
Semantic integrity of switching sections with contracts:
Discussion of a case study

Eivind J. Nordby
Department of Computer Science, Karlstad University
651 88 Karlstad Sweden
E-mail: Eivind.Nordby@kau.se

Martin Blom
Department of Computer Science, Karlstad University
651 88 Karlstad Sweden
E-mail: Martin.Blom@kau.se

Submitted: January 1999

Abstract: We have studied the design documentation for two industrial software
modules to see if they apply ideas corresponding to contracts, as introduced by Bertrand
Meyer, either in an intuitive or in a formal way. They did not, and we identified this fact
to be a potential risk factor. This paper presents one of the modules studied, consisting
of a sequence of switching sections. Starting from this case study, the paper also
discusses how switching sections in general can be designed using contracts in order to
increase the semantic integrity of the module as a whole.
Key words: branch, contract, postcondition, precondition, selection, semantic integrity,
semantic gap, software design, software quality, switch.

1 Introduction

At Karlstad University we appreciate the trends in modern software products
towards more reactive and module based software components. Such software
puts high requirements on the quality of the module design and on both the use
and the implementation of such modules. The absence of a proper design will
frequently lead to integration problems. We will use the term semantic integrity
to describe the corresponding quality aspect. This is more fully explained in
Section 2. We have a general impression that there is a gap in the
documentation of the semantic aspects of much modern software.

To confirm or contradict this impression, we have started to study to which
extent sound modern software design principles are applied in the software

industry today. The objective for our study is to eventually propose methods,
which promote the application of such principles in order to produce better
quality software faster. To be useful these methods must be pragmatic enough
to be applied by a great variety of software designers and developers with a
varying degree of formal education. We also appreciate that new software
functions are required at an increasing speed today, and any development
method proposed must consider the shorter cycle times. The formalism should
therefore be kept on a low to moderate level.

Within this research framework, in 1997 the authors of this paper studied
the documentation for selected modules from two recent industrial software
development projects. Both resulted in high quality products sold and in
production today. This work was part of a Master’s thesis in Computer Science,
presented in (Blom 97).

The objective of that study was to see if the design of the modules, as
described in the related documentation, followed established design guidelines.
The guidelines studied are extracted from current software engineering
literature and documented in (Blom 97). In particular we wanted to see if the
documentation reflected and rendered a clear understanding of the
responsibilities assigned to the different modules studied. The guidelines for
this study were taken from (Meyer 88) and the concept of “Programming by
contract” introduced there, but was not limited to object oriented systems. We
did not expect the contract concept to be applied explicitly, but wanted to see if
the major ideas behind this concept were applied, either intuitively or explicitly.

One of the products from our study forms the basis for this paper. It was
studied in more detail than the other one. The specific product area, as such, is
not relevant to the presentation and discussion in this paper and will not be
referenced. The module studied is presented shortly in Section 4 of this paper.

A full description and discussion of the module and its documentation can
be found in (Blom 97). It shows that the specification of the module, as a
whole, is well understood and well documented. Also, the implementation of
the individual parts of the module seems to be well done, although that aspect
was not a primary focus of the study. However, when it comes to the
documentation of the module integration aspects, i.e. how the individual parts
of the module cooperate to meet the overall module specification, the study
found a lack of complete and consistent documentation.

In this paper, we evaluate this case with regard to its semantic integrity. We
then extend the design to show how the module integration could be done and
documented to achieve an even higher level of software quality. In particular,
we look at how the concept of contracts can be used to manage the semantics of
a branching construction and we then generalize these principles.

The rest of this paper is organized as follows. Sections 2 and 3 present the
terms and concepts used and delimit the scope of this paper. The case study is
presented in Section 4, and Section 5 discusses the areas where the design
documentation does not support the module’s semantic integrity, especially in
relation to the switching sections used. Section 6 proposes a design
methodology using contracts. It integrates the implementation of the switching
sections in the overall module design and helps to assure the semantic integrity
of the module as a whole. Section 7 then discusses the merits of this approach.
Finally, Sections 8 and 9 conclude the paper and present some areas for further
study.

