus isolated
from loss of data over the wireless link.

Experiments with split TCP [18] have shown perform-
ance improvement over regular TCP where smaller MTU is
used over the wireless part of the split connection. A similar
scheme to connect mobile hosts to the Internet using digital
cellular network has been described in [19]. Semiconnected
TCP [20] provides a split TCP connection only when a mo-
bile host is roaming away from its home network. In this
scheme, the mobile host uses end-to-end TCP when it is
connected to its home network. The same TCP connection is
however split at a mobility support gateway (MSG) when
the MH moves away.

11 CONCLUSIONS AND FUTURE WORK

We have shown that indirection or mediation by mobility
support routers (MSRs), can be used as a robust approach
to improve transport layer performance in a mobile wire-
less environment. Our approach first confines the mobility
related performance problems to the wireless link and then
attempts to alleviate such problems by adapting the trans-
port layer protocols on the wireless link in a way that re-
quires no modifications to the hosts on the fixed network.
We designed and implemented I-TCP, a TCP compatible
indirect protocol, which is particularly suited for through-
put intensive applications. Experiments with I-TCP on our
testbed showed greatly improved throughput in compari-
son to regular TCP under simulated mobility conditions
and wireless losses. The performance improvement for wide-
area connections was much higher than for local-area con-
nections. We presented some measurements of the time
needed for I-TCP handoffs as a function of the size of the
state to be transferred. Our measurements show that operat-
ing system support in the form of suitable handoff mecha-

nisms can help in achieving efficient transport layer handoffs.
We also analyzed the handoff data to determine the time
consuming activities in I-TCP handoffs. A kernel resident
implementation of I-TCP, though less flexible than a user
level implementation such as ours, should further cut down
on the copying overhead incurred by I-TCP connections.

Attempts are under way to port I-TCP to the mobile IP
standard being developed by the Mobile IP working group
of the Internet Engineering Task Force (IETF) [11]. To fully
realize the potential of the indirect model at the transport
layer, we are also planning to develop a flexible and light-
weight transport protocol for the wireless side of I-TCP
which can adapt to changes in the wireless environment
and can support voluntary disconnections. Such a wireless
protocol can be optimized with the knowledge that it will
be used only on one wireless hop.
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