
THE EFFECT OF PACKET LOSS ON
THE RESPONSE TIMES OF WEB SERVICES

Johan Garcia, Per Hurtig, Anna Brunstrom
Department of Computer Science, Karlstad University

Universitetsgatan 2, SE-651 88 Karlstad, Sweden
Email: {johan.garcia, per.hurtig, anna.brunstrom}@kau.se

Keywords: Web services, performance evaluation, TCP, loss recovery, emulation

Abstract: Web services have today become an important technology for information exchange over the Internet. Al-
though web services are designed to support interoperable machine-to-machine interaction, humans are often
the final recipients of the produced information. This makes the performance of web services important from
a user perspective. In this paper we present a comprehensive experimental evaluation on the response times of
web services. The limited amount of data transfered in a typical web service message makes its performance
sensitive to packet loss in the network and we focus our investigation on this issue. Using a web service re-
sponse time model, we evaluate the performance of two typical web services over a wide range of network
delays and packet loss patterns. The experiments are based on network emulation and two real protocol im-
plementations are examined. The experimental results indicate that a single packet loss may more than double
the response times of the evaluated services and lead to noticeable delays for the end user. We briefly review
previous solutions that can be applied to improve performance and outline an improved approach that is based
on packet loss detection at the receiver.

1 INTRODUCTION

The use of web services (Booth et al., 2004) is con-
tinuously expanding, not only as a means to realize
distributed computing inside an organization but also
as a freely available public service. More and more
web sites provide services to the user that are based
on the underlying use of web services. The flexibil-
ity of the web services architecture allows web ser-
vices to be combined to create new end-user services.
When web services are used in a context where hu-
mans are involved as final recipients of information,
the response time of the web service is important as it
directly affects the user experience. In this paper we
present a thorough examination of the response times
of web services as a function of packet loss and trans-
port layer behaviour.

Web services use higher layer protocols such
as SOAP (World Wide Web Consortium (W3C),
2003) and HTTP (Fielding et al., 1999) to trans-
fer messages between clients and servers. On the
transport layer these messages are transported by

TCP (Postel, 1981). TCP provides reliable ordered
delivery, and also protects the network from overload
by virtue of its congestion control mechanisms. The
congestion control is imperative in todays Internet as
it performs the arbitration between competing flows
to ensure that the flows get a reasonably fair fraction
of the bandwidth while at the same time protecting
the network from overload and congestion collapse.
TCP’s congestion control is centered around the use
of packet loss as a signal that congestion is occurring.
Since the congestion control uses losses as congestion
markers, the congestion control also becomes inter-
twined with TCP’s reliability mechanisms.

With regards to web services, the small data sizes
in this request/response type of traffic leads to reduced
efficiency for the congestion control and reliability
mechanisms. Since the data sizes are so small, these
mechanisms often cannot work in the most efficient
manner and are to a large extent influenced by conser-
vative default estimations of the network conditions.
The effect of these efficiency problems on the web
services response times are examined in this work

by means of comprehensive emulation-based exper-
iments on real protocol implementations.

The results show that losses at the end of a con-
nection increase the response times of web services
with perceptible amounts in practically all cases, with
some configurations resulting in response time in-
creases larger than 1,7 seconds.

This paper is structured as follows. In the next
section some background on web services and TCP is
provided. Then follows a section describing the ex-
perimental setup and results. The next section pro-
vides a discussion of possible solutions to the prob-
lems evident in the results, and lastly the conclusions
are provided.

2 BACKGROUND

2.1 Web Services Background

Web services can be seen as a means to enable dis-
tributed computing. In this respect it shares some
of the goals of technologies such as CORBA (Object
Management Group, 2004), RPC (Srinivasan, 1995)
and Java RMI (Sun Microsystems, Inc., 2004). Web
services strive to enable remote execution with a min-
imum of interdependency between the parties. One
way of accomplishing this is by the use of open, plat-
form neutral technologies such as HTTP, SOAP and
XML (Bray et al., 2006). Although web service mes-
sages are typically exchanged between program pro-
cesses without direct involvement of the users in the
web service transaction, a human user is often the ini-
tiator of the action that causes the web service trans-
fer to take place. A human user is often also the end
consumer of the information resulting more or less
indirectly from the web service transaction. In or-
der to minimize the user discomfort caused by having
to wait before receiving any feedback, the response
times of web services are an important component.

