
Hans Hedbom, Tobias Pulls, Peter 

Hjärtquist and Andreas Lavén

Karlstad University

Adding Secure Transparency 

Logging to the Prime Core



Background

Prime Life

Multidisciplinary Consortium of  13+ organisations

Vision: counter the trend to life-long personal data 

trails without compromising on functionality.

Task 2.2.1 about transparency tools for privacy



Why Transparency tools?

New technologies makes it hard to controll access 

and the existence of data

AmI, Data Mining, Web 2.0, Online Comunities

Control use as a complement to Consealment?

European Law requires transparency

Not online requirement, but online tools will probably 

make things more costeffective.



Why privacy preserving secure logs?

A need to know how data been handled.

Realtime access for data subjects to processing 

and access history.

Detection of policy violations.

Should not reveal new personal information to 

others.



Related work.

Schneier and Kelsey: Discusses secure logs using hash chains 

and describes an algorithm and a protocol.

Holt: Improvements to S-K log making it publicly integrity verifiable. 

Discusses different uses of public key cryptography.

Ma and Tsudik: Solutions to integrity problems in S-K logs using 

forward secure sequential aggregation

Accorsi et. al: Privacy Policy violation detection using S-K logs. 

username part of the key.

Missing: Unlinkability, Secure anonymous access, Inability for 

server to read entries after commit. 



Assumptions

Assumptions

Logging environment (Prime Core) plays by the rules 

(but can turn bad).

Nothing can be done for future log entries if an 

attacker has full control of the environment or if the 

server turns bad (forward security).



Requirements

• It should not be possible for anybody except the data subject to decrypt log 

entries once they are committed to the log.

• It should not be possible to alter nor remove entries made prior to an attacker 

taking control of the data controller without detection.

• It should not be possible to link more than one log entry in the log referring to a 

specific data subject with that data subject except by the data subject itself. 

• For efficiency reasons the solution should as far as possible not require that the 

whole log database is fully traversed by any entity or sent as a whole to the data 

subject.



The Prime Core



Log Architecture

Log 
Modul

Key 
Store

Event 
Selector

Event 
producing 
Environment

Log 
reader
API

Event 
viewer

Server sideClient side

Get Events Get Events

Get Public Key of Data subject

Log Event
Store Event

Retrieve event

Log



Secrets

Secrets known and stored by the server:

SAS0- A random number constituting the initial server secret used to authenticate all 

entries in the log for the server. 

ServerID0- A random number constituting the initial ServerID seed. 

Secret known and stored by each client for each data subject identifier used by a 

data subject using the client:

DSS0- A random number constituting the initial client secret used to authenticate all 

entries relating to the data subject identifier for the client. 

EntryID0- A random number constituting the client's initial EntryID seed for 

the data subject identifier.



11

State Tables

Every update overwrites and irretrieveably deletes the previous value 

The server state table:

SASj+1 the secret used for the next entry

Latest ServerChain to build the next ServerChain

Latest ServerID to build the next ServerID

The (server’s) data subject state table:

Data Subject Identifier

DSSi+1 the secret used for the next entry

Latest DataSubjectChain to build the next ClientChain

Latest EntryID for that client to build the next EntryID



Adding an event to the Log

DataSubjectChaini-1

EntryIDi-1

DSSi

ServerIDj-1

ServerChainj-1

SASj



Adding an event to the Log

DataSubjectChaini-1

EntryIDi-1

DSSi

ServerIDj-1

ServerChainj-1

SASj

hash(EntryIDi-1, DSSi)

hash(ServerIDj-1, SASj)



Adding an event to the Log

DataSubjectChaini-1

EntryIDi

DSSi

ServerIDj

ServerChainj-1

SASj

ENCPUD
(SIGNPKs

(rawlog), nonce,rawlog)



Adding an event to the Log

DataSubjectChaini-1

EntryIDi-1

DSSi

ServerIDj-1

ServerChainj-1

SASj

HMACSASj(ServerChainj-1, ServerIDj, EntryIDi, Datai, 

DataSubjectChaini)

HMACDSSi(DataSubjectChaini-1, EntryIDi, Datai)



Adding an event to the Log

DataSubjectChaini

EntryIDi

DSSi

ServerIDj

ServerChainj

SASj

hash( DSSi)

hash(SASi)



Adding an event to the Log

DataSubjectChaini

EntryIDi

DSSi+1

ServerIDj

ServerChainj

SASj+1



Structure



The Log Reader Api

1. GetLogEntry(EntryID) - returns the object(s) with the supplied 

EntryID. Since only a data subject knowing the right private key 

can decrypt the data field this method does not need the data 

subject to be identified. 

2. GetLatestEntryID(DataSubjectIdentifier) - returns a data 

structure containing the EntryID in the data subject state table for 

the data subject identifier and a nonce. The structure is encrypted 

with the public key stored for the data subject. Returns dummy 

responces for invalid Data Subject Identifiers.



20

Validation

Both the server and the client are able to validate 

the log, without each other’s secrets



21

Validation, server

Calculate chain

HMACServerAccessSecret( previous calculated chain,

client chain,

encrypted data in log entry,

entry identifier,

server identifier )

Compare the calculated chain with the chain 
stored in the log entry



22

Validation, client

Calculate chain
HMACDataSubjectSecret ( previous client chain,

identifier of the entry,

encrypted data in log entry )

Compare the calculated chain with the chain stored in the 
log entry

Check that the decrypted data is signed by the server



Attack scenarios

Items of interest:

The log table

Server state which contains the server state table, the 

data subject state table and the private key used to 

sign entries 

SAS0 and ServerID0

DSS0 and DataSubjectEntry0 for every client

The private key for each client



Issues

Client behavior important

Access pattern

Anonymous network

Authentication keys reused

ID and Chain entries use the same key i.e DSS or 

SAS. -> Problems if Hash broken.



Conclusion and Future work

We have presented a privacy friendly secure log

The log builds on previous work

Addresses problems of linkabillity, anonymous 

access and reversibility once committed.

The log is implemented.

Next step to integrate into PRIME Core, to 

implement and design log Viewer and to estimate 

optimal log pattern.

”Log data propagation”



Conclusion and Future work

Open questions for future work

1. Is it really possible to irreversibly overwrite the old 

authentication keys once stored in the server's state 

i.e. memory? 

2. Will the actual database used to store the log 

entries to some extent leak the order in which the 

entries were added to the database due to some 

internal structures or functionality?



Questions


