
On the Relation between Design Contracts and Errors:
A Software Development Strategy

Eivind J. Nordby, Martin Blom, Anna Brunstrom
Computer Science, Karlstad University

SE-651 88 Karlstad, Sweden
{Eivind.Nordby, Martin.Blom, Anna.Brunstrom}@kau.se

Abstract

When designing a software module or system, a systems
engineer must consider and differentiate between how the
system responds to external and internal errors. External
errors cannot be eliminated and must be tolerated by the
system, while the number of internal errors should be min-
imized and the faults they result in should be detected and
removed. This paper presents a development strategy based
on design contracts and a case study of an industrial project
in which the strategy was successfully applied. The goal
of the strategy is to minimize the number of internal errors
during the development of a software system while accom-
modating external errors. A distinction is made between
weak and strong contracts. These two types of contracts are
applicable to external and internal errors respectively. Ac-
cording to the strategy, strong contracts should be applied
initially to promote the correctness of the system. Before
release, the contracts governing external interfaces should
be weakened and error management of external errors en-
abled. This transformation of a strong contract to a weak
one is harmless to client modules.

1 Introduction

In designing a software module or system, it is neces-
sary for the systems engineer to consider and differentiate
between the way in which the system responds to exter-
nal and internal errors. Incorrect behavior by end users or
by external systems is a typical example of external errors.
Design and programming errors are typical examples of in-
ternal errors, resulting in faults in the system that is being
built. External errors must be tolerated by the system, while
the number of internal errors should be minimized and the
faults they result in should be detected and removed.

This paper presents a software development strategy
based on design contracts [11]. This strategy should support
software developers in their decision as to what kind of error

handling they should include in their software. It is based on
three principles. The first principle is to make a distinction
between weak and strong contracts. The second principle
is to exploit the fact that external and internal errors corre-
spond to weak and strong contracts respectively. The third
principle is Liskov’s substitution principle [8]. The strategy
exploits the fact that a weaker contract defines a Liskov-
subtype of a stronger one. It prescribes starting with strong
contracts in order to minimize the number of internal errors
and then to weaken selected contracts in order to tolerate
external errors.

This paper also reports from a case study of an indus-
trial development project in which the strategy described
was applied. Parts of the product developed were designed
using strong contracts. Towards the end of the project, some
of these contracts were weakened in order to accommodate
external errors in the user interfaces.

The remainder of the paper is organized in two major
parts, a strategy part and a case study part, followed by
conclusions. The strategy part consists of Sections 2 and
3. First, external and internal errors are related to weak
and strong contracts. Then Section 3 demonstrates that the
transformation of a strong contract to a weak one corre-
sponds to Liskov subtyping, and introduces the develop-
ment strategy based on this fact. The case study part con-
sists of Sections 4 through 6. The project studied is pre-
sented in Section 4 and experience gained from applying the
strategy in this project is given in Sections 5 and 6. They
show that the application of the strategy contributed pos-
itively to a successful result. Finally, the conclusions are
presented in Section 7.

2 Errors and design contracts

This section starts by reviewing the distinction between
external and internal errors. It then summarizes the prin-
ciples of design contracts and introduces two categories of
contracts, in this paper called weak and strong contracts.
Finally, a correspondence is established between these con-



tract categories and external and internal errors respectively.

2.1 External and internal errors

Several definitions exist of the terms error, fault and fail-
ure [3, 7, 14]. This paper uses these terms according to Fen-
ton and Pfleeger [3]. The term error is used for the dynamic
property that something wrong is being done by someone
or something, for instance a user misusing the system, an
external system not responding correctly or a designer mis-
understanding a specification. An error, for instance during
design or implementation, may result in a fault, which is a
static product property, a deviation from the correct imple-
mentation. A fault may cause a failure, which is a dynamic
product property, implying that the system does not behave
as intended. In brief, an actor may commit an error, a sys-
tem may contain a fault and, as a consequence, the system
may fail.

A systems engineer must consider and differentiate be-
tween external and internal errors in his or her development
work. One distinction between the two kinds of errors is
that external errors arise when the system is used while in-
ternal errors arise when it is created.

