
Error Management with Design Contracts

Eivind J. Nordby, Martin Blom, Anna Brunstrom
Computer Science, Karlstad University

SE-651 88 Karlstad, Sweden
E-mail: {Eivind.Nordby, Martin.Blom, Anna.Brunstrom}@kau.se

Abstract

When designing a software module or system, a software
engineer needs to consider and differentiate between how
the system handles external and internal errors. Exter-
nal errors must be tolerated by the system, while inter-
nal errors should be discovered and eliminated. This paper
presents a development strategy based on design contracts
to minimize the amount of internal errors in a software
system while accommodating external errors. A distinc-
tion is made between weak and strong contracts that corre-
sponds to the distinction between external and internal er-
rors. According to the strategy, strong contracts should be
applied initially to promote the correctness of the system.
Before release, the contracts governing external interfaces
should be weakened and error management of external er-
rors enabled. This transformation of a strong contract to a
weak one is harmless to client modules. In addition to pre-
senting the strategy, the paper also presents a case study
of an industrial project where this strategy was successfully
applied.

1 Introduction

When designing a software module or system, a software
engineer needs to consider and differentiate between how
the system handles external and internal errors. Incorrect
behaviour by end users and by external systems are typi-
cal examples of external errors. Design and programming
errors are typical examples of internal errors. Such errors
result in faults in the system being built. External errors
have to be be tolerated by the system, while internal errors
should be minimized and the faults they result in should
be discovered and removed.

This paper presents a development strategy based on
design contracts for error management in software devel-
opment. The strategy is based on three principles. One
is to make a distinction between weak and strong con-
tracts. Another principle is the correspondance between
external and internal errors and weak and strong contracts
respectively. The third one is Liskov’s principle of substi-
tutability [2], which implies that a strong contract may be

replaced by a weaker one without harm. This is exploited
by the strategy. It prescribes to first use strong contracts
to minimize internal errors and then weaken selected con-
tracts to tolerate external errors.

During the spring of 1999, a case study was conducted
of an industrial development project where the strategy
described was applied. Some software modules were de-
signed using strong contracts. Towards the end of the
project, some of these contracts were weakened in order to
accommodate external errors in the user interfaces. This
paper also reports on the experiences from this industrial
project.

The remainder of the paper is organized in two major
parts, a strategy part and a case study part, followed by
a conlusion. In the strategy part, the two different kinds
of errors that a software engineer has to face are first pre-
sented and related to strong and weak contracts. Then,
Liskov’s substitution principle and Meyer’s assertion re-
declaration rule [3] are presented and combined, showing
that the transformation of a strong contract to a weak one
is a harmless operation, confirming with Liskov subtyp-
ing. The development strategy, which is to start out with
strong contracts and then weakening selected contracts,
is then deduced from these principles. In the case study
part, the project studied is presented and the experiences
from applying the strategy in this project are summarized.
The conclusion from this case study is that the application
of the strategy gave a positive contribution to a successful
result.

2 Errors and design contracts

This section starts by briefly reviewing the distinction be-
tween external and internal errors. It then summarizes
the principles for design contracts and introduces two cat-
egories of contracts, called weak and strong contracts in
this paper. Finally, a correspondance is established be-
tween these contract categories and external and internal
errors.

2.1 External and internal errors

This paper uses the terms error, fault and failure according
to Fenton and Pfleeger [1]. An error is a dynamic prop-



erty of an actor, something wrong being done by someone
or something, for instance a user misusing the system, an
external system not responding correctly or a designer mis-
understanding a specification. An error, for instance dur-
ing design or implementation, may result in a fault, which
is a static product property, a deviation from the correct
implementation. A fault may cause a failure, which is a
dynamic product property, implying that the system does
not behave as intended. In brief, an actor may commit an
error, a system may contain a fault and, as a consequence,
the system may fail.