2 The terms and concepts used

This section defines most of the terms used in this paper. The first part
describes some general terms and their use. The second part presents the term
semantic integrity discussed in this paper and related concepts in some detail.
The third part introduces the terms and problems directly related to the case
study discussed in this paper.

2.1 General terms

This subsection defines the meaning of some terms used in the context of this
paper. Since the paper is limited in scope, some terms will be used in a
narrower, more specific way than what may be the case in other contexts. The
scope of the paper is discussed in Section 3.

Our study involves algorithms and their properties. An algorithm describes
the steps of a process and shall meet some requirements expressed in a
specification. An algorithm describes an implementation and it may be
expressed as code.

We use the term routine in the same sense as (Meyer 88). A routine may be
is called a subroutine, a function, a procedure or a method in some
programming languages.

The term assertion is used in its usual way. An assertion is a logical
statement about the state of a process at a specific point of an algorithm. This
specific point will always be between two steps of the algorithm. Frequently, an
assertion expresses a condition. The assertion is said to hold, or the condition to
be satisfied, if it evaluates to true at the given point.

Preconditions and postconditions play a central role in assuring semantic
integrity. These terms are defined by C. A. R. Hoare (Hoare 1972). They are
expressed as assertions. They are frequently referred to by research papers and
in other academic contexts but are not so frequently used in industry. An
algorithm or a part of an algorithm, often implemented as a routine, may be
enclosed by a matching pair consisting of a precondition and a postcondition.
The precondition expresses a condition that is known to hold before the
algorithm is executed. The postcondition expresses a condition that shall hold
after the execution of the algorithm. Invariants, although representing another
important aspect related to semantic integrity, are not discussed in this paper.

The concept of contracts was introduced by Bertrand Meyer (Meyer 1988).
A contract is expressed using preconditions and postconditions. A contract
relates to a specific service and is an agreement between the supplier of the
service and its clients. Normally, the supplier is implemented as a routine. The
clients are then the calling routines.

A contract works as follows. A client requesting a service from a supplier
should assure that the corresponding preconditions hold before the request is
issued. If, and only if, this is the case, the supplier guarantees that the
corresponding postconditions hold after the execution of that service. The
contract explicitly avoids describing the situation at the end of the execution of
the service in the eventuality that the requested precondition should not hold
when the service is requested.

A code section, or just section for short, is some contiguous part of a
computer program. Sometimes a complete software routine can be substituted
by a section of code. In this paper, we will allow the use of contracts for code
sections as well as for complete routines. In such a case, the “client” of the

section will be the surrounding code. In this case, the client and the supplier are
part of the same routine.

2.2 Semantic integrity

We use the term semantic integrity to denote, in addition to the complete
definition of the properties of a service, also the mutual respect for these
properties from both the supplier itself and from its environment. If the
properties of a service are defined using a contract, then semantic integrity is
conserved if the contract is consistent and violated by neither clients nor the
supplier. To verify this it is necessary to be able to match both invocations and
the implementation of the service against the conditions of the contract.

As it turns out, to verify this implies a study of the implementation of each
of the clients. The parts of the client algorithms are connected through
assertions. A given pair of assertions constitutes a contract for the enclosed
code section. For the semantic integrity of the total system to be maintained,
this contract must be compatible with the contracts of the routines called by this
code section, as discussed below. A software system where each module can be
shown to maintain its semantic integrity has reached a high degree of quality in
its design and implementation.

There are two typical and frequent ways to violate the semantic integrity of
a piece of software. One is that the implementation of the supplier does not
follow its own specifications. The other is that a client uses the service in a
way, which is not consistent with these specifications. In some cases, the reason
for these discrepancies is that the specifications themselves are incomplete or
unclear. The concept of semantic integrity includes a requirement that there be
a valid specification for the service, and that this specification is given
independently of the implementation of that service. In the case study explored
in this paper, we found that such a definition did not always exist or was not
always well understood. This fact represents a threat to the quality of the
software being designed.