External errors are committed by actors external to the
system. An end user may for instance enter some illegal or
meaningless input, such as typing letters in a number field
or entering a value out of the acceptable range. Similarly,
an external system may malfunction, possibly because of a
physical or logical fault. Examples include external stor-
age device errors and networking problems. External er-
rors affect the system from the outside without modifying
the software itself. For the system to be robust and main-
tain both system integrity and user friendliness, it should be
constructed to tolerate and deal with these errors.

Internal errors are errors committed by designers or pro-
grammers in the development team. A designer may for in-
stance misunderstand some detail of the requirements for a
certain module or a coworker may be ambiguous in spec-
ifying the need for some functionality. Similarly, a pro-
grammer may commit a programming error, possibly be-
cause he or she is tired or because a detail was overlooked.
Internal errors are committed by the system designers and
programmers while the system is developed and introduce
static faults into the system software. An incorrect algo-
rithm in a module, an ambiguous function specification and
an incorrect instruction in a source code are examples of
such faults. Once introduced, these faults remain in the sys-
tem until they are detected and removed. They represent a
potential cause of system failure even when the system is
used correctly. While internal errors can never be totally
eliminated, their number should be kept to a minimum and
the faults they result in should be detected and removed.

Precondition: true
Postcondition: if not empty@pre

then result = top element
else EmptyException thrown

Figure 1. A weak contract for top

2.2 Weak and strong contracts

Design contracts are used to define the semantics of op-
erations and to specify the responsibilities of both clients
and suppliers of the operation. A client of an operation is a
software part using it and a supplier is one implementing it.
The contract of an operation consists of a precondition and
a postcondition [11]. Correctness with respect to the opera-
tion is achieved when clients satisfy the precondition before
calling the operation and suppliers satisfy the postcondition
when terminating. In the case in which a precondition is not
initially satisfied by a client, the supplier does not have to
satisfy the postcondition. In such a situation, the outcome
of the operation is explicitly left undefined [11, 13]. This
leaves the supplier free to produce any result, to not termi-
nate or to abort the execution, to name but a few examples.
The actual choice is a matter of convenience. It is not a
correctness issue but is considered part of the robustness.
The classic example, which will be used in this paper, is the
stack and the operationtop , returning the topmost element
of the stack. This operation may be successfully completed
only if the stack actually has a top element.

Two major categories of contracts are identified, called
weak and strong contracts in this paper. Weak contracts typ-
ically have the preconditiontrue , implying that the client
has no obligations whatsoever. Instead, the supplier must be
prepared to handle even meaningless calls, such astop be-
ing called when the stack is empty, and the definition of the
operation must prescribe the outcome in such cases. Meyer
[11] refers to this as the tolerant approach to contract design.
The outcome will typically be some kind of error indication,
such as a status value being defined or an exception being
thrown. This approach is illustrated in Figure 1. The nota-
tionsempty@pre andresult = top element used
in the figure are OCL-notations1 for the value of the prop-
ertyempty at the start of the execution of the operation and
the value returned from the operation respectively [15].

Strong contracts require clients to satisfy a specific pre-
condition, as shown in Figure 2. The postcondition only
states the outcome in the legal situations, that is the situa-
tions in which this precondition was true. Meyer [11] refers
to this as the demanding approach to contract design or the

1OCL, the Object Constraint Language, defines a syntax to express pre-
conditions, postconditions and other assertions. It was initially defined by
IBM and is now included in the family of standards managed by the Object
Management Group (OMG).



Precondition: not empty
Postcondition: result = top element

Figure 2. A strong contract for top

”tough love” approach. Whenever applicable, he recom-
mends this alternative.

2.3 Relation between contracts and errors

An interface exposed to an external system or an end user
will be called an external interface, and one exposed to an-
other part of the same system will be called an internal inter-
face. A weak contract corresponds to accepting input errors
and is suitable for external interfaces, which are exposed to
external errors. A strong contract assumes that it is possible
for the operation to be called correctly and is suitable for
internal interfaces exposed to internal errors.