A software engineer has to face external and internal
errors in development work. External errors are errors
committed by actors external to the system. An end user,
for instance, may enter some illegal or meaningless input,
like typing letters in a number field or entering a value
out of range. Similarly, an external system may malfunc-
tion, possibly because of a physical or logical fault. Exam-
ples include external storage device errors and networking
problems.

Internal errors are errors committed by designers or pro-
grammers in the development team. They result in faults
being built into the system itself. These faults should
never have been introduced, and the ones that are should
be discovered and removed as soon as possible.

One important distinction between external and inter-
nal errors is that external errors arise when the system is
used while internal errors arise when it is created. Exter-
nal errors affect the system dynamically from the outside
without modifying the software itself. To maintain system
integrity and user friendliness, these errors should be toler-
ated and dealt with by the system. The internal errors, on
the other hand, are committed by the system designers and
programmers while the system is being developed. They
introduce static faults into the system software. Once in-
troduced, these faults remain in the system until they are
detected and removed, potentially causing the system to
fail even when used correctly. Even if internal errors can
never be totally eliminated, their number should be kept
low and the faults they result in should be detected and
removed.

2.2 Weak and strong contracts

Design contracts are used to define the semantics of oper-
ations and to specify the responsibilities of both the client
and the supplier of the operation. A contract consists
of a precondition and a postcondition [3]. Correctness is
achieved when the client software satisfies the precondition
before calling the operation and the supplier implementa-
tion satisfies the postcondition when terminating. In the
case when the precondition is not initially satisfied by the
client, the supplier is not bound to satisfying the postcon-
dition. In such a situation, the outcome of the operation
is explicitly left undefined [3], [5]. This leaves the sup-
plier the freedom to produce any result, to not terminate
or to abort the execution, to name but a few examples.

The actual choice is a matter of convenience. It is not a
correctness issue but is considered part of the robustness.
The classic example, which will also be used in this paper,
is the stack and the operation top, returning the topmost
element of the stack. This operation may be successfully
completed according to this description only if the stack
actually has a top element.

Two major categories of contracts are identified, called
weak and strong contracts respectively in this paper. The
weak contracts typically have the precondition true, im-
plying that the client does not have any obligations what-
soever. Instead, the supplier must be prepared to han-
dle even meaningless calls, like top being called when
the stack is empty, and the definition of the operation
must prescribe the outcome in such cases. Meyer [3]
refers to this as the tolerant approach to contract de-
sign. The outcome will typically be some kind of error
indication, like a status value being defined or an excep-
tion being thrown. This approach is illustrated in Fig-
ure 1. The notations some property@pre and result =
some expression used in the figure are OCL-notations1

for the value of the property some property at the start
of the execution of the operation and the value returned
from the operation respectively [4].

Precondition: true
Postcondition: if empty@pre

then EmptyException thrown
else result = top element

Figure 1: A weak contract for top

Strong contracts require that the client satisfies a spe-
cific precondition, as shown in Figure 2. The postcondi-
tion only states the outcome in the legal situations, that
is the situations where this precondition was true. Meyer
[3] refers to this as the demanding approach to contract
design or the ”tough love” approach.

Precondition: not empty
Postcondition: result = top element

Figure 2: A strong contract for top

2.3 Relation between contracts and errors

An interface exposed to an external system or an end user
will be called an external interface, and one exposed to
another part of the same system will be called an internal
interface. A weak contract corresponds to accepting input
errors and is suitable for external interfaces, which are

1OCL, the Object Contraint Language, defines a syntax to ex-
press preconditions, postconditions and other assertions. It was ini-
tially defined by IBM and is now included in the family of standards
managed by by the Object Management Group (OMG).



exposed to external errors. A strong contract assumes that
it is possible for the operation to be called correctly. That
is possible only for operations in internal interfaces, but
even clients to such operations will contain faults resulting
from internal errors.