A semantic gap appears when the relationships between different parts of a
system are not defined or documented. An example of a semantic gap appeared
in the case study. This is presented during the discussion in Section 5 below.

Semantic gaps are another source of violation of a software system’s semantic
integrity.

The term quality in this paper is used in a limited sense to only include
aspects of design and implementation of modules and their relation to semantic
integrity. A high level of quality in the context of this paper means that the
specifications of a module or code section are correct and complete, and that
the use and implementation of this module or section preserve the semantic
integrity.

2.3 Terms related to the case study

The following definitions introduce the particular focus for this paper. We
will use the term switching section for a special kind of code section. The first
part of a switching section is called a switch. It performs a test, and according
to the result of the test, one of the following parts, called branches, is executed.
All the branches converge to a common continuation point, the convergence
point. A switching section is commonly implemented as a possibly nested if-
then-else statement, a switch or a case statement. It can be illustrated by Figure
1.

Branch 1

Branch 2

Branch n

:

Switch

Branches

Convergence
point

Figure 1: The structure of a switching section

The focus on switching sections for this paper was chosen because the case
study described consists of a sequence of such sections. In the study, we found
a lack of semantic specification, called semantic gaps, both between and inside
these sections. These semantic gaps represent a potential source of semantic
errors when the system continues to evolve.

3 The scope of this paper

This paper focuses on software quality in general and the design aspects for
software modules in particular. It concentrates on those aspects, which have a
bearing on a module’s semantic integrity, in the sense defined above. In
general, for a product to be usable, it must both “do the right things” and “do
things right”, i.e. it must be both useful and correct. The former aspect has to do
with the validation of the product and the latter with its verification.

“Doing the right things” concern the specifications for a system and is an
issue for system requirements engineers. It involves usability, fitness for use,
user friendliness and other aspects related to user requirements. These issues
are very important in software engineering, but lie outside the scope of this
paper. The same applies to aspects like iterative specifications, prototyping or
stepwise refinements, related to the software development process.

This paper is limited to studying software design aspects and to seeing how
to “do things right”. We assume that there is a valid, although possibly volatile,
system specification and study the semantic integrity of the system in relation
to this specification. One could say that semantic integrity is primarily related
to software verification. It is far less related to software validation. It is worth
emphasizing here that semantic integrity is only one of many quality criteria for
a software system.

Our study relates to the correctness of individual software modules. We
study how to define individual modules and how to make their implementation
conformant with their definition. In particular, this paper focuses on switching
sections. We discuss how the requirements for the individual branches of a
switching section can be defined in such a way that they support the semantic
requirements from the context.

This paper is based on an industrial case study. The objective of the case
study was to investigate the description of a module presented by an industry
partner. We wanted to see if the description constituted a complete base for
both the use and the implementation of the module. To use the module one
should not need to go to the implementation to see what was actually done. The
module specification should tell the whole story. Similarly, to implement the
module, one should not need to go to its client modules to investigate which
assumptions are made about it. Again, the module specification should give the

complete description against which the implementation should be checked. We
did not expect the interface to be described as a contract, but we wanted to see
if many of the ideas from the contracts concept were used.

We intended to limit our study to the module specification and to compare
this specification to a number of design criteria extracted from Meyer (Meyer
88). The module studied was selected by the industry partner. As it turned out,
for the case referred to in this paper, in addition to the design documentation of
the main module, we also received a description of the module’s
implementation. This includes the specifications of the next lower level of
modules used to implement the main module. We thus had two levels of
module description, one used by the implementation of the other. Actually, this
allowed us to draw more conclusions than we had planned to do.

4 Presentation of the case study

This section presents the structure and the documentation of the case study. In
the next section, we discuss the system solution, and in Section 6 we propose
some additions to it. A full description of the system and the evaluation is given
in (Blom 97).

In the case study there are two levels of abstraction. The study involved one
software module which was implemented using several other, smaller modules.
We will use the general attributes outer and inner to distinguish them from each
other. Figure 2 shows the relationship between the outer and inner modules.