A weak contract allows meaningless calls to a supplier
operation. Defining weak contracts on internal interfaces,
like in Figure 1, would imply that meaningless calls could
be given a meaningful treatment. However, these meaning-
less calls result from faults in the client part of the system.
If the operation is defined with a weak contract, the supplier
will have to detect the meaningless call. It will then have to
return the responsibility to handle the situation back to the
client software, for instance through an error status or an
exception. However, handling this error indication requires
as much effort from the client as assuring a correct call in
the first place.

3 Transforming strong contracts to weak

One powerful property of contracts is that they may be
used to define subtyping under the control of logical state-
ments. The basic subtyping principle is stated by Barbara
Liskov in her substitution principle [8]. One common ap-
plication of this principle for assuring subtyping in the con-
text of subclassing is Meyer’s assertion redeclaration rule
[11]. On the basis of this rule, this section defines weak and
strong contracts in a way satisfying the substitution princi-
ple. The definition gives practical guidelines for when the
contract for an operation can be modified without affecting
the clients of the operation. This definition is at the base of
the development strategy, stated last in this section.

3.1 Liskov’s substitution principle

Barbara Liskov has shown the usefulness of type hierar-
chies for several purposes, for instance in software design.
She stated the substitution principle while relating the use-
fulness of type hierarchies in program development to data
abstraction [8]:

If for each object o1 of type S there is an object
o2 of type T such that for all programs P defined
in terms of T, the behavior of P is unchanged
when o1 is substituted for o2, then S is a subtype
of T.

In summary, this principle states that the type S of an
object is a subtype of the type T of another object if it is
impossible to observe any difference in behavior when the
S object is substituted for the T object. Liskov notes in par-
ticular that the subtype must have all the operations of its
supertype and the operations must do the same things.

Subtyping is a desirable property when the contract of an
operation in a module is replaced by another contract. If the
new contract is such that the modified module is a subtype
of the same module with the original contract, we will say
for simplicity that the new contract defines a subtype of the
original contract. In that case, the client environment of the
module may remain unchanged across the modification. We
therefore need a substitution rule for contracts, answering
the question of when one contract for an operation defines
a subtype of another.

3.2 Definition of strong and weak contracts

Up to this point, the terms strong and weak contract have
been defined intuitively. We will now propose a more pre-
cise definition that allows us to compare the strongness of
two contracts for the same operation and that defines the
module of a weak contract to be a subtype of a module with
a stronger contract for the same operation. Replacing the
latter module by the former will therefore be a transparent
operation, as seen from the point of view of the clients of
the module. The definition will for instance make it possi-
ble to compare the contracts of Figure 1 and Figure 2 and
determine that the first one defines a subtype of the second.
In the following, saying that condition A is stronger than
condition B is equivalent to saying that A logically implies
B, or that B is true whenever A is. Weaker, of course, has
the opposite meaning.

Bertrand Meyer’s assertion redeclaration rule for classes
[11] may be used as a starting point for defining a rule for
subtyping in terms of the design contracts of the module
operations. It says:

A routine redeclaration may only replace the
original precondition by one equal or weaker
and the original postcondition by one equal or
stronger.

This rule defines routine redeclaration as a behavioral
subtyping [4, 9, 11] satisfying Liskov’s substitution prin-
ciple [8]. For the purposes of supporting the development
strategy presented here, however, it is too restrictive. In par-
ticular, it does not make Figure 1 define a subtype of Fig-
ure 2. Certainly, the precondition of Figure 1 is weaker than



that of Figure 2. The postcondition of Figure 1, however, is
not stronger than that of Figure 2, since a thrown exception
satisfies the former but not the latter.

We therefore propose the following definition of weak
and strong contracts, which achieves our goal of matching
external and internal errors, still satisfying Liskov’s substi-
tution principle:

A redefined contract is weaker than the origi-
nal one if its precondition is equal to or weaker
than the original precondition and its postcon-
dition is equal to or stronger than the original
postcondition in the domain of the original con-
tract.

This definition determines the cases in which one con-
tract is stronger or weaker than another one, but no abso-
lute measure of ”strongness” is defined2. Of course, for a
contract to be redefined, the precondition and postcondition
cannot both remain the same.