Applying weak contracts, as illustrated in Figure 1, for
internal errors would correspond to accepting unaccept-
able situations that ultimately result from program faults.
A weak contract allows meaningless calls to a supplier op-
eration. The supplier is required to detect the error and
will return the responsibility back to the client software,
expecting it to take care of the returned error indication.
However, handling this error indication requires as much
effort from the client as assuring a correct call in the first
place.

3 Transforming strong contracts to weak

One powerful property of contracts is that they may be
modified under the control of logical statements. The basic
principle is stated by Barbara Liskov in her principle of
substitutability [2]. This principle is refined by Bertrand
Meyer for class inheritance in his Assertion Redeclaration
rule [3]. The same logic can be applied to the contract
of an operation to predict whether the modification of the
operation will affect the clients or be unnoticeable to them.

3.1 Liskov’s substitution principle

Barbara Liskov stated her principle of substitutability
while relating the usefulness of inheritance hierarchies in
program development to data abstraction [2]:

If for each object o1 of type S there is an ob-
ject o2 of type T such that for all programs
P defined in terms of T, the behavior of P is
unchanged when o1 is substituted for o2, then
S is a subtype of T.

In summary, it states that the type of an object is a
subtype of the type of another object if it is impossible to
observe any difference in behavior when the latter object
is substituted by the former. This property is also wanted
when a contract is replaced by another in a module, since
it allows the client environment of the module to remain
unchanged across the modification. We therefore need a
principle of substitutability for contracts, answering the
question when a contract defines a module to be a subtype
of another.

3.2 Transparent transformations

If a contract defines one module to be a subtype of an-
other, replacing the latter by the former is a transparent
operation as seen from the clients’ point of view. This
corresponds to Meyer’s Assertion Redeclaration rule for
classes [3]. It expresses when an object of a subclass can

replace an object of its superclass without affecting the
clients of the class.

A routine redeclaration may only replace the
original precondition by one equal or weaker,
and the original postcondition by one equal or
stronger.

3.3 Definition of strong and weak contracts

Up till now, the terms strong and weak contract have been
defined intuitively only. Now, they can be defined in a
somewhat more precise way. A contract is strong or weak
relative to another one. That means that a contract can be
stronger than or weaker than another one but no absolute
measure of ”strongness” is defined. Our definition of when
a contract is stronger than another is given below:

If two contracts obey the Assertion Redeclara-
tion rule of Section 3.2, then the original con-
tract is said to be stronger than the redefined
one.

This definition automatically implies that the transfor-
mation of a contract to a weaker one follows the Assertion
Redeclaration rule. Such a transformation is transparent
to clients of the operation since it does not affect their be-
havior, as paralleled by Liskov’s principle of substitutabil-
ity.

3.4 Development strategy and expected effects

The main principles discussed so far are summarized be-
low.

• External errors should be managed by the system.

• Internal errors should be minimized and the faults
introduced identified and removed.

• Weak contracts are useful for tolerating external er-
rors.

• Strong contracts are useful for detecting and removing
faults introduced by internal errors.

• Strong contracts can be weakened without affecting
their clients.

Combining these observations, we propose the following
development strategy.

When developing a system with external in-
terfaces, start out with strong contracts for
all operations and equip the operations with a
contract violation detection mechanism. Then
weaken selectively the contracts of the exter-
nal interfaces to tolerate external errors and
add robustness in the external interface.



A discussion of contract violation detection mechanisms
is outside the scope of this paper, but inspections and run-
time monitoring are two relevant alternatives. They may
be used alone or in combination. Similarly, a discussion of
alternative techniques for contract weakening is also out-
side the scope of this paper. The alternatives include mod-
ification of the interface, inheritance and wrapping.

The proposed strategy focuses on correctness and con-
tract conformity. The primary expected effect of this is
a decrease in the number of faults. It also focuses on a
consistent use of strong contracts. An expected effect of
this is a lower product complexity, which in turn is ex-
pected to reduce both development time and the number
of faults. As a result of the reduced number of faults, the
time spent on testing and fault correction is also extepted
to be reduced. The final weakening of the contracts will
probably contribute to some increase in development time,
but planning for this weakening should minimize the extra
effort and time needed. This increase in time should also
be compensated for by the savings mentioned. The case
study reported in the rest of this paper supports these ex-
pectations, but more research is needed to draw decisive
conclusions.