Furthermore, the spreading of techniques such as
web services mashups (Lerner, 2006) further high-
lights the delay characteristics. Mashups are compo-
sitions of two or more web services and are typically
intended for direct end-user usage. The more web ser-
vice transactions that are involved in one user interac-
tion, the higher the risk that at least one transaction
will be subject to a packet loss with a resulting unde-
sirable increase in response time. The response time
of a web service can be subdivided into smaller com-
ponents. One subdivision can be made between pro-
cessing delays and network delays. Processing delays
are a function of the processing needed at the client
and server to create messages, parse messages and do

the actual execution. Network delays are caused by
the delays inherent in transferring the requests and re-
sponses between the client and server. In this paper,
the focus is on the network delays, and how they are
affected in the presence of loss.

2.2 Transport Layer Background

TCP is the transport layer protocol used by web ser-
vices. While the original TCP has been existing for
over 30 years, it has continuously been updated, and
continues to be updated, to address new challenges
caused by the evolving communications technology.
In the context of this study, the most relevant aspects
of TCP functionality is the reliability and congestion
control mechanisms as those are related to how TCP
handles losses. A TCP sender has two mechanisms to
detect losses, fast retransmit and timeout.

Fast retransmit (Allman et al., 1999) occurs when
the sender receives three duplicate acknowledge-
ments. The duplicate acknowledgements are sent by
the receiver when it receives packets out-of-order.
The reason for an out-of-order packet is either that
packets have been reordered in the network, or that a
packet has been lost in the network, causing all the
following packets to be out-of-order. The fast retrans-
mit threshold of three was set as a trade-off between
having the sender mistakenly treat reordered pack-
ets as lost, and the delay before retransmission of a
packet that has been lost.

Timeouts occur when the TCP sender has not re-
ceived an acknowledgement for a certain period of
time. In order to avoid having retransmissions for
packets that are not lost but merely delayed in the net-
work, the timeout value is conservatively calculated
as a function of the round-trip time as measured by the
the returning acknowledgments. So, for the timeout
case the trade-off is between having a short enough
timeout that detects losses without unnecessary delay,
but not so short as to induce unnecessary retransmis-
sions when the packet is not lost but delayed.

Out of the two described loss detection mecha-
nisms, fast retransmit is the most desirable as it will
lead to faster loss detection in practically all cases1.
However, there are cases when fast retransmit cannot
be used, and one important case in the web services
context is at the end of connections. If there are too
few packets to send after a loss, the receiver will not
be able to generate the required number of duplicate
acknowledgements. For the short connections typical
in web services, this sensitive period late in the con-

1Fast retransmit also has a gentler congestion response
than timeout, but in the present study this has practically no
effect since the examined web service transfers are so short.

nection is large in relation to the overall transfer. A
detailed examination of how this impacts the web ser-
vices response times is provided in the next section.

3 EXPERIMENTAL EVALUATION

As mentioned in the previous section, packet loss
plays an important role in the congestion control as
well as for the reliability mechanisms. In order to
study the effect of loss handling and congestion con-
trol on web services response times we have per-
formed a comprehensive experimental campaign us-
ing real protocol implementations in an emulated en-
vironment.

3.1 Response Time Model

The web services response time can be divided into
several components. We make a division as shown in
Equation 1.

rws = tconn + treq + preq_resp + tresp (1)

The total response time rws is in this model com-
posed of the TCP connection setup (tconn), the re-
quest transmission delay (treq), the server-side pro-
cessing delay for request parsing and response gener-
ation (preq_resp), and the response transmission de-
lay (tresp). In addition to these delays, there can also
be delays at the client side to compose the request
message and to parse the response message, respec-
tively. These delays are dependent on the specific
client hardware and the software implementation used
in the client, and are not considered in this study.