Outer module

Inner modules

Figure 2: The relationship between outer and inner modules

The implementation structure of the outer module is illustrated in Figure 3.
It consists of a number of chained switching sections and a data structure. The
convergence point of one switching section is the switch of the following one.
Each one of the branches is a separately developed module and represents a
certain service. In a certain sense, the solution is dynamic. It is possible for the
customer to add new branches for a switch later, after the system is set in
operation. This allows new services to be added dynamically. The outer module
also contains a local data structure. This data structure is directly accessible to
all the inner modules and acts as a common global data structure to them.

: :

…

Module
input
according
to pre-
condition

Module
output
according
to post-
condition

Global inner module data

Figure 3: The outer module and its overall implementation structure

The outer module as a whole and its functionality are well described in a
system requirements document. The input to the module and the output from it
are well specified, as well as the conditions governing when it can be called
from its environment. These requirements are symbolized in Figure 3 by the
dashed lines, labeled precondition and postcondition respectively, crossing the
arrows going into and out of the outer module.

Figure 4 shows the chain of switching sections, which constitute the inner
parts of the outer module. The input requirements for the outer module also
serve as input requirements for the first switching section. Similarly, the output
requirements for the outer module serve as output requirements for the last
switching section.

In the case study, the individual inner modules were documented
independently of each other. Their functionality was described in terms of their
preconditions and postconditions. This is symbolized in Figure 4 by dashed

lines crossing the arrows entering and leaving the inner modules, where the
modules labeled B1 and Bn serve as examples.

:
B1

…
First
Input

Last
Output

Global data

Bn

:

Figure 4: The inner modules and their interrelationship

However, when it comes to the interrelationship between the inner modules,
we found a gap in the documentation. All the switching sections, seen as a
whole, take First Input as input and produce Last Output as output. Each one of
the individual inner modules participate in this overall operation. However,
there was no apparent connection between the task performed by the individual
inner modules and this overall role. This aspect will be further discussed in the
next section.

In the rest of this paper, rather than considering the outer module as such,
we will discuss its implementation, which is the sequence of switching sections,
and the branches of the switching sections. The switches and branches are the
inner modules. We thus have a sequential implementation with a global data
structure, which will be involved in the pre- and postconditions of the inner
modules. We also have the specifications for the input of the first part and for
the output of the last part, as illustrated in Figure 4.

5 Some comments on the solution from the case study in relation to its
semantic integrity

Assume that the individual modules, such as B1 through Bn in Figure 4, are
themselves well specified. That is not enough to show how they are related to
the First Input condition or how they contribute to meeting the Last Output
condition. This is because there are several semantic aspects involved.

The outer module has both a specification aspect and an implementation
aspect. Similarly, each of the inner modules also has a specification aspect and
an implementation aspect. The relationship between these four aspects is
illustrated in Figure 5. In the case study, the specification of the outer module
was well documented but we could not find any documentation, such as for
example A, B and C in Figure 5, for its implementation. This is an example of a
semantic gap as mentioned in Subsection 2.2.

For the inner modules, the specification was documented using
preconditions and postconditions for each individual module, such as X and Y,
but these were not explicitly related to the outer module. The dependency
between the inner modules and the surroundings was only implicitly present in
the head of the designer and will be lost when a new person takes charge of
developing the system further. In this context, it is not important if the inner
modules are implemented as inline code sections or as separate modules. In the
case study, they were implemented as separate modules. The fourth aspect, the
implementation of the inner modules, was not studied by us.