The clause ”in the domain of the original contract”
means that the redefined postcondition is considered only
for those cases for which the original precondition is sat-
isfied. This clause is needed to support the development
strategy proposed in this paper and sufficient to conform to
the substitution principle. The definition corresponds to the
methods rule of the pre-behavioral subtyping defined in [1]
and is motivated by the following informal reasoning.

A weak contract will typically have the precondition true
where the corresponding, stronger contract has a specific
precondition, as illustrated in Figures 1 and 2. As shown in
Figure 1, the postcondition of the weak contract will consist
of two parts. One part will be the same as the postcondition
of the corresponding strong contract conditioned by the pre-
condition of the strong contract and one part will be new
compared to the corresponding strong contract. The sub-
stitution principle states that the redefined module should
behave in the same way as the original module for all pro-
grams defined in terms of the original module. Such pro-
grams will assure the strong precondition and will then find
the original postcondition satisfied after the call. The result
in the case that the original precondition is not assured is
explicitly left undefined by the contract. Thus, in that case,
any postcondition will do for the redefined contract. It is
therefore sufficient for the redefined contract to specify a
postcondition at least as strong as the original one in the
domain of the original precondition. Formal proof that this
definition conforms to the substitution principle is beyond
the scope of this paper.

2Truly, the strongest and weakest possible contracts can be defined.
The strongest possible contract has the precondition false and the postcon-
dition true. The weakest possible contract has the precondition true and
the postcondition false. None of these are, however, particularly useful.

3.3 Development strategy and expected effects

The main principles discussed thus far are summarized
below.

• External errors should be managed by the system.

• Weak contracts are useful for managing external er-
rors.

• Internal errors should be minimized and the faults in-
troduced detected and removed.

• Strong contracts are useful for disclosing and remov-
ing faults introduced by internal errors.

• Strong contracts can be weakened without affecting
the clients of the operations.

Combining these observations, we propose the following
development strategy [12].

When developing a system with external inter-
faces, start by applying strong contracts for all
operations and use a contract violation detection
mechanism to identify and remove faults. Then
selectively weaken the contracts of the external
interfaces to tolerate external errors and add ro-
bustness in the external interface.

A discussion of contract violation detection mechanisms
is beyond the scope of this paper, but inspections and run-
time monitoring are relevant static and dynamic alternatives
respectively [2, 5, 6, 10]. These may be used alone or in
combination. Similarly, a discussion of alternative tech-
niques for contract weakening is also not in the scope of
this paper. The alternatives include modification of the in-
terface, inheritance and wrapping.

The proposed strategy focuses on correctness and con-
tract conformity, the primary expected effect of this being a
decrease in the number of faults. It also focuses on a con-
sistent use of strong contracts. An expected effect of this is
lower product complexity, which is in turn expected to re-
duce both development time and the number of faults. As
a result of the reduced number of faults, the time spent on
testing and fault correction is also expected to be reduced.
The final weakening of the contracts will probably con-
tribute to some increase in development time, but planning
for this weakening should minimize the extra effort and time
needed. This increase in time should also be compensated
for by the savings mentioned. The case study reported in
the rest of this paper supports these expectations, but more
research is needed to draw decisive conclusions.



Internet


Business logic and database storage


Dynamic server page generator

(DSPG)


Client

browser


Interface defined

by contracts


Figure 3. Architectural overview of the system

4 Presentation of the case study

A case study was made during the spring of 1999 of an
industrial project that applied the strategy presented above.
The project was of medium size, with about ten persons,
most of them full time, for a period of six months. The
remainder of this paper presents the case study and the ex-
perience gained from it. This section starts with an overall
presentation of the nature and architecture of the software
system produced in the industrial project. It then identifies
the nature of the interfaces in the system and presents the
contracts used initially by one of the system modules.

4.1 Overall system description

The product of the industrial project is an Internet server
with both a wap3 and a web interface. The server uses dy-
namic server pages technology to allow end users to ac-
cess and modify user defined menu structures in a database
hosted by the server. Access to the system is through wap

3Wireless Application Protocol, a standard for providing Internet com-
munications on digital mobile phones and other wireless terminals.

enabled telephones or standard web browsers, at the user’s
discretion. The parts of the overall system architecture of
relevance to this paper are shown in Figure 3.