3.2 Experimental Setup

The experimental setup consists of three PCs with the
roles of client, server and router/emulator. The client
and server communicates via the router/emulator
which delays and drops packets as instructed. The
experimental setup is illustrated in Figure 1. The
client and server machines host programs that create
requests and responses similar to web service clients
and servers respectively. Since this examination has
packet losses as one important variable, a specially
modified version of the Dummynet emulator (Rizzo,
1997) named KauNet is used. KauNet allows precise
control over packet losses, delays, and bandwidths
with the possibility to specify these on a per packet
basis using precomputed patterns. The ability to pre-
cisely position losses has been shown to be beneficial

Control
Script

IP
TCPdump

Ethernet

TCP

IP
TCPdump

Ethernet

TCP

= Control path
= Data path

Router/Emulator

100Mbps

Client Server

100Mbps

P4−2.4GHzP4−2.4GHz

Dummynet

P4−2.4GHz
FreeBSD 6.0 FreeBSD / LinuxFreeBSD / Linux

W.S. Client W.S. Server

�� ��

�����
�����
�����
�����

�����
�����
�����

���
���
���

���
���

	�	�	
�
�

�
�
�
�
�
�
�
�
�

Figure 1: Physical experiment setup.

when performing protocol evaluations (Garcia et al.,
2006).

To guide the configuration of the various experi-
mental parameters, values from a study by Kim and
Rosu (2004) were used. In their study they survey the
length and and response times of a well known web
services provider, Amazon. From the data provided
by Kim and Rosu (2004) we selected two web ser-
vices to use as models for our experiments. The first
service was the Author service, which had a request
size of 1438 bytes and a response size of 12974 bytes.
The second service was the Sellerprofile which had
a request size of 1283 bytes and a response size of
8031 bytes. Based on the response times reported
by Kim and Rosu (2004) a preq_resp of 200 ms was
found to be appropriate.

The transfer of the web service requests and re-
sponses are performed by the transmission of TCP
packets. Two components are used to create the emu-
lated network delay that each packet is to be exposed
to. By using two components it is possible to model
packet delays that are size-dependent as well as size-
independent. The size-dependent delays are mainly
the transmission delays that occur at each network
node. The size-dependent delays are aggregated and
modeled as an effective bandwidth for the emulation.
The second component of network delay is composed
of delays that are independent of packet size such as
propagation and queueing delays. The aggregate of
the packet size independent delays, called end-to-end
delay, were inserted using the delay pattern capabili-
ties of KauNet. Each packet had a unique end-to-end
delay that was drawn from a normal distribution with
a mean according to the configured value, and a vari-

Table 1: Experimental Parameters.

Request size (bytes) 1438 1283
Response size (bytes) 12974 8031
preq_resp (ms) 200
Effective bandwidth 160, 300, 500, 1000
(Kbit/s) 2000, 4000, 10000
End-to-end delay 5, 10, 20, 40
(ms) 60, 100, 150, 200

ance of 50 percent of the mean.
In order to get an indication of how issues spe-

cific to the particular TCP implementation affects the
web services response times, we performed experi-
ments with two different operating systems, FreeBSD
6.0 and Linux 2.6.15. These operating systems are
commonly used in servers providing web services. A
summary of the experimental parameters is provided
in Table 1.

3.3 FreeBSD Results for Author

To examine the comprehensive results obtained from
the emulation experiments, we start with a repre-
sentative example of a single experimental run for
FreeBSD 6.0 as shown in Figure 2. The figure shows
the response time as a function of where in the con-
nection the packet loss occurs. The y-axis shows
the total web service response time according to the
model above, including a preq_resp of 200 ms. The
x-axis represents the different loss positions possible
for the data transfer in the server-to-client direction.
With a response size of 12974 bytes and a maximum
transfer unit (MTU) of 1500 bytes, this means that 12
packets are transfered2 in the server-to-client direc-
tion. Loss position 0 corresponds to no packet loss
and thus has the lowest response time. Similarly, a
loss at position 12 also has a low response time since
that packet is the final FIN-ACK required to close the
connection in the opposite client-to-server direction,
and a loss of this packet does not delay the transfer of
data in the server-to-client direction.

The specific combination of effective bandwidth
and end-to-end delay displayed in Figure 2 was cho-
sen to provide approximately the same lossless re-
sponse time as the one reported by Kim and Rosu
(2004) for the case when both the client and the server
were located in the US (the US-US scenario). The re-
ported response time was 502 ms, and the experimen-
tal value was 610 ms (without losses). It can be seen

2This includes the SYN-ACK packet necessary for TCP
connection establishment and the final FIN-ACK packet for
connection termination.

that losing the packet in loss position 1 increases the
response time with 3 seconds. This is expected as the
timeout value used during connection establishment
is set to this conservative value (Paxson and Allman,
2000). In the middle of the connection (positions 2-
7) the penalty of a loss is relatively small, as the loss
can be detected using the more efficient fast retrans-
mit mechanism. Losses later in the connection (posi-
tions 8-11) result in larger increases in response times
since they cannot be handled by fast retransmit, but
instead have to be recovered using the slower timeout
mechanism. In the specific case shown in the figure,
the response time increase from having a loss late in
the connection as opposed to the middle of the con-
nection is up to 632 ms, or 103 percent3. The web
service transactions that experience losses at the end
of the connection are thus delayed for periods that are
clearly large enough to be negatively perceived.