Internet

Business logic and database storage

Dynamic server page generator
(DSPG)

Client
browser

Interface defined
by contracts

Figure 3: Architectural overview of the system

4 Presentation of the case study

As mentioned initially, a case study of an industrial project
where the strategy presented above was applied has been
conducted. The remainder of this paper presents the case
study and the experiences gained from it. This section
starts by an overall presentation of the nature and archi-
tecture of the software system produced in the industrial
project. It then identifies the nature of the interfaces in
the system and presents the contracts used initially by one
of the system modules.

4.1 Overall system description

The system produced by the project studied is a wap2

server that also includes a web interface. It uses dynamic
server pages technology to allow the end users to access
and modify user defined menu structures in a data base
hosted by the server. Access to the system is through wap
enabled telephones or through standard web browsers, at
the user’s discretion. The parts of the overall system ar-
chitecture of relevance to this paper are shown in Figure 3.

The project was of medium size. It involved about 10
persons, most of them full time, for a period of 6 months.
The size of the resulting software produced during the
project is 15,800 new lines of code, including comments
and empty lines.

The whole system consists of a client browser and the
server system, the latter being divided into the dynamic
server page generator (DSPG) and the business logic and
database storage. The user interacts with the system by
selecting a menu alternative or by clicking on a button in
the wap or web pages displayed in the browser. A user
command is transformed into a URL with parameters and
transmitted across Internet. On the server side, a dis-
patcher transforms it into a call with parameters to an
operation in the DSPG module. The business logic part
supports this module with tailored operations on the data
structure, which is stored in the database.

Much of the functionality in the system consists of rou-
tines to allow the user to manipulate the menus to be used
from the wap telephone. A user will define menus contain-
ing his or her most common telecom services or links to
frequently visited wap or web pages. These menus are pre-
sented as a line oriented series of choices. The operations
the user can use to configure the wap menus include op-
erations to add a new menu selection, to move a selection
within a menu to another menu, to define the details of
a selection and to remove a selection. The user can also
define new menus, link menus to each other and delete
menus.

2Wireless Application Protocol, a standard for providing Internet
communications on digital mobile phones and other wireless termi-
nals



End user

Client Browser DSPG Business Logic

 call operation(s)

 call operation(s)

 display next screen

 display start screen

 selection info

 login info

 next screen

 start screen

*[till finished] select operation

 login

Figure 4: Browser/server interaction

4.2 Identification of interfaces

Three principal interfaces can be identified in this archi-
tecture. One is the user interface, represented by the wap
and web pages in the client browser. The next one is the
server interface, managed by the DSPG. Finally, there is
the business logic interface. Of these, the first one is an
external interface and the last two are logically internal
interfaces, since they are under the direct control of the
software. In this setup, the user may only call the op-
erations and supply the arguments defined by the current
browser page, which in turn is defined by the DSPG. These
interactions are illustrated in Figure 4.

4.3 The initial choice of contracts

Consistent with the strategy proposed in this paper, the
interface to the business logic module was defined with
strong contracts. The module contained 17 classes with
a total of about 70 public operations defined using strong
contracts. Including support operations, this accounts for
about 6,000 lines of code, including comments and empty
lines, or about 40% of the total code size. The contract
for the operation to retrieve the details of a menu selection
can be taken as an example. It is shown in Figure 5.