The system consists of the server system, divided into
the dynamic server page generator module (DSPG) and the
business logic and database storage module. The user in-
teracts with the system through a wap or web browser, se-
lecting a menu alternative or clicking on a button in the wap
or web pages displayed in the browser. The browser trans-
forms the user command into a URL string with parameters
that it transmits across the Internet. On the server side, a
dispatcher transforms this URL string into a call with pa-
rameters to an operation in the DSPG module. The business
logic part supports this module with tailored operations on
the data structure, which is stored in the database.

Much of the functionality in the system consists of rou-
tines to allow the user to manipulate the menus to be used
from the wap telephone. A user will define menus contain-
ing his or her most common telecom services or links to
frequently visited wap or web pages. These menus are pre-
sented as a line oriented series of choices. The operations
the user can use to configure the wap menus include op-
erations to add a new menu selection, to move a selection
within a menu or to another menu, to define the details of a
selection and to remove a selection. The user can also define
new menus, link menus to each other and delete menus.

4.2 Identification of interfaces

Three principal interfaces can be identified in this archi-
tecture. One is the user interface, represented by the wap
and web pages in the client browser. The next is the server
interface, managed by the DSPG. Finally, there is the busi-
ness logic interface. Of these, the first is an external inter-
face and the last two are logically internal interfaces, since
they are under the direct control of the software. The current
browser page, which is defined by the DSPG, determines
the operations that may be called and the arguments that
may be supplied by the user. The interactions between the
user, the browser and the system are illustrated in Figure 4.

4.3 The initial choice of contracts

Consistent with the strategy proposed in this paper, the
interface to the business logic module was defined with
strong contracts. The module contains 17 classes with a
total of about 70 public operations, all initially defined with
strong contracts. Including support operations, this ac-
counts for about 6,000 lines of code, including comments
and empty lines, or about 40% of the total code size. The
contract for the operation to retrieve the details of a menu
selection can be taken as an example. It is shown in Fig-
ure 5. The corresponding implementation is illustrated by
the pseudocode in Figure 6. This implementation is con-



End user

DSPG Business LogicClient Browser

 call operation(s)

 call operation(s)

 display next screen

 display start screen

 selection info

 login info

*[while more] select operation

 login

 next screen

 start screen

Figure 4. Browser/server interaction

sistent with the precondition, which states that the item
searched exists in the menu. That implies for instance that
the menu contains at least one element, so the loop will run
at least once. It also implies that there is no need to check
for the end of the list, since the element searched will al-
ways be found before the end of the list is reached. Also
consistent with the contract principle is the fact that there is
no strategy to recover in the case that the precondition is not
satisfied. It is assumed to be satisfied.

5 Experience with strong contracts

This section summarizes experience gained from the ap-
plication of strong contracts in the business logic layer of
the product. It starts with a description of how the focus
on correctness allowed a fast implementation of the busi-
ness logic part. This is followed by a report on three effects
of the strong contracts on the programming of the DSPG
software. Thanks to the strong contracts, an error detection
mechanism could pinpoint violations made by the DSPG
programmers. They soon learned to respect the contracts,
and this helped them to reduce the number of faults intro-
duced in the system. Strong contracts in combination with
some kind of violation detection mechanism proved to be a
strong tool for correctness. During testing, the system also
exhibited a more stable failure profile than an earlier, com-
parable project.

5.1 Focus on correctness

As usual, the project was under time pressure, and the
business logic part was essential for the progress of the
DSPG part. Two designers were assigned the responsibil-
ity of producing the business logic part. After an initial
phase settling the design principles, the contracts for the
operations were defined. After that, the operations could
be rapidly implemented, focusing on correct functionality
and avoiding error checking of input parameters. The im-
plementation assumed that a precondition that was stated in
a contract was always satisfied. This procedure allowed a
fast and fault free implementation of the module. On only
two occasions after the internal delivery to the project were
minor adjustments needed in this part of the system.