Figure 3 shows the results for a connection with
the same effective bandwidth but a longer end-to-end
delay to model the connection between an overseas
client and a server in the US (the US-overseas sce-
nario). The resulting response time without loss is
886 ms. The effect of losses late in the connection
shown in Figure 3 is larger in absolute terms (929 ms),
but smaller in relative terms (99 %) as compared to
Figure 2. This of course comes from the fact that the
response time with no losses becomes considerably
longer when the end-to-end delay is increased.

In addition to the results shown in Figures 2 and
3, we conducted experiments for 54 other combina-
tions of end-to-end delay and bandwidth according to
values given in Table 1. To illustrate how the results
vary as the end-to-end delay varies, Figure 4 shows
the results for a bandwidth of 1000 Kbps, covering all
the different delays. To provide an overview of all re-
sults, Figure 5 shows the relative impact of all results
by calculating the percent-wise increase in response
time for losses at the end of a connection. The re-
ported value is calculated as the percent-wise increase
of the mean response times of positions 8-11 over the
response time for position 6.

3.4 Linux Results for Author

To examine the possible variations between differ-
ent TCP implementations we also performed experi-
ments using Linux. The same graphs as discussed for
FreeBSD in the previous section are shown in Figures
6 to 9. These figures show that Linux has the same
trend of increased response times for losses in the end
of the connection that was visible for FreeBSD. This

3This is when comparing the response times for loss po-
sitions 6 and 10.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12

Re
sp

on
se

 ti
m

e
(m

s)

Loss position

300Kbps - 10ms

Figure 2: One FreeBSD run for US-US scenario, Au-
thor service.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12

Re
sp

on
se

 ti
m

e
(m

s)

Loss position

300Kbps - 60ms

Figure 3: One FreeBSD run for US-overseas scenario,
Author service.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12

Re
sp

on
se

 ti
m

e
(m

s)

Loss position

1000Kbps

5 ms
10 ms
20 ms
40 ms
60 ms
100 ms
150 ms
200 ms

Figure 4: Impact of different delays for FreeBSD with
1000 Kbps bandwidth, Author service.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200

Ad
di

tio
na

l t
im

e
re

qu
ire

d
(%

)

End-to-end delay (ms)

Response time increase

160Kbit/s
300Kbit/s
500Kbit/s
1000Kbit/s
2000Kbit/s
4000Kbit/s
10000Kbit/s

Figure 5: Free BSD response time increase for late
losses, Author service.

is to be expected since the problem is inherent in the
definition of TCP’s reliability mechanisms. Although
the trend is similar, there are some differences be-
tween the implementations. Looking at the response
times without losses Linux is slower than FreeBSD
for both of the end-to-end delays shown in Figures
6 and 7, with 661 ms versus 610 ms for the 10 ms
end-to-end delay and 933 ms versus 886 ms for the
60 ms end-to-end delay. However, when looking at
the behavior for losses at the end of the connection,
it can be seen that FreeBSD actually has a sensitive
region of four packets (positions 8-11) where Linux
only has a sensitive region of 3 packets (positions 9-
11), which clearly is beneficial for Linux 4. Upon ex-

4An examination of this issue by code inspection of the
FreeBSD TCP implementation revealed that FreeBSD has
a tendency to interpret one of the duplicate acknowledge-
ments as a window update. Since window updates are not
counted towards the fast retransmit threshold, FreeBSD ef-
fectively requires four duplicate acknowledgments for this
case.

amination of the results shown in Figures 8 and 9 it
can be seen that although Linux had slightly longer
response times when there were no losses, it also had
considerably less increase in the response time for the
sensitive region at the end of connections. A general
conclusion that can be drawn from the comparison of
the two implementations is that although the behavior
of the implementations differ in the details, they both
share the fundamental problem of increased response
times for losses at the end of connections.