: :

SpecificationImplementation
Outer

module:

Inner
module: Specification

Specification

Implementation

A
B YX

C

Figure 5: The specification and implementation aspects of the modules

There are two kinds of dependency between the inner modules and their
environment. On the one hand, the switching sections to which the inner
modules belong are chained together, each one depending on the result of the
previous one in the chain. This defines the pre- and postconditions, such as A
and C of Figure 5, for each switching section and introduces a progress

dependency on the inner modules. On the other hand, each branch of a
switching section also depends on the outcome of the switch condition. This
introduces a branch dependency on the inner modules, such as B and C of
Figure 5. Obviously, the pre- and postconditions, such as X and Y, of the inner
modules must satisfy the requirements B and C from the surrounding branch. In
many cases X will be the same as B and Y the same as C, but, especially when
modules are reused, that does not need to be the case. Actually, A module,
which is reused, already has its pre- and postconditions defined. A sufficient
condition then, is that the reused, inner module is “strong enough”, as described
in Section 6 below. With reference to Figure 5, the pre- and postconditions X
and Y must at least satisfy the requirements defined by B and C. These, in turn,
are derived from the position of the switching section in the outer module.

One reason for the semantic gap, which we identified between the
specifications of the outer and inner modules, may be that the two-layer
architecture of the outer module does not appear clearly. The individual inner
modules are one semantic level removed from the outer module and this may
not be obvious to the designer.

The rest of this paper will focus on how to identify and document the
semantic requirements on the inner modules and to fill the semantic gap. The
objective is to achieve semantic integrity for the outer module.

6 A proposed design structure and development method for a module
containing a switching section

In the present section we try to generalize the lessons learned from the previous
study. We look at a general situation similar to the one studied, e.g. an outer
module whose implementation contains at least one switching section. We
propose a small, pragmatic set of documentation rules to support the semantic
integrity of the outer module, the switching section and the branches for the
switch. We also propose a three-step method to help to identify the necessary
semantic information.

The scope of the proposed method is limited to the overall view and one of
the switching sections. The questions to which we propose an answer are the
following:

– Which documentation is necessary in the case of a switching section in
order to assure the semantic integrity of both the switching section and of
the surrounding module?

– When a switching section appears as part of a module’s implementation,
how should one proceed to maintain a semantic chain from the module
being implemented down to the individual branches of the switching
section, in order to maintain the semantic integrity of the whole module?

The steps to a design and implementation, which we propose, shall promote
the semantic integrity of the outer module and its constituents. In this case we
propose a top down procedure, going through the following three steps:

1 Section contracts. Identify the major implementation sections of the outer
module and express the assertions between the sections. Each switching
section in particular will be identified as a separate implementation section.
The assertions immediately surrounding the switching section will define
the contract it has to satisfy, corresponding to the conditions at A and C in
Figure 5.

2 Branch contracts. For each branch of the switching section, identify the
branch dependency. It is based on the precondition for the switching section
and the switch condition for that branch. Then extract the contract for this
branch, corresponding to the conditions at B and C in Figure 5.

3 Branch specification and implementation. Specify and implement each
branch so that it satisfies the corresponding contract. The pre- and
postconditions for the branch must be at least as strong the branch contract,
as developed in Subsection 6.3. This corresponds to the conditions at X and
Y in Figure 5.

Step 1 relates to the implementation of the outer module and accounts for
the progress dependency mentioned in Section 5. Step 2 relates to the
implementation of the switching section and accounts for the branch
dependency, also mentioned in Section 5. Step 3 relates to the specification and
implementation of the branch sections as shown in Figure 5. In this way, the
implementations of the individual inner modules are tied to the requirements

stemming from the implementation of the outer module. More often than not,
the specification of the branch in Step 3 will be the same as the branch contract
from Step 2, but they have different semantic bearing. They may also differ, for
instance if the branch implementation is based on reusable components, which
already have their pre- and postconditions defined. The semantic gaps
mentioned earlier are filled by the steps 1 and 2.

The point here is that we are deducing the requirements of what each one of
the branches of a switching section should do (Step 2) from the switching
section’s position in the implementation of the outer module (Step 1). This is a
way to bridge the implementation of the outer module to the specification of the
inner one. This sets the smaller building sections, which are the inner modules,
in the context of the surrounding module and supplies a tool for verifying the
consistency in the requirements. Therefore, it helps in achieving the semantic
integrity of the outer module by assuring that it implements what it has
promised in its own external contract.