5.2 Use of contract violation detection

With the finished business logic module, the DSPG pro-
grammers could start their progress. In this stage, the
project took advantage of the error checking mechanisms
in Java to detect and signal contract violations. The busi-
ness logic module contained no error checking, but as soon
as the precondition of an operation was not satisfied, the
implementation code would perform some kind of illegal
operation, for instance indexing an element out of bounds
or attempting to reference an object through a null pointer.
This would be caught by the built-in error control in Java.



Precondition: the item exists in the menu
Postcondition: result = details for item

Figure 5. The contract for retrieving the de-
tails for a menu selection

Typically, the program would then crash and a Java system
dump identifying the offending call would be displayed.

5.3 Client programmers conforming to the rules

To start with, the information given to the DSPG pro-
grammers about the strong contract definitions was insuf-
ficient. Being used to less strict function definitions, they
did not pay a great deal of attention to the details in the
calls and frequently made the error of violating the precon-
ditions. Since violations of the preconditions caused the
program to crash, they could not progress with their work
until they had conformed to the contracts. This, of course,
caused much frustration and acted as a very strong motiva-
tion to study and conform to the rules set up and to produce
fault free calls to the operations in the business logic mod-
ule.

5.4 Absence of faults in the client modules

All the frustration and system crashes were not in vain.
Two facts could be noted. One, already mentioned, was
that the business logic software produced the correct re-
sult. Only two faults were reported during testing and both
were easily corrected. The other was that even the DSPG
software was free from faults in its communication with
the business logic part. The programmers made fewer and
fewer errors and the faults produced during development
were rapidly discovered and removed during testing.

5.5 Stability with respect to failures

Faults surviving module and integration testing were de-
tected early during system testing. If for instance ten test
cases were run without failure before system delivery, sub-
sequent test cases run by the customer were also failure free.
This is different from earlier projects not using contracts,
where ten test cases could be run without failure but later
test cases run by the customer after delivery could experi-
ence transient failures, revealing a fault. Transient failures
were not a problem in the project reported here, and no new
faults were normally discovered after delivery.

loop from first item
compare current item with parameter

until parameter item found
return the details of the current item

Figure 6. The pseudocode for retrieving the
details for a menu selection

6 Weakening the contracts

In the business logic layer, all the operations were de-
fined with strong contracts. Some of these operations were
exposed to external errors through an interface accessible to
the end users. These operations therefore had to use weaker
contracts in the finished product. The change from strong to
weak contracts was made late in the project. The operations
whose contracts needed to be weakened, and the weakening
procedure chosen are presented in this section. Experience
gained during this process is then described and shows that
the weakening of the contracts did not cause any noticeable
problems.

6.1 The contracts and the weakening procedure

The first step was to identify the contracts that had to be
weakened. The end user interface, as it appears in the wap
or web browsers, is under the control of the system. This
forces correct use of most of the operations. However, the
calls from the client browser to the server pass as standard
URL strings that may be repeated or manipulated by the
end user, potentially producing an illegal call to the server.
This call would propagate down through the DSPG module
to the business logic layer. These operations, accessible di-
rectly from the Internet interface, were thus the candidates
for weaker contracts. The project identified 16 such opera-
tions.

Two alternative procedures were considered to make
these operations tolerant to external errors. One was to im-
plement explicit inquiry operations for the contract precon-
ditions in the business logic module and implement a wrap-
per module with the weaker contracts. The other was to
modify the business logic operations themselves. While the
first procedure is the most modular one, the second one was
chosen, mainly because it could be implemented faster.

6.2 Experience from contracts weakening

With the strong contracts, all input conditions that did
not satisfy the precondition were invalid. To weaken the
contracts, some or all of these conditions were defined to be
valid and special cases were added to the postconditions to
specify their result. In the project, an exception was speci-
fied to be thrown in these special cases. The changes were



similar to the ones made from Figure 2 to Figure 1. The
implementation of the operations in the business logic layer
was then modified to take care of these extra cases, throw-
ing exceptions according to the new postcondition. Simi-
larly, some code in the DSPG module was modified to catch
these exceptions, displaying a user message stating that the
call was invalid.