3.5 Results for Sellerprofile

In addition to the Author web service, experiments
were also performed for the Sellerprofile web ser-
vice. The response size used for this service was
8031 bytes. The smaller size implies that fewer pack-
ets are needed to transfer the response message. Thus,
the sensitive period at the end of a connection will
cover a larger fraction of the total connection length.
For FreeBSD the sensitive positions are now positions

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12

Re
sp

on
se

 ti
m

e
(m

s)

Loss position

300Kbps - 10ms

Figure 6: One Linux run for US-US scenario, Author
service.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 2 4 6 8 10 12

Re
sp

on
se

 ti
m

e
(m

s)

Loss position

300Kbps - 60ms

Figure 7: One Linux run for US-overseas scenario,
Author service.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12

Re
sp

on
e

tim
e

(m
s)

Loss position

1000Kbps

5 ms
10 ms
20 ms
40 ms
60 ms
100 ms
150 ms
200 ms

Figure 8: Impact of different end-to-end delays for
Linux with 1000 Kbps bandwidth, Author service.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

Ad
di

tio
na

l t
im

e
re

qu
ire

d
(%

)

End-to-end delay (ms)

Response time increase

160Kbit/s
300Kbit/s
500Kbit/s
1000Kbit/s
2000Kbit/s
4000Kbit/s
10000Kbit/s

Figure 9: Linux response time increase for late losses,
Author service.

5-8, and for Linux positions 6-8, as shown in Figures
10 and 12, respectively. Looking at the aggregate re-
sults shown in Figures 11 and 13, it is evident that the
increases in response times are indeed larger than for
the previously examined service. This provides sup-
port for the hypothesis that shorter web service trans-
actions are more sensitive to the problem of losses late
in the connection.

3.6 Discussion

The results highlight the difficulty of TCP’s reliabil-
ity mechanism to work efficiently for short flows that
are typical for web services. One issue that creates
a large increase in response time is the loss of the
SYN-ACK5, which will increase the response time
with three seconds. However, it is hard to change

5This is also true for the SYN packet, but it goes in the
direction from the client to the server which is not the focus
of our investigation.

this value without cross-layer knowledge of the par-
ticular network conditions before connection estab-
lishment. Since this is the first packet exchanged this
timeout value must be conservatively set to allow for
low bandwidth/large delay links to work with reason-
able efficiency. For the other case where increases in
response times were visible, i.e. losses late in the con-
nection, there will be more knowledge about the net-
work conditions available, which makes it easier to
adapt the behavior to improve performance. Hence,
the focus of this study is on losses which occur late in
the connection.

For all the web service sessions that we have ex-
amined in these experiments, the response time suf-
fered when there were losses late in the connection.
The increase in response time caused by these losses
were in the range of 208 ms to 1781 ms. When inter-
preting these results, it should be noted that they focus
on the behavior in the presence of losses. In typical
Internet conditions, many web services transactions
will not experience any loss at all. However, for those

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10

Re
sp

on
se

 ti
m

e
(m

s)

Loss position

1000Kbps

5 ms
10 ms
20 ms
40 ms
60 ms
100 ms
150 ms
200 ms

Figure 10: Impact of different end-to-end delays for
FreeBSD with 1000 Kbps bandwidth, Sellerprofile
service.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 50 100 150 200

Ad
di

tio
na

l t
im

e
re

qu
ire

d
(%

)

End-to-end delay (ms)

Response time increase

160Kbit/s
300Kbit/s
500Kbit/s
1000Kbit/s
2000Kbit/s
4000Kbit/s
10000Kbit/s

Figure 11: Response time increase for late losses,
FreeBSD, Sellerprofile service.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10

Re
sp

on
se

 ti
m

e
(m

s)

Loss position

1000Kbps

5 ms
10 ms
20 ms
40 ms
60 ms
100 ms
150 ms
200 ms

Figure 12: Impact of different end-to-end delays for
Linux with 1000 Kbps bandwidth, Sellerprofile ser-
vice.