This method allows for a top down, as well as a bottom up, approach. The
implementation may be done top down, using the outer contract as its
requirement specification. Steps 1 and 2 define the requirements on each
branch in the switching section. Step 3 implements these branches. The
implementation of the branches may also be bottom up by reusing a module,
which already meets the branch contract. The following subsections will
develop these three steps further.

6.1 Identify the major implementation sections of the outer module and the
corresponding section contracts

In this paper, we only study implementation sections, which correspond to
complete switching section. Once the sections are identified, the assertions
between each section should be described. The descriptions do not need to be
very formal, but should be as complete as possible. The assertions before and
after one section will constitute the contract for that section. This is illustrated
in Figure 6.

When the implementation of the outer module is seen as a sequence of
sections, each section drives the state of the module towards meeting the outer
module’s postcondition. The assertions Ai, which separate the implementation

sections, should evolve, starting with the outer module’s precondition and
ending with its postcondition. The contracts Ci are defined by matching these
assertions pairwise in such a way that the postcondition of one contract will be
the precondition for the following one. Provided each section meets its contract,
this will assure the semantic integrity of the outer module, since the sequence
of implementation sections will implement the outer module correctly. The
important point is that the correctness of the implementation can be based on
the section contracts alone and not on the actual implementation of the sections.

Section 1

Contract 1

Assertion 0

Contract n

Assertion 1 Assertion n-1 Assertion n

S n-1 Section n

Module
precondition

Module
postcondition

S 2 …

Contract 2 Contract n-1

Figure 6: The major sections and their contracts

6.2 Identify the switch conditions and each branch contract

This is the step, which connects the requirements specification of the individual
branches to the overall implementation of the outer module. It is the central
step in assuring the semantic integrity of each switching section. This is
illustrated in Figure 7.

We have to make a simple assumption about the switch S itself. It should
give control to one of the branches only, and not have any side effects
observable to the rest of the switching section. If this is not the case, the switch
will have to be split into smaller parts to meet these requirements.

Branch i

:

Branch contract

Switching section contract

prei

Pre si posti

Post
S C

Figure 7: The branch contracts

The branch contract is deduced from the contract for the whole switching
section in the following manner. Assume that the condition for the switch to
select branch i is characterized by the assertion si. Then the precondition of the
contract prei for branch i is the precondition Pre for the whole switching
section strengthened with si. Mathematically this is expressed as

prei = Pre ∧ si.

The corresponding relation for the postconditions is simpler. Since there is no
data manipulation in the convergence point C, the postconditions posti for the
branches and Post for the switching section are the same, so

posti = Post.

It follows that each branch will have a separate contract, depending on the
corresponding switch condition. If every branch is specified this way, the
branching section as a whole will have its semantic integrity assured. This, in
turn, then assures the semantic integrity of the outer module as a whole.

6.3 Specify and implement each branch so that it satisfies its contract

Now that the contract for each individual branch is known, all that remains is to
implement that branch. This can be done in a top down or bottom up fashion.

The top down approach is the most common one. It implies to the
production of some code which transforms the outer module’s state from the
state specified by the precondition to the one specified by the postcondition.
The bottom up approach corresponds to reusing an already existing module.
How that can be done without the risk of violating the branch’s semantic
integrity in discussed below.

To be a correct implementation of a branch, the reusable module must
satisfy the contract for that particular branch. This is determined by comparing
the branch contract with that module’s pre- and postconditions. The module’s
precondition should be satisfied by the branch precondition. Conversely, the
branch postcondition should be satisfied by the module postcondition.
Informally one may say the module should be “better” than – or at least “as
good” as –what is required by the contract, e.g. produce more with less input.
More formally this can be stated by saying that the module’s precondition must
be weaker than or equal to that of the contract and the module’s postcondition
stronger than or equal to that of the contract. Expressed mathematically, using
the index m for the module and c for the contract:

prec ⇒ prem ∧ postm ⇒ postc

It is interesting to note that this is the same condition as the one governing
the semantic restrictions of a subclass routine, as discussed in (Meyer 88). In
that case, c and m would correspond to the superclass and subclass,
respectively. This analogy can be exploited in further studies.