The project confirmed that the changes to the business
logic layer could be done and that the modified operations
did not affect existing client code that already satisfied the
initial, strong contracts. The modifications to the DSPG
code were also easily made and did not cause problems or
introduce new faults.

7 Conclusions and further study

We have presented a strategy based on design contracts
for error management during software development. The
strategy states that the development of a subsystem should
be based on strong contracts in order to identify and elimi-
nate internal errors. Before delivery, the contracts for sub-
systems with external interfaces should be weakened in or-
der to tolerate external errors. The strategy is based on
the mapping that exists between contracts and errors, where
weak contracts are appropriate for interfaces exposed to ex-
ternal errors and strong contracts are appropriate for inter-
faces exposed to internal errors. A practical definition of
weak and strong contracts was provided that conforms to
Liskov’s substitution principle. This definition assures that
a strong contract can be substituted by a weaker one without
affecting the clients of the operation defined by the contract.

We have also presented a case study of an industrial
project in which the strategy was successfully applied. The
interface to the business logic module was defined with
strong contracts. This proved efficient in keeping down the
number of faults both in the business logic module itself and
in its clients. It also contributed to making the system stable
with respect to failures, with few transient failures both be-
fore and after delivery. Late in the project, the contracts of
the operations accessible to the external user interface were
weakened to tolerate external end user errors. The adapta-
tion of the implementation to these weakened contracts was
easily made and did not introduce new faults.

The expected effect of the strategy is a total gain in time
and quality. Although the positive effects of the strategy
were confirmed in the case study, more research is required
to provide general support for this conclusion.

Acknowledgements

The authors would like to thank Per Grundström, Helena
Lindskog and the development team for welcoming us into
the development project and supporting us during the case

study. This work was partly funded by the Swedish National
Board for Industrial and Technical Development (NUTEK).

References

[1] K. K. Dhara, Leavens, G. T. Forcing Behavioral Sub-
typing Through Specification Inheritance. InProceed-
ings 18th International Conference on Software Engi-
neering, pages 258-267, IEEE Berlin, Germany, 1996.

[2] M. Dyer. The Cleanroom Approach to Quality Soft-
ware Development. Wiley, 1992.

[3] N. E. Fenton, S. L. Pfleeger.Software Metrics, A Rig-
orous & Practical Approach, second edition. PWS
Publishing Company, 1997.

[4] R. B. Findler, M. Felleisen. Contract Soundness for
Object-Oriented Languages. InOOPSLA ’01 Confer-
ence Proceedings, pages 1-15, ACM, 2001.

[5] T. Heyer. Semantic Inspection of Software Artifacts:
From Theory to Practice. Ph.D. thesis, Department of
Computer and Information Science, Linköping Uni-
versity, SE-581 83 Link̈oping, Sweden, 2001.

[6] R. Kramer. iContract — The Java Design by Contract
Tool. In Proceedings of the TOOLS’98 Conference,
Santa Barbara, USA, 1998.

[7] J. Laprie (ed.).Dependability: Basic Concepts and
Terminology. Springer-Verlag New York, 1992.

[8] B. Liskov. Data Abstraction and Hierarchy. InOOP-
SLA ’87 Addendum to the Proceedings, October 1987.

[9] B. Liskov, J. M. Wing. A Behavioral Notion of Sub-
typing. In ACM Transactions on Programming Lan-
guages and Systems, November 1994.

[10] B. Meyer.Eiffel: The Language. Object-Oriented Se-
ries, Prentice Hall, 1992.

[11] B. Meyer. Object Oriented Software Construction,
2nd edition. Prentice Hall, 1997

[12] B. Meyer. The Significance of dot-NET. InSoftware
Development Magazine, November 2000.

[13] J. Rumbaugh et al.The Unified Modeling Language
Reference Manual. Addison Wesley, 1999.

[14] M. Shooman.Software Engineering. McGraw Hill,
New York, 1983.

[15] J. Warmer, A. Kleppe.The Object Constraint Lan-
guage, Precise Modeling with UML. Addison Wesley,
1999.


