

A smart card based solution for usercentric identity management

Jan Vossaert Researcher at KaHo Sint-Lieven Affiliated Researcher at KULeuven

Overview

- Introduction
- Approach
- Overview of the architecture
- Protocols
- Implementation details
- Evaluation
- Future work

Introduction

- INTELEVEN HOGESCUS
- Traditonal mechanisms for authentication
 - Password based solutions
 - X.509 certificates
- Drawbacks
 - Token management
 - Mobility of tokens
 - Personalized services

Why great care and consideration should be taken when selecting the proper password

Introduction

- Solutions
 - Federated identity management systems
 - Increased usability
 - No (or limited) user control
 - Identity provider can profile users
 - Web based
 - One identity provider
 - User impersonization
 - Weak login procedures

Shibboleth Identity Provider Login

Username:	
Password:	
Login	

4

Introduction

- Solutions
 - Electronic identity technology
 - Increased mobility
 - No (or limited) user control
 - Only immutable attributes
 - Security versus scalability

SINT-LIEVEN HOGESCHOOL

Introduction

- Challenges
 - increased flexibility
 - Mutable attributes
 - Multiple identity providers
 - user control
 - Personalisation
 - online and offline services
 - Feasible revocation strategy

- Secure element is mediator between
 - Identity providers
 - Service providers
- Access to attributes controlled by
 - external authorities: certificates
 - user: personalized policies at the card

Approach

SINTLIEVEN HOGESCHO

- Privacy properties
 - No profiling
 - by identity providers
 - by collaborating service providers
 - Access control to personal information
 - by audit authorities
 - by user

– No user impersonization

Overview of the architecture

Overview of the architecture

- Service provider certificate
 - Keeps a list of access rights approved by audit authority
 - Keeps a list of trusted identity provider (groups)

- Identity provider certificate
 - Keeps a list of access rights

Public keys of root CAs are placed at the card

- Card issuance
 - Common secret keypair
 - Prevents profiling
 - Card specific pseudonym
 - Used to generate service specific pseudonyms

Card revalidation

- Mutual authentication
- Card releases chip number
 - IF stillValid THEN update lastValTime

ELSE block_card

- Mutual authentication
 - Mutual key agreement protocol
 - $-SP \rightarrow CARD$
 - lastValTime used to check validity of SP Certificate
 - Short-lived server certificates
 - CARD \rightarrow SP
 - proves to be genuine
 - lastValTime > accValTime

Access to (personalized) services

- Access to personalized services
 - Special attribute \rightarrow service specific pseudonym
 - nym_{IP} = Hash(secret||Cert_{SP}.subject)

Deanonymization

- Releasing encrypted attributes
- Can be decrypted by TTP

- Prototype on Gemalto TOP IM GX4 smart card
 - Java Card 2.2.1
 - Performance constraints
 - No clock
 - Authorisation
 - PIN based

Certificates

- Standard X509 certificates
 - Authentication towards providers
 - Obtain derived card verifiable certificates
- Custom card verifiable certificates
 - Trusted providers
 - Attribute ID list/Level of assurance

- Memory management
 - No garbage collection
 - Cached attributes
 - Value/retention time/LOA/last time of use/identity provider/...
 - Fixed set of byte arrays with variable length
 - Least recently used update policy
 - Static memory configuration

- Release attributes
 - Cached attributes
 - Attribute $\leftarrow \rightarrow$ identity provider
- Personalization policies
 - Update policy based on PIN
 - Select cached attributes (persistent attributes)
 - Assign trust level to service providers
 - Assign sensitivity level to attributes

Evaluation

- Trust properties
 - Card issuer knows common key pair
 BUT card-specific secret is not known by card issuer
 - Trust in workstation for user interaction
 BUT implementation in SIM possible
- Scalability & flexibility
 - Clear separation of duties
 - Representatives for set of identity providers
 - Flexible revocation strategy

Evaluation

- Controlled release of attributes
 - Access control at multiple levels
 - certificates, user policies, user consent
 - Limited value of attributes to SP
 - Proving properties of attributes
 - Encrypted attributes \rightarrow accountability measures
- Performance
 - 2 identity providers: 3461 ms
 - 1 identity providers: 2287 ms
 - 0 identity providers: 1110 ms

Future work

- Building concrete services and identity providers
- Integration in Web applications
- Fine-grained access policies
- From smart card to SIM, dedicated module, ...
- Accurate performance results