In the case study, one of the requirements was that it should be possible to
add more branches in the future. To do that in a safe manner, Steps 2 and 3
should be repeated for each new branch. This, of course, requires that Step 1
has already been done.

7 Discussion of the case study as compared to the proposed method

In this section, we compare the design of the product studied with our proposed
method for the case of switching sections. The questions we ask are these:

1. Were all or some of the three steps done, implicitly or explicitly, during the
product development?

2. Were the results from these steps documented in the specification, in the
design documentation or in the code itself?

3. What consequences can we draw from the answers to these questions for
the present and future quality of the product implemented?

In the solution studied, there certainly was an understanding of the
requirements for the individual inner modules, corresponding to step 1, but it
was not documented. According to what we could see in the documentation,
only the Step 3 was done explicitly. The design leader followed a method,
which we did not study in detail. The objective of our study was to see if the
contract principles were applied, not why they were or were not applied.
Therefore, we only studied the resulting documentation, not the development
method applied to define this documentation. However, we may assume that it
was a top down method, since the inner modules were actually tailored to the
specification of the outer module, so the output from Step 2 and 3 are identical.
We also learned from the design leader that the method specifies that Steps 3 be
done, and we actually found that the branch modules were specified with their
pre- and postconditions.

However, both Step 1 and Step 2 were missing in the documentation of the
design of the inner blocks. Therefore, we could not verify if the specification
and implementation of the branches, as defined by their pre- and
postconditions, satisfied the requirements of the outer module.

From the conversations we had with the designers of the system, however,
we can assume that even Step 1 was done, but informally and intuitively. The
design leader, who also worked with the implementation, informally
understood the conditions at each step and designed the branch blocks
according to her understanding. Therefore, it is reasonable to believe that the
implemented solution was correct, although this knowledge was only in her
mind. However, we saw no trace of Step 2, which is a conscious analysis of the
consequences of the switching operation, in the documentation. In addition, the
actual designer does not work with this product any more, and even if she did,
she would have forgotten many details by now. Therefore, a problem may arise
when the branch modules need to be changed or new branches be added.

In the current solution, part of the knowledge required for maintenance and
further development will need to be extracted from the documentation of the
pre- and postconditions for the existing branch modules. This approach has two
problems.

Firstly, as it turned out, even these conditions were not complete and well
understood, but were included because the method used said so, so it may even
be necessary to go to the implementation of the branch modules for
information. This, of course, raises a serious question for any method maker,
including the authors of this paper. What is worse, a good method with a poor
understanding or a good understanding with a poor method? This is a question
for further study.

Secondly, the branch modules’ pre- and postconditions only express the
conditions actually met by the individual components according to Step 3. They
do not express the needs set by the outer module as by Step 1 or the
requirements stemming from the switching logic as by Step 2. Equipped with
individual pre- and postconditions only, the branch modules are like isolated
islands. Some reverse requirements engineering is necessary in order to extract
the conditions they need to meet.

In the design structure and method steps proposed in this paper, the needs
for each part of the outer module are clearly documented in the form of a
contract. Any new inner module, which follows the contract, is a valid module.
The outer module does not rely on the knowledge of the implementation of a
specific inner module for its correctness, only on the contract.

8 Conclusions

In this paper, we have studied the design and implementation of a software
module containing a sequence of switching sections. We discovered “semantic
gaps” in the case study, meaning that there was no documented continuous
semantic line from the external requirements of the module down to the
specification and implementation of the individual parts. The gaps appeared
both in the specification of each switching section and in the documentation of
the requirements for each switch branch. Therefore, the specification of the
modules, which implemented the individual branches of the switching section,

could not be backed up semantically. Rather, these specifications appeared in
isolation and did not sufficiently support the continuous development and
maintenance process. Nevertheless, at the time of our study, the project was
successful. Now, two years later, is would be interesting to follow up its
success record. Section 9 explains why that has not been done.