Precondition: the item exists in the menu
Postcondition: result = details for item

Figure 5: The contract for retrieving the details for a menu
selection

According to the contract theory, the implementation of
this operation will assume that the item is actually present

in the menu, so this condition will not be checked by the
code. The resulting implementation is illustrated by the
pseudo-code in Figure 6.

loop from first item
compare current item with parameter

until parameter item found
return the details of the current item

Figure 6: The pseudocode for retrieving the details for a
menu selection

This implementation is consistent with the precondition,
which states that the item searched exists in the menu.
That implies for instance that the menu contains at least
one element, so the loop will run at least once. It also
implies that there is no need to check for the end of the list,
since the element searched will always be found before the
end of the list is reached. Also consistent with the contract
principle is the fact that there is no strategy to recover in
case the precondition is not satisfied. It is assumed to be
satisfied.

5 Experiences from strong contracts

This section summarizes some experiences from the ap-
plication of strong contracts in the business layer of the
project. It starts with a description of how the focus on
correctness allowed a fast implementation of the business
logic part. This is followed by a report on three effects
of the strong contracts on the programming of the DSPG
software. Thanks to the strong contracts, an error de-
tection mechanism could pinpoint violations made by the



DSPG programmers. They soon learned to respect the
contracts and this helped them to keep the number of
faults introduced in the system down. Strong contracts in
combination with some kind of violation detection mech-
anism showed to be a strong tool for correctness. During
testing, the system also exhibited a more stable failure
profile than an earlier, comparable project.

5.1 Focus on correctness

As usual, the project was under time pressure, and the
business logic part was essential for the DSPG part to
progress. Two designers were assigned the responsibility
to produce the business logic part. After an initial phase
settling the design principles, the contracts for the oper-
ations were defined. After that, the operations could be
rapidly implemented, focusing on correct functionality and
avoiding error checking of input parameters. The imple-
mentation assumed that a precondition that was stated in
the contract was always satisfied. This procedure allowed
a fast and fault free implementation of the module. Only
on two occasions after the internal delivery to the project
were minor adjustments needed in this part of the system.

5.2 Use of violation detection

With the finished business logic module, the DSPG pro-
grammers could progress. In this stage, the project took
advantage of the potential in the contracts to detect and
signal contract violations. The error checking mechanisms
in Java were exploited to detect contract violations. The
business logic module had no error checking in it, but as
soon as a precondition of an operation was not satisfied,
the operation would perform some kind of illegal opera-
tion, for instance indexing an element out of bounds or
attempting to reference an object through a null pointer.
This would be caught by the built-in error control in Java.
Typically, the program would then crash with a run-time
exception.

5.3 Client programmers conforming to the rules

To start with, the information to the DSPG programmers
about the strong contracts used was insufficient. Being
used to less strict function definitions, they did not pay so
much attention to the details in the calls and frequently
made the error to violate the preconditions. Since viola-
tions of the preconditions caused the program to crash,
they could not progress with their work until they con-
formed with the contracts. This, of course, caused a lot of
frustration and was a very strong motivation to study and
conform with the rules set up and to produce fault-free
code.

5.4 Absence of errors in the client modules

All the frustration and system crashes were not in vain.
Two facts could be noted. One, already mentioned, was

that the business logic software produced the correct re-
sult. Only two faults were reported during testing and
both were easily corrected. The other fact is that even
the DSPG software was free from faults in its communica-
tion with the business logic part. The programmers made
fewer and fewer errors and the faults that existed during
development were rapidly discovered and removed during
module testing.

5.5 Stability with respect to failures

During system testing, if a module had a fault, it was dis-
covered during the early test cases. If for instance ten test
cases were run without failure before delivery, subsequent
test cases run by the customer were also failure free. This
is different from earlier projects not using contracts, where
ten test cases could be run without failure but later test
cases run by the customer after delivery could experience
transient failures, revealing a fault. For the project re-
ported in this paper, transient failures were not a problem
and new faults were normally not discovered after delivery.

6 Weakening the contracts

Some of the operations defined by strong contracts were
exposed to external errors through an interface accessible
to the end users. These operations therefore had to use
weaker contracts in the finished product. The change from
strong to weak contracts was done late in the project. The
operations, whose contracts needed to be weakened, as
well as the weakening strategy chosen are presented in
this section. After that, the experiences gained during
this process are presented, showing that the weakening of
the contracts did not cause any noticeable problems.