 0

 20

 40

 60

 80

 100

 0 50 100 150 200

Ad
di

tio
na

l t
im

e
re

qu
ire

d
(%

)

End-to-end delay (ms)

Response time increase

160Kbit/s
300Kbit/s
500Kbit/s
1000Kbit/s
2000Kbit/s
4000Kbit/s
10000Kbit/s

Figure 13: Response time increase for late losses,
Linux, Sellerprofile service.

transactions that do experience losses, the cost in in-
creased response time may be high. Using the Author
service as an example and assuming a more typical
Internet loss rate such as 2 %, on average 22 % of
the web services transactions will experience losses6.
Out of those transactions, on average 27 % will have
the loss at the last three packets shown in this study to
be very problematic. For shorter web services trans-
actions, a lower percentage of the transactions will
experience losses. However, for those shorter trans-
actions that do experience losses, the risk of the loss
being in the problematic region is higher. A solution
that address this problem would hence be welcome.

6Assuming uniformly distributed losses that are inde-
pendent of packet size.

4 POSSIBLE SOLUTIONS
As shown in the previous section there are severe con-
sequences on the web services response times when
losses occur towards the end of a connection. Al-
though the focus of this study have been web services,
the problem of losses late in the connection is also
present for other client-server applications with short
transfers. Various proposals have been put forth that
to some extent addresses the problem. These proposal
are targeting the TCP behavior, and modify it to work
better for short connections that experiences packet
losses. In this section these proposals are briefly de-
scribed and a new hybrid scheme is outlined.

4.1 Modified Retransmit Calculations

One approach is to modify the calculation of the re-
transmission timer. This will cause the retransmis-
sion timer to expire earlier, and will decrease the un-

necessary delay until timeout at the end of a connec-
tion. However, modifications of the timeout calcula-
tion may also lead to a higher frequency of spurious
timeouts, i.e causing a timeout when a packet merely
is delayed and not lost. The frequency of occurrence
for spurious timeouts is not well understood over the
range of networks that comprise the Internet of today.
There are several proposed solutions for the spurious
timeout problem (for example (Sarolahti et al., 2003))
that implies that it is a common problem, but other
research has shown very little frequency of spurious
timeouts (Vacirca et al., 2006).

4.2 Smart Framing

The smart framing approach (Mellia et al., 2005) is
based around the idea of splitting larger packets into
smaller ones. More packets may allow better RTT es-
timation and an increased chance of using fast retrans-
mit instead of timeouts. However, if the packet loss
probability is independent of packet size, this scheme
may lead to reduced performance. It also increases
the overhead by requiring more headers and ack traf-
fic.

4.3 Early Retransmit

The early retransmit approach (Allman et al., 2006)
in essence entails the reduction of the duplicate ac-
knowledgments threshold. Such a reduction will de-
crease the number of packets at the end of a connec-
tion that cannot be recovered by fast retransmit. In-
vestigations in connection with this work (Allman,
2005) indicates that the reordering present in ex-
amined traces could make this solution problematic.
However, other research (Jaiswal et al., 2002) indi-
cates that networking reordering is uncommon.

4.4 Adaptive Duplicate
Acknowledgment Generation

All of the schemes discussed above try to improve the
ability of the sender to infer that a loss has occurred.
This allows retransmission to occur which in turn can,
in the current case, reduce the web-server response
time. All these approaches have some disadvantages
as already mentioned. To provide a better solution we
here outline a new approach where the loss inference
instead takes place at the receiver side, and the re-
ceiver then uses an implicit loss notification to make
the sender perform a fast retransmission.

The first step of this scheme is to use the reception
of the final FIN packet to start an adaptive duplicate
acknowledgment generation module. This module

checks if there is a hole in the received packet stream,
i.e. a packet that is lost (or possibly reordered). It then
applies a timer that is based on receiver side measure-
ments of the packet inter-arrival times. This timer is
updated when each packet is received, in contrast to
the RTT estimation which typically is performed only
once per congestion window. When the inter-arrival
timer times out, the module sends additional dup-acks
so that the total amount of dup-acks becomes three,
which upon receipt at the sender will trigger a fast re-
transmit. This scheme has several benefits compared
to the ones above; it will have a lower frequency of
spurious retransmissions than the modified retransmit
calculations and early retransmit schemes. Also, it
will not have the always present overhead of addi-
tional headers that smart framing produces. The de-
tails of the receiver side timer calculations as well as a
kernel implementation is part of planned future work.