We have shown that contracts can be set up to specify the requirements for
the switching section as a whole. Contracts can also be used to specify the pre-
and postconditions for the branches of the switching section so that their
correctness requirements can be established. With these requirements
documented it is also safe to modify the branches or extend the number of
branches at a later date. The kind of quality obtained was called semantic
integrity. We have also proposed three steps to identify and document this
semantic information and to fill in the semantic gaps. The steps are simple and
pragmatic enough to be applied in practical software development work.

9 Further studies

This paper results from a work which is part of our research in software quality
based on semantic integrity. Part of this research focuses on how the use of
preconditions, postconditions and invariants can be promoted in the industry in
order to obtain better quality code. We believe that the contract concept is a
useful vehicle for this.

It is interesting to note from this case study, how the branches of a selection
follow similar semantic rules as subclasses in object oriented software
construction. The contract defined for each branch corresponds to the contract
of an abstract superclass or of an interface definition. The implementation of a
branch corresponds to a concrete subclass. The contract for the branch settles
the requirements for the branch, but the implementation does not need to follow
the contract exactly. It can do better than what is required by the contract
without violating it. Actually, this is a general observation regarding contracts.
The implementation of the service, which shall satisfy the contract, may do
better without harm but may not do worse. This observation suggests that each
branch could be defined as an abstract class, with possibly different
implementations defined as subclasses.

The original study reported in (Blom 97) involved two different
development projects. The case study referred to in this paper was the one
studied the most thoroughly, but the other one led to similar conclusions. None
of the projects was planned to be followed up regarding semantic errors, but the
other project had an error tracking system. To be able to confirm our
predictions of possible further development and maintenance problems, we
therefore have followed up the other project. However, after collecting and
studying the error report, it turned out that the kind of errors and corrections
reported were too general and of no help to us. This explains why the quality of
the project presented in this paper has not been followed up with respect to
semantic errors, and that no such follow-up is scheduled.

Instead, in January 1999, we started a new three-year research program in
cooperation with a software development company in Karlstad. The project is
supported by NUTEK, the Swedish National Board for Industrial and Technical
Development. The objective for the project is to study the software methods
applied in industry, to try to identify potential for improvement in the area of
module specifications and to develop methods to achieve such improvements.
During this project, we will try to set the principles presented in this paper at
work and to monitor the effects of this effort.

This paper has also presented the problem of the balance between the
method and the understanding. This is an important challenge to all method
developers and will be focused on in the NUTEK supported project.

The case of semantic integrity studied in this paper may be called a
horizontal integrity, since the switching sections are peer with each other and so
are the branches within one switching section. A completely different approach
would be used in the case of multi-tier architectures. There, contracts may be
used to support what might be called vertical semantic integrity, since different
parts of the system support each other to perform different parts of a common
task. This is the subject for a separate study.

10 References

Hoare, C.A.R. (1972). Proof of Correctness of Data Representation. Acta Informatica
vol 1 1972, 271-281.

Meyer, Bertrand (1988). Object Oriented Software Construction. Prentice Hall. 400pp.

Blom, M. (1997), Semantic Integrity in Program Development, Master's Dissertation,
Karlstad University

Blom M., Nordby, E. J., Ross, D. F. Jonsson E. (August 1998), Semantic Integrity in the
Programming Industry: A Case Study, Proceedings European Software Day,
Euromicro 98, Västerås, Sweden.

11 Presentation of the authors

Eivind J. Nordby has a M. Sc. in Computer Science, dating from 1979 from the
University of Oslo, Norway. He has been working in research and development
and is now teaching at Karlstad University in Sweden. His special interest is
software quality in general and semantic specifications in particular. He is
currently conducting a research project on semantic specifications together with
a software development company, sponsored by NUTEK, the Swedish National
Board for Industrial and Technical Development.

Martin Blom holds a B. Sc. in Computer Science and is working with
Eivind as a doctoral student in the same project. Martin also teaches
undergraduate courses in Computer Science at Karlstad University.

