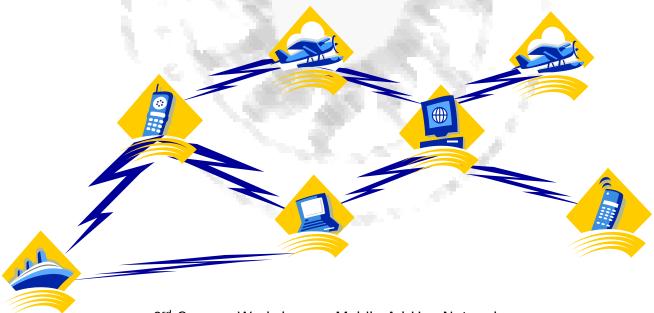


Requirements for Privacy-Enhancements in Mobile Ad Hoc Networks


Christer Andersson, Leonardo A. Martucci and Simone Fischer-Hübner

Karlstad University - Sweden

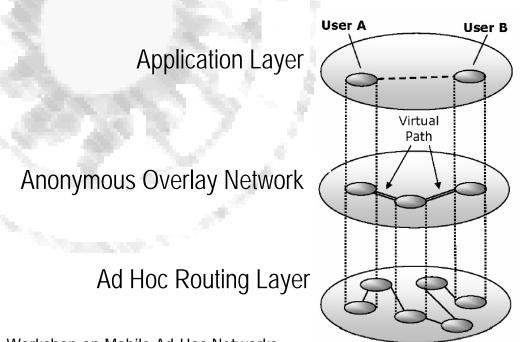
Mobile Ad Hoc Networks

- Main characteristics
 - A wireless network
 - No central administration
 - Mobile nodes join and disjoin spontaneously.
 - The nodes both serve as hosts and routers

Ad Hoc Networks and Privacy

- Nature of data being transmitted on ad hoc networks
 - Vast amounts of possibly sensitive data
 Personal data
 - General interests, communicating partners, Internet browsing, shopping preferences, ...

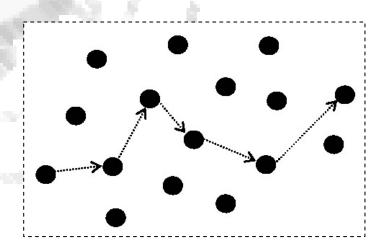
 Location information
 - Location of your communicating peers, your location history, etc.
 - Behavioral Patterns



Ad Hoc Networks and Privacy

How to achieve privacy in ad hoc networks?

- Anonymous Overlay Networks
 - Classic solution good enough for ad hoc environment
 - Placed in-between ad hoc routing and application layers


WMAN 2005 ©LAM 2005

Anonymous Overlay Network

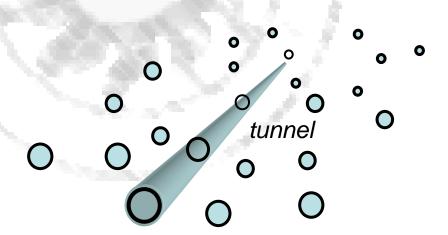
- Overlay network
 - A virtual network that is built on top of an existing network in order to implement network services not available in the existing network

- Anonymous overlay network
 - Provide anonymous services in networks where such services normally are lacking

Goal

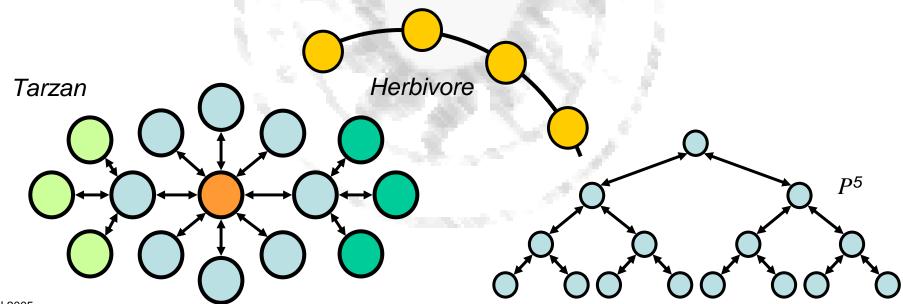
- Define requirements for Anonymous Overlay Networks
 - Defined after mobile ad hoc network characteristics

Evaluate P2P anonymous overlay networks against the defined requirements


Overlay Network Requirements

- Six requirements were defined:
 - R1 scalable solution
 - R2 strong anonymity properties should be provided
 - R3 fair distribution of workload among participants
 - R4 performance-wise lightweight solution in terms of number of needed messages to set the anonymous path and number of high demanding operations
 - R5 adherence to P2P model (no dependencies of fixed devices)
 - R6 expected performance in dynamic topologies, especially regarding tunnel repairing

Anonymous Overlay Networks


- Well-known P2P anonymous overlay networks were evaluated:
 - Crowds users are gathered in crowds of users and messages are forwarded among them.
 - Hordes Crowds-like, but with a multicast return channel.
 - MorphMix collusion detection mechanism in the tunnel setting.

Anonymous Overlay Networks

- Tarzan messages are hidden in a continuous traffic flow; it also implements a collusion prevention mechanism
- Herbivore nodes are divided in small anonymous clusters ("cliques")
- P^5 a continuous flow of messages is set in an binary tree

Evaluation of Anonymous Overlay Networks

- R1 Scalability
 No clear evidence against the scalability of those mechanisms
- R2 Strong anonymity properties should be provided
 Crowds, Hordes and MorphMix are not robust against strong adversaries. Tarzan mechanism is not suitable for ad hoc networks (IP Subnets)
- R3 Fair distribution of workload
 MorphMix and P⁵ have unbalanced workload distribution

Evaluation of Anonymous Overlay Networks

- R4 Performance-wise lightweight solution
 Tarzan and P⁵ rely on dummy traffic; MorphMix demands a lot of messages to set the paths and Herbivore presents high latency
- R5 adherence to P2P model
 Crowds, Hordes are dependent on central devices. Herbivore and P⁵ dependent on central parameters
- R6 Performance in dynamic topologies
 MorphMix and Herbivore are not efficient in dynamic networks, as no tunnel repair is done.

Conclusion

 None of the analyzed mechanisms is fully suitable for use in mobile ad hoc environments

Next Steps:

- Design an overlay anonymous communication mechanism that adheres with the presented requirements and define trade-offs, if needed
- Simulate the new mechanism

{christer.andersson, leonardo.martucci, simone.fischer-huebner}@kau.se