5 CONCLUSIONS

We have examined the impact of packet loss on web
services response times. To do this we have per-
formed experiments on two current TCP implemen-
tations using emulation with precise loss positioning
capabilities. We examined all possible loss positions
for 56 combinations of effective bandwidth and end-
to-end delay, for two different empirically derived re-
quest and response sizes using two different operat-
ing systems. The results show increased response
times of magnitudes that are clearly perceptible to
humans, and thus causes for user dissatisfaction, for
many cases when the losses are placed at the end of a
connection. Due to the relatively small size of many
web services transactions, the sensitive area at the end
is large in relation to overall transaction length. The
increase in response time varied from 208 ms to 1781
ms in absolute value, and in percentage terms the in-
crease ranged between 40 % and 112 %. Possible so-
lutions that reduce the effect of late losses were briefly
discussed, and a new receiver-based hybrid approach
was sketched in order to mitigate some of the disad-
vantages of the other schemes. For future work we
intend to focus on the development and evaluation of
this hybrid approach.

ACKNOWLEDGMENTS
The authors wish to thank Su Myeon Kim for provid-
ing the detailed measurement data on web service re-
quest and response sizes that were published in (Kim
and Rosu, 2004), and Hubert Baumeister for discus-
sions that helped to shape the content of this paper.

REFERENCES
Allman, M. (2005). Private communication.
Allman, M., Avrachenkov, K., Ayesta, U., and Blanton, J.

(2006). Early retransmit for TCP and SCTP. IETF
Draft: draft-allman-tcp-early-rexmt-04.txt.

Allman, M., Paxson, V., and Stevens, W. (1999). TCP con-
gestion control. RFC2581.

Booth, D., Haas, H., and McCabe, F. (2004). Web Services
Architecture. http://www.w3.org/TR/ws-arch/.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and Yergeau, F. (2006). Extensible Markup Language
(XML) 1.0 (Fourth Edition). W3C Recommendation.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and Berners-Lee, T. (1999). Hypertext
Transfer Protocol – HTTP/1.1. RFC2616.

Garcia, J., Alfredsson, S., and Brunstrom, A. (2006). The
impact of loss generation on emulation-based pro-
tocol evaluation. In Proc. International Conference
on Parallel and Distributed Computing and Networks
(PDCN 2006).

Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., and
Towsley, D. (2002). Measurement and classification
of out-of-sequence packets in a tier-1 ip backbone. In
IMW ’02: Proceedings of the 2nd ACM SIGCOMM
Workshop on Internet measurment, pages 113–114,
New York, NY, USA. ACM Press.

Kim, S. M. and Rosu, M.-C. (2004). A survey of public
web services. In Proceedings of the 13th international
World Wide Web conference on Alternate track papers
and posters (WWW 2004).

Lerner, R. (2006). Creating mashups. Linux Journal, (147).
Mellia, M., Meo, M., and Casetti, C. (2005). TCP smart

framing: a segmentation algorithm to reduce TCP
latency. IEEE/ACM Transactions on Networking
(TON), 13(2):316–329.

Object Management Group (2004). Common Object
Request Broker Architecture: Core Specification.
http://www.omg.org/technology/documents/
corba_spec_catalog.htm.

Paxson, V. and Allman, M. (2000). Computing TCP’s re-
transmission timer. RFC2988.

Postel, J. (1981). Transmission control protocol. RFC793.
Rizzo, L. (1997). Dummynet: a simple approach to the

evaluation of network protocols. ACM Computer
Communication Review, 27(1):31–41.

Sarolahti, P., Kojo, M., and Raatikainen, K. (2003). F-RTO:
an enhanced recovery algorithm for TCP retransmis-
sion timeouts. SIGCOMM Computer Communica-
tions Review, 33(2):51–63.

Srinivasan, R. (1995). RPC: Remote procedure call protocol
specification version 2. RFC1831.

Sun Microsystems, Inc. (2004). Java Remote Method Invo-
cation. http://java.sun.com/j2se/1.5.0/docs/guide/rmi/
spec/rmiTOC.html.

Vacirca, F., Ziegler, T., and Hasenleithner, E. (2006). An
algorithm to detect TCP spurious timeouts and its ap-
plication to operational UMTS/GPRS networks. Com-
puter Networks, 50(16):2981–2001.

World Wide Web Consortium (W3C) (2003). Sim-
ple object access protocol (SOAP) version 1.2.
http://www.w3.org/TR/soap.