6.1 Identification of contracts and strategy

The first step was to identify the contracts that needed to
be weakened. The end user interface, as it appears in the
wap or web browsers, are under the control of the system.
This forces a correct use of most of the operations. How-
ever, the calls from the client browser to the server pass
as standard URL strings that may be entered or repeated
by the end user, potentially producing an illegal call to
the server. Therefore, the operations accessible directly
from the Internet interface were the candidates for weaker
contracts. The project identified 16 such operations.

Two main strategies were considered to make these op-
erations tolerant to external errors. One was to implement
explicit inquiry operations for the contract preconditions
and implement a wrapper module with the weaker con-
tracts. The other was to modify the operations themselves.
The first strategy was the most modular one, but the sec-
ond one was chosen. The main reason for this choice, was
that it could be implemented faster. The modification
to weaker contracts had not been anticipated sufficiently



early, so there was no support for the first strategy in the
module and there was no time to implement it.

6.2 Experience from contracts weakening

With a strong contract, all the input conditions that do not
satisfy the precondition are invalid. When the contract is
weakened, some or all of these conditions are defined to be
valid and special cases are added to the postcondition to
specify their result. The implementation of the operation
must then be modified to take care of these extra cases ac-
cording to the new postcondition. The project confirmed
that this could be done and that the modified operations
did not affect existing client code that already satisfied the
stronger contract.

6.3 Adaptation of client modules

The contracts were weakened by specifying that some ex-
ceptions should be thrown in the new special cases now
allowed in the preconditions. In order to accommodate
external errors, some client code was modified to catch
the new return situations defined by the new postcondi-
tions. This was easily done by adding code to catch the
exceptions thrown and display a user message stating that
the call was not valid. All these modifications were easy
to control and did not cause problems or introduce new
faults.

7 Conclusions and furher study

We have presented a strategy based on design contracts
for error management during software development. The
strategy states that the development of a subsystem should
be based on strong contracts in order to identify and elim-
inate internal errors. Before delivery, the contracts for
subsystems with external interfaces should be weakened
in order to tolerate external errors. The strategy is based
on the mapping that exists between contracts and errors,
where weak contracts are appropriate for interfaces ex-
posed to external errors and strong contracts are appro-
priate for interfaces exposed to internal errors. As an
extension to Liskov’s principle of substitutability, rules
were provided for the transformation between strong and
weak contracts. A strong contract can be substituted by
a weaker one without affecting the clients of the opera-
tion defined by the contract. This is based on the same
reasoning as Meyer’s Assertion Redeclaration rule for sub-
classing.

We have also presented a case study of an industrial
project where the strategy was successfully applied. The
interface to the business logic module was defined with
strong contracts. This proved efficient in keeping down
the number of faults in both the business logic module
itself and its clients. It also contributed to making the
system stable with respect to failures with few transient
failures both before and after delivery. Late in the project,

the contracts of the operations accessible to the external
user interface were weakened to tolerate external end user
errors. The adaptation of the implementation to these
weakened contracts did not introduce new faults.

The expected effects of the strategy is a total gain in
time and quality, as presented in Section 3.4. Although
the case study supports the positive effects of the strategy,
more research is required to be conslusive.

References

[1] Fenton, N. E., Pfleeger, S. L., Software Metrics, A Rig-
orous & Practical Approach, second edition, PWS Pub-
lishing Company 1997

[2] Liskov, B., Data Abstraction and Hierarchy OOPSLA
’87 Addendum to the Proceedings, October 1987.

[3] Meyer, B., Object Oriented Software Construction, 2nd
edition, Prentice Hall, 1997

[4] Warmer, J., Kleppe, A., The Object Constraint Lan-
guage, Precise Modeling with UML, Addison Wesley,
1999.

[5] Rumbaugh, J. et al, The Unified Modeling Language
Reference Manual, Addison Wesley, 1999.


